Latent Ambiguity in Latent Semantic Analysis?

Martin Emms and Alfredo Maldonado-Guerra

February 162013

Singular Value Decomposition

Contending Formulations

Contrasting outcomes

Conclusions

Theorem (SVD)

a $m \times n$ matrix \boldsymbol{A} can be factorised as $\boldsymbol{A}=\mathbf{U S} V^{\prime}$ where:

1. \boldsymbol{U} has the eigen-vectors of $\boldsymbol{A} \times \boldsymbol{A}^{\prime}$ for its first r columns
2. S's diagonal = square roots the eigen-values of \boldsymbol{U}
3. \boldsymbol{V} has the eigen-vectors of $\boldsymbol{A}^{\prime} \times \boldsymbol{A}$ for its first r columns

Theorem (Low rank approximation)

If $\boldsymbol{U} \times \boldsymbol{S} \times \boldsymbol{V}^{\prime}$ is the $S V D$ of A, then $\hat{\boldsymbol{A}}=\boldsymbol{U}_{k} \times \boldsymbol{S}_{k} \times \boldsymbol{V}_{k}^{\prime}$ is a optimum rank-k approx of \boldsymbol{A} where

1. \boldsymbol{S}_{k} is diagonal with top-most k values from \boldsymbol{S}
2. \boldsymbol{U}_{k} is just first k columns of \boldsymbol{U}
3. \boldsymbol{V}_{k} is just first k columns of \boldsymbol{V}
$\boldsymbol{U}_{k} \times \boldsymbol{S}_{k} \times \boldsymbol{V}_{k}^{\prime}$ can be termed the 'rank k reduced SVD of \boldsymbol{A}^{\prime}.

$\mathrm{HCl} / \mathrm{Graph}$ example (from Deerwester et al. (1990))

two sets of article titles, one about HCl (titles c1-c5), the other about graph theory (titles m1-m4.
c1 Human machine interface for ABC computer applications
c2 A survey of user opinion of computer system response time
c3 The EPS user interface management system
c4 System and human system engineering testing of EPS
c5 Relation of user perceived response time to error measurement
m1 The generation of random, binary, ordered trees
m 2 The intersection graph of paths in trees
m3 Graph minors IV: Widths of trees and well-quasi-ordering
m4 graph minors:a survey

HCl/Graph example (from Deerwester et al. (1990))

two sets of article titles, one about HCl (titles c1-c5), the other about graph theory (titles m1-m4.
gives \boldsymbol{A} a 12×9 term-by-document matrix

human
interface
computer
user
system
respones
time
EPS
survey
trees
graph
minor

1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0

1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 1 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1

0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1\end{array}\right]\)

$\boldsymbol{A}=$| human |
| :---: |
| $c 1$
 interface
 computer
 user
 system
 respones
 time
 EPS
 survey
 tres
 graph
 minor |\(\left[\begin{array}{ccccccccc}c 2 \& c 3 \& c 4 \& c 5 \& m 1 \& m 2 \& m 3 \& m 4

1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0

1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 1 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1

0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1\end{array}\right]\)

The rank-2 reduced SVD of \boldsymbol{A} is $\boldsymbol{U}_{2} \times \boldsymbol{S}_{2} \times \boldsymbol{V}_{2}^{\prime}$, where

$$
\boldsymbol{U}_{2}=\left[\begin{array}{cc}
0.22 & -0.11 \\
0.20 & -0.07 \\
0.24 & 0.04 \\
0.40 & 0.06 \\
0.64 & -0.17 \\
0.27 & 0.11 \\
0.27 & 0.11 \\
0.30 & -0.14 \\
0.21 & 0.27 \\
0.01 & 0.49 \\
0.04 & 0.62 \\
0.03 & 0.45
\end{array}\right] \quad \boldsymbol{S}_{2}=\left[\begin{array}{cc}
3.34 & 0 \\
0 & 2.54
\end{array}\right] \quad \boldsymbol{V}_{2}=\left[\begin{array}{cc}
0.20 & -0.06 \\
0.61 & 0.17 \\
0.46 & -0.13 \\
0.54 & -0.23 \\
0.28 & 0.11 \\
0.00 & 0.19 \\
0.01 & 0.44 \\
0.02 & 0.62 \\
0.08 & 0.53
\end{array}\right]
$$

