Latent Ambiguity in Latent Semantic Analysis?

Martin Emms and Alfredo Maldonado-Guerra

February 16 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Outline

Singular Value Decomposition

Contending Formulations

Contrasting outcomes

Conclusions

-Singular Value Decomposition

п

Theorem (SVD)

a $m \times n$ matrix **A** can be factorised as $\mathbf{A} = \mathbf{USV}'$ where:

- 1. **U** has the eigen-vectors of $\mathbf{A} \times \mathbf{A}'$ for its first r columns
- 2. S's diagonal = square roots the eigen-values of U
- 3. V has the eigen-vectors of $\mathbf{A}' \times \mathbf{A}$ for its first r columns

-Singular Value Decomposition

Theorem (Low rank approximation)

If $\mathbf{U} \times \mathbf{S} \times \mathbf{V}'$ is the SVD of A, then $\hat{\mathbf{A}} = \mathbf{U}_k \times \mathbf{S}_k \times \mathbf{V}'_k$ is a optimum rank-k approx of \mathbf{A} where

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

- 1. S_k is diagonal with top-most k values from S
- 2. U_k is just first k columns of U
- 3. V_k is just first k columns of V

 $U_k \times S_k \times V'_k$ can be termed the 'rank k reduced SVD of A'.

-Singular Value Decomposition

HCI/Graph example (from Deerwester et al. (1990))

two sets of article titles, one about HCI (titles c1-c5), the other about graph theory (titles m1-m4.

- c1 Human machine interface for ABC computer applications
- c2 A survey of user opinion of computer system response time
- c3 The EPS user interface management system
- c4 System and human system engineering testing of EPS
- c5 Relation of user perceived response time to error measurement
- m1 The generation of random, binary, ordered trees
- m2 The intersection graph of paths in trees
- m3 Graph minors IV: Widths of trees and well-quasi-ordering
- m4 graph minors:a survey

HCI/Graph example (from Deerwester et al. (1990))

two sets of article titles, one about HCI (titles c1-c5), the other about graph theory (titles m1-m4.

gives \boldsymbol{A} a 12 \times 9 term-by-document matrix

	c 1	c 2	c 3	c 4	<i>c</i> 5	<i>m</i> 1	<i>m</i> 2	<i>m</i> 3	<i>m</i> 4
human	Г 1	0	0	1	0	0	0	0	ך 0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
respones	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minor	LO	0	0	0	0	0	0	1	1]

Singular Value Decomposition

		c1	c 2	<i>c</i> 3	c 4	<i>c</i> 5	<i>m</i> 1	<i>m</i> 2	<i>m</i> 3	<i>m</i> 4
	human	Γ1	0	0	1	0	0	0	0	0 J
A =	interface	1	0	1	0	0	0	0	0	0
	computer	1	1	0	0	0	0	0	0	0
	user	0	1	1	0	1	0	0	0	0
	system	0	1	1	2	0	0	0	0	0
	respones	0	1	0	0	1	0	0	0	0
	time	0	1	0	0	1	0	0	0	0
	EPS	0	0	1	1	0	0	0	0	0
	survey	0	1	0	0	0	0	0	0	1
	trees	0	0	0	0	0	1	1	1	0
	graph	0	0	0	0	0	0	1	1	1
	minor	LΟ	0	0	0	0	0	0	1	1]

LSingular Value Decomposition

The rank-2 reduced SVD of **A** is $U_2 \times S_2 \times V'_2$, where

U ₂ =	0.22 0.20 0.24 0.40 0.64 0.27 0.27 0.27 0.30 0.21 0.01 0.04	-0.17 -0.07 0.04 0.06 -0.17 0.11 0.11 -0.14 0.27 0.49 0.62 0.45	$\mathbf{S}_2 = \begin{bmatrix} 3.34 \\ 0 \end{bmatrix}$	0 2.54]	V ₂ =	0.20 0.61 0.46 0.54 0.28 0.00 0.01 0.02 0.08	-0.06 0.17 -0.13 -0.23 0.11 0.19 0.44 0.62 0.53	
	0.04	0.62						

