On order equivalences between distance and similarity measures on sequences and trees

Martin Emms nd Hector-Hugo Franco-Penya

February 6, 2012

Distance and Similarity Distance
 Similarity
 Order-equivalence Notions

Alignment Duality

Neighbour and Pair Ordering
Distance to Similarity
Similarity to Distance

Empirical Investigation

- Often suggested that similarity and distance (on sequences and trees) are just interchangeable eg.
- Often suggested that similarity and distance (on sequences and trees) are just interchangeable eg.

To compare RNA structures, we need a score system, or alternatively a distance, which measures the similarity (or the difference) between the structures. These two versions of the problem - score and distance - are equivalent (Herrbach et al, 2006).

- Often suggested that similarity and distance (on sequences and trees) are just interchangeable eg.

To compare RNA structures, we need a score system, or alternatively a distance, which measures the similarity (or the difference) between the structures. These two versions of the problem - score and distance - are equivalent (Herrbach et al, 2006).

- We will distinguish several distinct kinds of equivalence
- Often suggested that similarity and distance (on sequences and trees) are just interchangeable eg.

To compare RNA structures, we need a score system, or alternatively a distance, which measures the similarity (or the difference) between the structures. These two versions of the problem - score and distance - are equivalent (Herrbach et al, 2006).

- We will distinguish several distinct kinds of equivalence
- and show that while some kinds of equivalence hold, others do not

Outline

Distance and Similarity Distance
 Similarity
 Order－equivalence Notions

Alignment Duality

Neighbour and Pair Ordering
Distance to Similarity
Similarity to Distance

Empirical Investigation

Distance on Sequences and Trees

a partial mapping $\alpha: S \mapsto T$ is a Tai mapping iff α respects left-to-right order and ancestry.

Distance on Sequences and Trees

a partial mapping $\alpha: S \mapsto T$ is a Tai mapping iff α respects left－to－right order and ancestry．
example Tai mapping α ：

Distance on Sequences and Trees

a partial mapping $\alpha: S \mapsto T$ is a Tai mapping iff α respects left-to-right order and ancestry.
example Tai mapping α :

To score a mapping identify 3 sets

Distance on Sequences and Trees

a partial mapping $\alpha: S \mapsto T$ is a Tai mapping iff α respects left-to-right order and ancestry.
example Tai mapping α :

To score a mapping identify 3 sets
\mathcal{D} deletions: eg. a_{5} has no image the $i \in S$ s.t. $\forall j \in T,(i, j) \notin \alpha$

Distance on Sequences and Trees

a partial mapping $\alpha: S \mapsto T$ is a Tai mapping iff α respects left-to-right order and ancestry.
example Tai mapping α :

To score a mapping identify 3 sets
\mathcal{D} deletions: eg. a_{5} has no image the $i \in S$ s.t. $\forall j \in T,(i, j) \notin \alpha$

I insertions: eg. a4 has no source the $j \in T$ s.t. $\forall i \in S,(i, j) \notin \alpha$

Distance on Sequences and Trees

a partial mapping $\alpha: S \mapsto T$ is a Tai mapping iff α respects left-to-right order and ancestry.
example Tai mapping α :

To score a mapping identify 3 sets
\mathcal{D} deletions: eg. a_{5} has no image the $i \in S$ s.t. $\forall j \in T,(i, j) \notin \alpha$

I insertions: eg. a4 has no source the $j \in T$ s.t. $\forall i \in S,(i, j) \notin \alpha$
\mathcal{M} match/swaps: eg. a_{6} goes to c_{6} the $(i, j) \in \alpha$
example Tai mapping α :

a 'cost' table C^{Δ} defines costs for members of $\mathcal{D}, \mathcal{I}, \mathcal{M}$

	λ	a	b	c
λ		\bullet	1	\bullet
a	1	0	\bullet	1
b	\bullet	\bullet	0	\bullet
c	\bullet	\bullet	\bullet	\bullet