The rank-2 reduced SVD of \boldsymbol{A} is $\boldsymbol{U}_{2} \times \boldsymbol{S}_{2} \times \boldsymbol{V}_{2}^{\prime}$, where
$\boldsymbol{U}_{2}=\left[\begin{array}{cc}0.22 & -0.11 \\ 0.20 & -0.07 \\ 0.24 & 0.04 \\ 0.40 & 0.06 \\ 0.64 & -0.17 \\ 0.27 & 0.11 \\ 0.27 & 0.11 \\ 0.30 & -0.14 \\ 0.21 & 0.27 \\ 0.01 & 0.49 \\ 0.04 & 0.62 \\ 0.03 & 0.45\end{array}\right] \quad \boldsymbol{S}_{2}=\left[\begin{array}{cc}3.34 & 0 \\ 0 & 2.54\end{array}\right] \quad \boldsymbol{V}_{2}=\left[\begin{array}{cc}0.20 & -0.06 \\ 0.61 & 0.17 \\ 0.46 & -0.13 \\ 0.54 & -0.23 \\ 0.28 & 0.11 \\ 0.00 & 0.19 \\ 0.01 & 0.44 \\ 0.02 & 0.62 \\ 0.08 & 0.53\end{array}\right]$
Note:
\boldsymbol{U}_{2} is $\quad \mid$ terms $\mid \times 2 \quad \boldsymbol{V}_{2}$ is $\quad \mid$ docs $\mid \times 2$ ie. $12 \times 2 \quad$ ie. 9×2

Latent Semantic Analysis (LSA) = using SVD to make lower dimension versions of document vectors

We claim literature has two contendors for this SVD-based dimensionality reduction:

R1

R2

Latent Semantic Analysis (LSA) = using SVD to make lower dimension versions of document vectors

We claim literature has two contendors for this SVD-based dimensionality reduction:

R1

R2

- 'native' $i^{\text {th }}$ col of $\boldsymbol{A} \Rightarrow i^{\text {th }}$-th row of \boldsymbol{V}_{k}
\boldsymbol{V}_{k}^{i} is $i^{\text {th }}$ row of $\left.\boldsymbol{V}_{k}(\mathrm{ie} .[\boldsymbol{V}(i, 1) \ldots \boldsymbol{V}(i, k)])=\boldsymbol{V}_{k}^{i}\right)$

Latent Semantic Analysis (LSA) = using SVD to make lower dimension versions of document vectors

We claim literature has two contendors for this SVD-based dimensionality reduction:

R1

- 'native' $i^{\text {th }}$ col of $\boldsymbol{A} \Rightarrow \boldsymbol{V}_{k}^{i} \times \boldsymbol{S}_{k}$

R2

- 'native' $i^{\text {th }}$ col of $\boldsymbol{A} \Rightarrow i^{\text {th }}$-th row of \boldsymbol{V}_{k}
\boldsymbol{V}_{k}^{i} is $i^{\text {th }}$ row of $\left.\boldsymbol{V}_{k}(\mathrm{ie} .[\boldsymbol{V}(i, 1) \ldots \boldsymbol{V}(i, k)])=\boldsymbol{V}_{k}^{i}\right)$

Latent Semantic Analysis (LSA) = using SVD to make lower dimension versions of document vectors

We claim literature has two contendors for this SVD-based dimensionality reduction:

R1

- 'native' $i^{\text {th }}$ col of $\boldsymbol{A} \Rightarrow \boldsymbol{V}_{k}^{i} \times \boldsymbol{S}_{k}$

R2

- arbitray m-dim doc vector $\boldsymbol{d} \Rightarrow \boldsymbol{d} \times \boldsymbol{U}_{k} \times \boldsymbol{S}^{-1}$
- 'native' $i^{\text {th }}$ col of $\boldsymbol{A} \Rightarrow i^{\text {th }}$-th row of \boldsymbol{V}_{k}
\boldsymbol{V}_{k}^{i} is $i^{\text {th }}$ row of $\left.\boldsymbol{V}_{k}(\mathrm{ie} .[\boldsymbol{V}(i, 1) \ldots \boldsymbol{V}(i, k)])=\boldsymbol{V}_{k}^{i}\right)$

Latent Semantic Analysis (LSA) = using SVD to make lower dimension versions of document vectors

We claim literature has two contendors for this SVD-based dimensionality reduction:

R1

- arbitray m-dim doc vector $\boldsymbol{d} \Rightarrow \boldsymbol{d} \times \boldsymbol{U}_{k}$
- 'native' $i^{\text {th }}$ col of $\boldsymbol{A} \Rightarrow \boldsymbol{V}_{k}^{i} \times \boldsymbol{S}_{k}$

R2

- arbitray m-dim doc vector $\boldsymbol{d} \Rightarrow \boldsymbol{d} \times \boldsymbol{U}_{k} \times \boldsymbol{S}^{-1}$
- 'native' $i^{\text {th }}$ col of $\boldsymbol{A} \Rightarrow i^{\text {th }}$-th row of \boldsymbol{V}_{k}
\boldsymbol{V}_{k}^{i} is $i^{\text {th }}$ row of $\left.\boldsymbol{V}_{k}(\mathrm{ie} .[\boldsymbol{V}(i, 1) \ldots \boldsymbol{V}(i, k)])=\boldsymbol{V}_{k}^{i}\right)$