Singular Value Decomposition

The rank-2 reduced SVD of **A** is $U_2 \times S_2 \times V'_2$, where

~ . . . -

$$\boldsymbol{U}_{2} = \begin{bmatrix} 0.22 & -0.11 \\ 0.20 & -0.07 \\ 0.24 & 0.04 \\ 0.40 & 0.06 \\ 0.64 & -0.17 \\ 0.27 & 0.11 \\ 0.27 & 0.11 \\ 0.30 & -0.14 \\ 0.21 & 0.27 \\ 0.01 & 0.49 \\ 0.04 & 0.62 \\ 0.03 & 0.45 \end{bmatrix} \boldsymbol{S}_{2} = \begin{bmatrix} 3.34 & 0 \\ 0 & 2.54 \end{bmatrix} \boldsymbol{V}_{2} = \begin{bmatrix} 0.20 & -0.06 \\ 0.61 & 0.17 \\ 0.46 & -0.13 \\ 0.54 & -0.23 \\ 0.28 & 0.11 \\ 0.00 & 0.19 \\ 0.01 & 0.44 \\ 0.02 & 0.62 \\ 0.08 & 0.53 \end{bmatrix}$$

Note:

Latent Semantic Analysis (LSA) = using SVD to make lower dimension versions of document vectors

We claim literature has two contendors for this SVD-based dimensionality reduction:

R1

R2

Latent Semantic Analysis (LSA) = using SVD to make lower dimension versions of document vectors

We claim literature has two contendors for this SVD-based dimensionality reduction:

R1

R2

▶ 'native'
$$i^{th}$$
 col of $\mathbf{A} \Rightarrow i^{th}$ -th row of \mathbf{V}_k
 \mathbf{V}_k^i is i^{th} row of \mathbf{V}_k (ie. $[\mathbf{V}(i, 1) \dots \mathbf{V}(i, k)]) = \mathbf{V}_k^i$)

Latent Semantic Analysis (LSA) = using SVD to make lower dimension versions of document vectors

We claim literature has two contendors for this SVD-based dimensionality reduction:

R1

• 'native' i^{th} col of $\boldsymbol{A} \Rightarrow \boldsymbol{V}_k^i \times \boldsymbol{S}_k$

R2

▶ 'native' i^{th} col of $\mathbf{A} \Rightarrow i^{th}$ -th row of \mathbf{V}_k \mathbf{V}_k^i is i^{th} row of \mathbf{V}_k (ie. $[\mathbf{V}(i, 1) \dots \mathbf{V}(i, k)]) = \mathbf{V}_k^i$)

Latent Semantic Analysis (LSA) = using SVD to make lower dimension versions of document vectors

We claim literature has two contendors for this SVD-based dimensionality reduction:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

R1

• 'native' i^{th} col of $\boldsymbol{A} \Rightarrow \boldsymbol{V}_k^i \times \boldsymbol{S}_k$

R2

- arbitray *m*-dim doc vector $\mathbf{d} \Rightarrow \mathbf{d} \times \mathbf{U}_k \times \mathbf{S}^{-1}$
- ▶ 'native' i^{th} col of $\mathbf{A} \Rightarrow i^{th}$ -th row of \mathbf{V}_k \mathbf{V}_k^i is i^{th} row of \mathbf{V}_k (ie. $[\mathbf{V}(i, 1) \dots \mathbf{V}(i, k)]) = \mathbf{V}_k^i$)

Latent Semantic Analysis (LSA) = using SVD to make lower dimension versions of document vectors

We claim literature has two contendors for this SVD-based dimensionality reduction:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

R1

- arbitray *m*-dim doc vector $\boldsymbol{d} \Rightarrow \boldsymbol{d} \times \boldsymbol{U}_k$
- 'native' i^{th} col of $\mathbf{A} \Rightarrow \mathbf{V}_k^i \times \mathbf{S}_k$