Definition ('distance' scoring of an alignment)

$$
\Delta(\alpha: S \mapsto T)=\sum_{(i, j) \in \mathcal{M}} C^{\Delta}\left(i^{\gamma}, j^{\gamma}\right)+\sum_{i \in \mathcal{D}} C^{\Delta}\left(i^{\gamma}, \lambda\right)+\sum_{j \in \mathcal{I}} C^{\Delta}\left(\lambda, j^{\gamma}\right)
$$

example Tai mapping α :

a 'cost' table C^{Δ} defines costs for members of $\mathcal{D}, \mathcal{I}, \mathcal{M}$

	λ	a	b	c
λ		\bullet	1	\bullet
a	1	0	\bullet	1
b	\bullet	\bullet	0	\bullet
c	\bullet	\bullet	\bullet	\bullet

Definition ('distance' scoring of an alignment)

$$
\Delta(\alpha: S \mapsto T)=\sum_{(i, j) \in \mathcal{M}} C^{\Delta}\left(i^{\gamma}, j^{\gamma}\right)+\sum_{i \in \mathcal{D}} C^{\Delta}\left(i^{\gamma}, \lambda\right)+\sum_{j \in \mathcal{I}} C^{\Delta}\left(\lambda, j^{\gamma}\right)
$$

on the example $\Delta(\alpha: S \mapsto T)=3$

Distance as min cost mapping

Definition ('distance' scoring of a tree pair)

The Tree- or Tai-distance $\Delta(S, T)$:

$$
\Delta(S, T)=\min \{\Delta(\alpha: S \mapsto T) \mid \alpha \text { is a Tai-mapping }\}
$$

Distance as min cost mapping

Definition ('distance' scoring of a tree pair)

The Tree- or Tai-distance $\Delta(S, T)$:

$$
\Delta(S, T)=\min \{\Delta(\alpha: S \mapsto T) \mid \alpha \text { is a Tai-mapping }\}
$$

the mapping α :

this mapping has minimal cost, for assumed C^{Δ}
hence $\Delta(S, T)=3$

On order equivalences between distance and similarity measures on sequences and trees

LDistance and Similarity
—Distance雷三 4三 \equiv のac

Minimal Constraints on Δ

- $\Delta(S, T)$ can be computed the Zhang/Shasha algorithm, and its correctness - ie. that it finds $\min \{\Delta(\alpha: S \mapsto T)\}$ - does not require the cost-table C^{Δ} to satisfy any particular properties

Minimal Constraints on Δ

- $\Delta(S, T)$ can be computed the Zhang/Shasha algorithm, and its correctness - ie. that it finds $\min \{\Delta(\alpha: S \mapsto T)\}$ - does not require the cost-table C^{Δ} to satisfy any particular properties

Minimal Constraints on Δ

- $\Delta(S, T)$ can be computed the Zhang/Shasha algorithm, and its correctness - ie. that it finds $\min \{\Delta(\alpha: S \mapsto T)\}$ - does not require the cost-table C^{Δ} to satisfy any particular properties
- but some settings of C^{Δ} make little sense, in particular negative deletion/insertion
cost-entries $\Rightarrow \begin{aligned} & \text { a supertree (or subtree) of } \\ & \begin{array}{l}\text { is 'closer' to } S \text { than } S \text { it- } \\ \text { self }\end{array}\end{aligned}$

Minimal Constraints on Δ

- $\Delta(S, T)$ can be computed the Zhang/Shasha algorithm, and its correctness - ie. that it finds $\min \{\Delta(\alpha: S \mapsto T)\}$ - does not require the cost-table C^{Δ} to satisfy any particular properties
- but some settings of C^{Δ} make little sense, in particular negative deletion/insertion
cost-entries $\Rightarrow \begin{aligned} & \text { a supertree (or subtree) of } \\ & \begin{array}{l}\text { is 'closer' to } S \text { than } S \text { it- } \\ \text { self }\end{array}\end{aligned}$
- this motivates the nearly universal adopted non-negativity assumption

$$
\begin{equation*}
\forall x, y \in \Sigma\left(C^{\Delta}(x, y) \geq 0, C^{\Delta}(x, \lambda) \geq 0, C^{\Delta}(\lambda, y) \geq 0\right) \tag{1}
\end{equation*}
$$