R_{2} in pictures

Uk

Sk

$\mathrm{R} 2(\mathrm{c} 2)=[0.61,0.17]$
according to R_{2} image of c 2 is corresponding col of $\boldsymbol{V}_{k}^{\prime}$

R_{1} in pictures

according to R_{1} image of c 2 via products with cols of \boldsymbol{U}_{k}

R_{2} in Literature

- arbitray: $\boldsymbol{R}_{\mathbf{1}}(\boldsymbol{d})=\boldsymbol{d} \times \boldsymbol{U}_{k}$
- 'native': $\boldsymbol{R}_{1}(\boldsymbol{d})=\boldsymbol{V}_{k}^{i} \times \boldsymbol{S}_{k}$

R2

- arbitray: $R_{2}(\boldsymbol{d})=\boldsymbol{d} \times \boldsymbol{U}_{k} \times \boldsymbol{S}^{-1}$
- 'native': $R_{2}(\boldsymbol{d})=V_{k}^{i}$

Gong and Liu (2001) have
...projects each column vector i in matrix \boldsymbol{A}... to column vector $[\boldsymbol{V}(i, 1) \ldots \boldsymbol{V}(i, k)]^{\prime}$ of matrix V^{\prime}

Zelikovitz and Hirsh (2001) have: ...a query is represented ... by multiplying the transpose of the term vector of the query with matrices \boldsymbol{U} and S^{-1}
... lots of others

R_{1} in Literature

R1

- arbitray: $R_{1}(\boldsymbol{d})=\boldsymbol{d} \times \boldsymbol{U}_{k}$
- 'native': $R_{1}(\boldsymbol{d})=\boldsymbol{V}_{k}^{i} \times \boldsymbol{S}_{k}$

R2

- arbitray: $\boldsymbol{R}_{\mathbf{2}}(\boldsymbol{d})=\boldsymbol{d} \times \boldsymbol{U}_{k} \times \boldsymbol{S}^{\mathbf{- 1}}$
- 'native': $\boldsymbol{R}_{2}(\boldsymbol{d})=\boldsymbol{V}_{k}^{i}$

Papadimitriou et al. (2000) have
The rows of $\boldsymbol{V}_{k} \boldsymbol{S}_{k}$ above are then used to represent the documents

Kontostathis and Pottenger (2006) have

Queries are represented in the reduced space by $\boldsymbol{q} \times \boldsymbol{U}_{k} \ldots$ Queries are compared to the reduced document vectors $\ldots \boldsymbol{V}_{k} \times \boldsymbol{S}_{k}$
. . . lots of others

R_{1} / R_{2} relationship

R1

- arbitray: $R_{1}(\boldsymbol{d})=\boldsymbol{d} \times \boldsymbol{U}_{k}$
- 'native': $R_{1}(\boldsymbol{d})=\boldsymbol{V}_{k}^{i} \times \boldsymbol{S}_{k}$

R2

- arbitray: $\boldsymbol{R}_{2}(\boldsymbol{d})=\boldsymbol{d} \times \boldsymbol{U}_{k} \times \boldsymbol{S}^{-1}$
- 'native': $R_{2}(\boldsymbol{d})=\boldsymbol{V}_{k}^{i}$

R_{1} / R_{2} relationship

R1

- arbitray: $R_{1}(\boldsymbol{d})=\boldsymbol{d} \times \boldsymbol{U}_{k}$
- 'native': $R_{1}(\boldsymbol{d})=\boldsymbol{V}_{k}^{i} \times \boldsymbol{S}_{k}$

R2

- arbitray: $R_{2}(\boldsymbol{d})=\boldsymbol{d} \times \boldsymbol{U}_{k} \times \boldsymbol{S}^{-1}=R_{1}(\boldsymbol{d}) \times \boldsymbol{S}^{-1}$
- 'native': $R_{2}(\boldsymbol{d})=\boldsymbol{V}_{k}^{i}$

R_{1} / R_{2} relationship

R1

- arbitray: $R_{1}(\boldsymbol{d})=\boldsymbol{d} \times \boldsymbol{U}_{k}$
- 'native': $R_{1}(\boldsymbol{d})=\boldsymbol{V}_{k}^{i} \times \boldsymbol{S}_{k}$

R2

- arbitray: $R_{2}(\boldsymbol{d})=\boldsymbol{d} \times \boldsymbol{U}_{k} \times \boldsymbol{S}^{-1}=R_{1}(\boldsymbol{d}) \times \boldsymbol{S}^{-1}$
- 'native': $R_{2}(\boldsymbol{d})=\boldsymbol{V}_{k}^{i}=R_{1}(\boldsymbol{d}) \times \boldsymbol{S}^{-1}$