R2

- arbitray *m*-dim doc vector $\mathbf{d} \Rightarrow \mathbf{d} \times \mathbf{U}_k \times \mathbf{S}^{-1}$
- ▶ 'native' i^{th} col of $\mathbf{A} \Rightarrow i^{th}$ -th row of \mathbf{V}_k \mathbf{V}_k^i is i^{th} row of \mathbf{V}_k (ie. $[\mathbf{V}(i, 1) \dots \mathbf{V}(i, k)]) = \mathbf{V}_k^i$)

Latent Ambiguity in Latent Semantic Analysis?

-Contending Formulations

 R_2 in pictures

according to R_2 image of c2 is corresponding col of V'_k

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 三臣 - のへで

Latent Ambiguity in Latent Semantic Analysis?

-Contending Formulations

 R_1 in pictures

according to R_1 image of c2 via products with cols of U_k

R₂ in Literature

R1

- arbitray: $R_1(d) = d \times U_k$
- 'native': $R_1(\mathbf{d}) = \mathbf{V}_k^i \times \mathbf{S}_k$

R2

- arbitray: $R_2(d) = d \times U_k \times S^{-1}$
- 'native': $R_2(d) = V_k^i$

Gong and Liu (2001) have \dots projects each column vector *i* in matrix $A \dots$ to column vector $[V(i, 1) \dots V(i, k)]'$ of matrix V'

Zelikovitz and Hirsh (2001) have:

... a query is represented ... by multiplying the transpose of the term vector of the query with matrices U and S^{-1}

... lots of others

R_1 in Literature

R1

- arbitray: $R_1(d) = d \times U_k$
- 'native': $R_1(d) = V_k^i \times S_k$

R2

- arbitray: $R_2(\mathbf{d}) = \mathbf{d} \times \mathbf{U}_k \times \mathbf{S}^{-1}$
- 'native': $R_2(\mathbf{d}) = \mathbf{V}_k^i$

Papadimitriou et al. (2000) have

The rows of $V_k S_k$ above are then used to represent the documents

Kontostathis and Pottenger (2006) have

Queries are represented in the reduced space by $\boldsymbol{q} \times \boldsymbol{U}_k$...Queries are compared to the reduced document vectors... $\boldsymbol{V}_k \times \boldsymbol{S}_k$

... lots of others

R_1/R_2 relationship

R1

- arbitray: $R_1(d) = d \times U_k$
- 'native': $R_1(\mathbf{d}) = \mathbf{V}_k^i \times \mathbf{S}_k$

R2

• arbitray:
$$R_2(d) = d \times U_k \times S^{-1}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

• 'native': $R_2(\mathbf{d}) = \mathbf{V}_k^i$

R_1/R_2 relationship

R1

- arbitray: $R_1(d) = d \times U_k$
- 'native': $R_1(\mathbf{d}) = \mathbf{V}_k^i \times \mathbf{S}_k$

R2

• arbitray: $R_2(\mathbf{d}) = \mathbf{d} \times \mathbf{U}_k \times \mathbf{S}^{-1} = R_1(\mathbf{d}) \times \mathbf{S}^{-1}$

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• 'native': $R_2(\mathbf{d}) = \mathbf{V}_k^i$

R_1/R_2 relationship

R1

- arbitray: $R_1(d) = d \times U_k$
- 'native': $R_1(\mathbf{d}) = \mathbf{V}_k^i \times \mathbf{S}_k$

R2

• arbitray: $R_2(\mathbf{d}) = \mathbf{d} \times \mathbf{U}_k \times \mathbf{S}^{-1} = R_1(\mathbf{d}) \times \mathbf{S}^{-1}$