Outline

Distance and Similarity

Distance

Similarity

Order－equivalence Notions

Alignment Duality

Neighbour and Pair Ordering
Distance to Similarity
Similarity to Distance

Empirical Investigation
'similarity': a widely followed alternative, seeks to maximize a score assigned to an alignment
'similarity': a widely followed alternative, seeks to maximize a score assigned to an alignment example Tai mapping α :

'similarity': a widely followed alternative, seeks to maximize a score assigned to an alignment
example Tai mapping α :

uses a 'similarity' table to assign scores to members of $\mathcal{D}, \mathcal{I}, \mathcal{M}$ eg.

	λ	a	b	c
λ		\bullet	0	\bullet
a	0	2	\bullet	1
b	\bullet	\bullet	2	\bullet
c	\bullet	\bullet	\bullet	\bullet

'similarity': a widely followed alternative, seeks to maximize a score assigned to an alignment example Tai mapping α :

uses a 'similarity' table to assign scores to members of $\mathcal{D}, \mathcal{I}, \mathcal{M}$ eg.

	λ	a	b	c
λ		\bullet	0	\bullet
a	0	2	\bullet	1
b	\bullet	\bullet	2	\bullet
c	\bullet	\bullet	\bullet	\bullet

Definition ('similarity' scoring of an alignment)

$$
\Theta(\alpha: S \mapsto T)=\sum_{(i, j) \in \mathcal{M}} C^{\Theta}\left(i^{\gamma}, j^{\gamma}\right)-\sum_{i \in \mathcal{D}} C^{\Theta}\left(i^{\gamma}, \lambda\right)-\sum_{j \in \mathcal{I}} C^{\Theta}\left(\lambda, j^{\gamma}\right)
$$

'similarity': a widely followed alternative, seeks to maximize a score assigned to an alignment example Tai mapping α :

uses a 'similarity' table to assign scores to members of $\mathcal{D}, \mathcal{I}, \mathcal{M}$ eg.

	λ	a	b	c
λ		\bullet	0	\bullet
a	0	2	\bullet	1
b	\bullet	\bullet	2	\bullet
c	\bullet	\bullet	\bullet	\bullet

Definition ('similarity' scoring of an alignment)

$$
\Theta(\alpha: S \mapsto T)=\sum_{(i, j) \in \mathcal{M}} C^{\Theta}\left(i^{\gamma}, j^{\gamma}\right)-\sum_{i \in \mathcal{D}} C^{\Theta}\left(i^{\gamma}, \lambda\right)-\sum_{j \in \mathcal{I}} C^{\Theta}\left(\lambda, j^{\gamma}\right)
$$

eg. $\Theta(\alpha)=9$

Similarity as max score mapping

Definition ('similarity' scoring of a tree pair)

The Tree- or Tai-similarity $\Theta(S, T)$ between two trees S and T :

$$
\Theta(S, T)=\max \{\Theta(\alpha: S \mapsto T) \mid \alpha \text { is a Tai-mapping }\}
$$

Similarity as max score mapping

Definition ('similarity' scoring of a tree pair)

The Tree- or Tai-similarity $\Theta(S, T)$ between two trees S and T :

$$
\Theta(S, T)=\max \{\Theta(\alpha: S \mapsto T) \mid \alpha \text { is a Tai-mapping }\}
$$

the mapping α :

Similarity as max score mapping

Definition ('similarity' scoring of a tree pair)

The Tree- or Tai-similarity $\Theta(S, T)$ between two trees S and T :

$$
\Theta(S, T)=\max \{\Theta(\alpha: S \mapsto T) \mid \alpha \text { is a Tai-mapping }\}
$$

the mapping α :

this mapping has maximum score, for assumed C^{\ominus}
hence $\Theta(S, T)=9$

Minimal Constraints on Θ

- $\Theta(S, T)$ can be computed by simple modifications of the Zhang/Shasha algorithm and its ie. that it finds $\max \{\Theta(\alpha: S \mapsto T)\}$ - does not require the cost-table C^{\ominus} to satisfy any particular properties