R_{1} / R_{2} relationship

R1

- arbitray: $R_{1}(\boldsymbol{d})=\boldsymbol{d} \times \boldsymbol{U}_{k}$
- 'native': $R_{1}(\boldsymbol{d})=\boldsymbol{V}_{k}^{i} \times \boldsymbol{S}_{k}$

R2

- arbitray: $R_{2}(\boldsymbol{d})=\boldsymbol{d} \times \boldsymbol{U}_{k} \times \boldsymbol{S}^{-1}=R_{1}(\boldsymbol{d}) \times \boldsymbol{S}^{-1}$
- 'native': $\boldsymbol{R}_{2}(\boldsymbol{d})=\boldsymbol{V}_{k}^{i}=R_{1}(\boldsymbol{d}) \times \boldsymbol{S}^{-1}$
R_{2} is a scaling of R_{1}

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{k}} \quad\left(\mathrm{~V}_{\mathrm{k}}\right)^{\prime} \\
& R 2(c 2)=[0.61,0.17] \\
& \text { = }
\end{aligned}
$$

[2.02,0.42] $\mathrm{x}[1 / 3.34,1 / 2.54]$

Scaling

the relationship between the R_{1} and R_{2} is：$R_{2}(\boldsymbol{d})=R_{1}(\boldsymbol{d}) \times \boldsymbol{S}^{-1}$ ．But as entries on diagonal are unequal this scaling changes the essential geometry， in particular the nearest neighours

So should really expect R_{1} and R_{2} to give diverging outcomes in a system

- on the basis of these works (and many others like them), there seems to be a R_{1}-vs- R_{2} ambiguity in the formulation of LSA.
- what about in the earliest works on LSA ?

HCI/Graph docs in R? from Deerwester et al. (1990)

Deerwester et al. (1990) has plot of $\mathrm{HCl} / \mathrm{Graph}$ docs in R ? projection also for $\boldsymbol{q}=[1,0,1,0,0,0,0,0,0,0,0,0]$ its plot in R ? but which?

$\mathrm{HCl} /$ Graph docs in R_{1}

plot of docs in R_{1}
$\boldsymbol{q}=[1,0,1,0,0,0,0,0,0,0,0,0]$
$R_{1}(\boldsymbol{q})=[0.46,-0.07]=q 1$
$R_{2}(\boldsymbol{q})=[0.14,-0.03]=q 2$
comparing to previous plot have to conclude that they have documents in R_{1} projection query in the the R_{2} projection

query cone in R_{1}

On the R_{1} projection, the representations of c1-c5 are all included in the cone around the query.

query cone in R_{1}

on the R_{2} projection the representations of c5 and c2 are not included. note non-uniform shrinkage relative to R_{1} first dimensinos shrinks by 0.29
second dimension shrinks by 0.39

Clustering expts

Consider occurrences of an ambiguous word, and the words in a context window of (+/- 10 words to left and right:
[... interest ...]
[mortage .. interest ..rise]
[... bank interest .. rate ...]
[... interest ...]
[..weekend interest ..butterfly]
[... interest ..]
[hobby ... interest ..painting..] [.. interest ...]
hunch: that if cluster these context windows as vectors the clusters will reflect different senses of the word:

these context vectors are high dimensionality: $\approx 10^{4}$ so apply SVD-based dimensionality reduction

- Do R_{1} and R_{2} work differently ?
- Is one consistently better ?

Unsupervised clustering results using R_{1} and R_{2}

- vertical axis is accuracy
- horizontal axis is \% reduction of dimensions
- R_{1} and R_{2} outcomes consistently different

Conclusions

- R_{1} and R_{2} give different geometries to the space of reduced representations, ie. different nearest-neighbour sets implying should expect different system outcomes
- However some researchers give the name 'LSA' to R_{1} and some give the same 'LSA' to R_{2}
- One a couple of expts we found R_{1} better, but arguably people should test both R_{1} and R_{2}
S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by latent semantic analysis. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, 41(6):391-407, 1990.
Y. Gong and X . Liu. Generic text summarization using relevance measure and latent semantic analysis. In SIGIR, pages 19-25, 2001.
A. Kontostathis and W. M. Pottenger. A framework for understanding latent semantic indexing (Isi) performance. INFORMATION PROCESSING AND MANAGEMENT, 42(1):56-73, 2006.
C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic indexing: A probabilistic analysis. J. Comput. Syst. Sci., 61(2): 217-235, 2000.
S. Zelikovitz and H. Hirsh. Using Isi for text classification in the presence of background text. In Proceedings of CIKM-01, 10TH ACM International Conference on information and knowledge management, pages 113-118. ACM Press, 2001.