• 'native': $R_2(d) = V_k^i = R_1(d) \times S^{-1}$

R_1/R_2 relationship

R1

- arbitray: $R_1(d) = d \times U_k$
- 'native': $R_1(\mathbf{d}) = \mathbf{V}_k^i \times \mathbf{S}_k$

R2

▶ arbitray: $R_2(\mathbf{d}) = \mathbf{d} \times \mathbf{U}_k \times \mathbf{S}^{-1} = R_1(\mathbf{d}) \times \mathbf{S}^{-1}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

• 'native': $R_2(d) = V_k^i = R_1(d) \times S^{-1}$

 R_2 is a scaling of R_1

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Scaling

the relationship between the R_1 and R_2 is: $R_2(\mathbf{d}) = R_1(\mathbf{d}) \times \mathbf{S}^{-1}$. But as entries on diagonal are unequal this scaling changes the essential geometry, in particular the nearest neighours

So should really expect R_1 and R_2 to give diverging outcomes in a system

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

on the basis of these works (and many others like them), there seems to be a R₁-vs-R₂ ambiguity in the formulation of LSA.

what about in the earliest works on LSA ?

HCI/Graph docs in R? from Deerwester et al. (1990)

Deerwester et al. (1990) has plot of HCl/Graph docs in R? projection also for $\boldsymbol{q} = [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]$ its plot in R? but which ?

HCI/Graph docs in R_1

plot of docs in R_1 $\boldsymbol{q} = [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]$ $R_1(\boldsymbol{q}) = [0.46, -0.07] = q1$ $R_2(\boldsymbol{q}) = [0.14, -0.03] = q2$ comparing to previous plot have to conclude that they have documents in R_1 projection query in the the R_2 projection

<ロ> (四) (四) (三) (三)

200

æ

query cone in R_1

On the R_1 projection, the representations of c1–c5 are all included in the cone around the query.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

query cone in R_1

on the R_2 projection the representations of c5 and c2 are *not* included. note non-uniform shrinkage relative to R_1 first dimensinos shrinks by 0.29 second dimension shrinks by 0.39

Clustering expts

Consider *occurrences* of an ambiguous word, and the words in a *context* window of (+/- 10 words to left and right:

```
[... interest ...]
[ mortage .. interest ...rise ]
[... bank interest .. rate ... ]
[... interest ...]
[ ... interest ...]
[ hobby ... interest ...painting.. ]
[... interest ...]
```

hunch: that if cluster these context windows as vectors the clusters will reflect different *senses* of the word:

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

3

these context vectors are **high** dimensionality: $\approx 10^4$ so apply SVD-based dimensionality reduction

- ▶ Do R₁ and R₂ work differently ?
- Is one consistently better ?

Unsupervised clustering results using R_1 and R_2

- vertical axis is accuracy
- horizontal axis is % reduction of dimensions
- R₁ and R₂ outcomes consistently different

-Conclusions

Conclusions

- R₁ and R₂ give different geometries to the space of reduced representations, ie. different nearest-neighbour sets implying should expect different system outcomes
- However some researchers give the name 'LSA' to R₁ and some give the same 'LSA' to R₂
- One a couple of expts we found R₁ better, but arguably people should test both R₁ and R₂

-Conclusions

- S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by latent semantic analysis. *JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE*, 41(6):391–407, 1990.
- Y. Gong and X. Liu. Generic text summarization using relevance measure and latent semantic analysis. In *SIGIR*, pages 19–25, 2001.
- A. Kontostathis and W. M. Pottenger. A framework for understanding latent semantic indexing (lsi) performance. *INFORMATION PROCESSING AND MANAGEMENT*, 42(1):56–73, 2006.
- C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic indexing: A probabilistic analysis. *J. Comput. Syst. Sci.*, 61(2): 217–235, 2000.
- S. Zelikovitz and H. Hirsh. Using Isi for text classification in the presence of background text. In *Proceedings of CIKM-01, 10TH ACM International Conference on information and knowledge management*, pages 113–118. ACM Press, 2001.