Minimal Constraints on Θ

- $\Theta(S, T)$ can be computed by simple modifications of the Zhang/Shasha algorithm and its ie. that it finds $\max \{\Theta(\alpha: S \mapsto T)\}$ - does not require the cost-table C^{\ominus} to satisfy any particular properties
- but some settings of C^{\ominus} make little sense, in particular
negative deletion/insertion
C^{\ominus}-entries $\Rightarrow \begin{aligned} & \text { a supertree (or subtree) of } \\ & S \text { is 'more similar' to } S \text { than } \\ & S \text { itself }\end{aligned}$

Minimal Constraints on Θ

- $\Theta(S, T)$ can be computed by simple modifications of the Zhang/Shasha algorithm and its ie. that it finds $\max \{\Theta(\alpha: S \mapsto T)\}$ - does not require the cost-table C^{\ominus} to satisfy any particular properties
- but some settings of C^{\ominus} make little sense, in particular negative deletion/insertion
C^{\ominus}-entries $\Rightarrow \begin{aligned} & \text { a supertree (or subtree) of } \\ & S \text { is 'more similar' to } S \text { than } \\ & S \text { itself }\end{aligned}$
- this motivates the nearly universal adopted non-negativity assumption

$$
\begin{equation*}
\forall x, y \in \Sigma\left(C^{\ominus}(x, \lambda) \geq 0, C^{\ominus}(\lambda, y) \geq 0\right) \tag{2}
\end{equation*}
$$

Minimal Constraints on Θ

- $\Theta(S, T)$ can be computed by simple modifications of the Zhang/Shasha algorithm and its ie. that it finds $\max \{\Theta(\alpha: S \mapsto T)\}$ - does not require the cost-table C^{\ominus} to satisfy any particular properties
- but some settings of C^{\ominus} make little sense, in particular negative deletion/insertion $\Rightarrow \begin{aligned} & \text { a supertree (or subtree) of } \\ & C^{\ominus} \text {-entries 'more similar' to } S \text { than } \\ & S \text { itself }\end{aligned}$
- this motivates the nearly universal adopted non-negativity assumption

$$
\begin{equation*}
\forall x, y \in \Sigma\left(C^{\ominus}(x, \lambda) \geq 0, C^{\ominus}(\lambda, y) \geq 0\right) \tag{2}
\end{equation*}
$$

- For the C^{Θ}-entries which are not deletions or insertions, it is quite common in biological sequence comparison to have both positive and negative entries

Summary

Tree Distance

$\Delta(\alpha: S \mapsto T)=\sum_{(i, j) \in \mathcal{M}} C^{\Delta}\left(i^{\gamma}, j^{\gamma}\right)+\sum_{i \in \mathcal{D}} C^{\Delta}\left(i^{\gamma}, \lambda\right)+\sum_{j \in \mathcal{I}} C^{\Delta}\left(\lambda, j^{\gamma}\right)$

Tree Similarity

$\Theta(\alpha: S \mapsto T)=\sum_{(i, j) \in \mathcal{M}} C^{\Theta}\left(i^{\gamma}, j^{\gamma}\right)-\sum_{i \in \mathcal{D}} C^{\Theta}\left(i^{\gamma}, \lambda\right)-\sum_{j \in \mathcal{I}} C^{\Theta}\left(\lambda, j^{\gamma}\right)$

Summary

Tree Distance

$\Delta(\alpha: S \mapsto T)=\sum_{(i, j) \in \mathcal{M}} C^{\Delta}\left(i^{\gamma}, j^{\gamma}\right)+\sum_{i \in \mathcal{D}} C^{\Delta}\left(i^{\gamma}, \lambda\right)+\sum_{j \in \mathcal{I}} C^{\Delta}\left(\lambda, j^{\gamma}\right)$
$\Delta(S, T)=\min (\{\Delta(\alpha: S \mapsto T)\})$

Tree Similarity

$\Theta(\alpha: S \mapsto T)=\sum_{(i, j) \in \mathcal{M}} C^{\ominus}\left(i^{\gamma}, j^{\gamma}\right)-\sum_{i \in \mathcal{D}} C^{\ominus}\left(i^{\gamma}, \lambda\right)-\sum_{j \in \mathcal{I}} C^{\ominus}\left(\lambda, j^{\gamma}\right)$
$\Theta(S, T)=\max (\{\Theta(\alpha: S \mapsto T)\})$

Summary

Tree Distance

$\Delta(\alpha: S \mapsto T)=\sum_{(i, j) \in \mathcal{M}} C^{\Delta}\left(i^{\gamma}, j^{\gamma}\right)+\sum_{i \in \mathcal{D}} C^{\Delta}\left(i^{\gamma}, \lambda\right)+\sum_{j \in \mathcal{I}} c^{\Delta}\left(\lambda, j^{\gamma}\right)$
$\Delta(S, T)=\min (\{\Delta(\alpha: S \mapsto T)\})$

$$
\begin{aligned}
& C^{\Delta}(x, y) \geq 0 \\
& \left.C^{\Delta}(x, \lambda) \geq 0, C^{\Delta}(\lambda, y) \geq 0\right)
\end{aligned}
$$

Tree Similarity

$\Theta(\alpha: S \mapsto T)=\sum_{(i, j) \in \mathcal{M}} C^{\ominus}\left(i^{\gamma}, j^{\gamma}\right)-\sum_{i \in \mathcal{D}} C^{\ominus}\left(i^{\gamma}, \lambda\right)-\sum_{j \in \mathcal{I}} C^{\ominus}\left(\lambda, j^{\gamma}\right)$
$\Theta(S, T)=\max (\{\Theta(\alpha: S \mapsto T)\})$

$$
\left.C^{\Theta}(x, \lambda) \geq 0, C^{\Theta}(\lambda, y) \geq 0\right)
$$

Outline

Distance and Similarity
 Distance
 Similarity
 Order-equivalence Notions

Alignment Duality

Neighbour and Pair Ordering
Distance to Similarity
Similarity to Distance

Empirical Investigation
a 'distance' Δ scoring of alignments induce orderings three different kinds entities
a 'distance' Δ scoring of alignments induce orderings three different kinds entities

Alignment ordering Given fixed S, and fixed T, rank the possible alignments

$$
\alpha: S \mapsto T \text { by } \Delta(\alpha: S \mapsto T)
$$

a 'distance' Δ scoring of alignments induce orderings three different kinds entities

Alignment ordering Given fixed S, and fixed T, rank the possible alignments $\alpha: S \mapsto T$ by $\Delta(\alpha: S \mapsto T)$
Neighbour ordering Given fixed S, and varying candidate neighbours T_{i}, rank the neighbours T_{i} by $\Delta\left(S, T_{i}\right)$ - typically used in k-NN classification.
a 'distance' Δ scoring of alignments induce orderings three different kinds entities

Alignment ordering Given fixed S, and fixed T, rank the possible alignments $\alpha: S \mapsto T$ by $\Delta(\alpha: S \mapsto T)$
Neighbour ordering Given fixed S, and varying candidate neighbours T_{i}, rank the neighbours T_{i} by $\Delta\left(S, T_{i}\right)$ - typically used in k-NN classification.

Pair ordering Given varying S_{i}, and varying T_{j}, rank the pairings $\left\langle S_{i}, T_{j}\right\rangle$ by $\Delta\left(S_{i}, T_{j}\right)$ - typically used in hierarchical clustering.
a 'distance' Δ scoring of alignments induce orderings three different kinds entities

Alignment ordering Given fixed S, and fixed T, rank the possible alignments $\alpha: S \mapsto T$ by $\Delta(\alpha: S \mapsto T)$
Neighbour ordering Given fixed S, and varying candidate neighbours T_{i}, rank the neighbours T_{i} by $\Delta\left(S, T_{i}\right)$ - typically used in k-NN classification.
Pair ordering Given varying S_{i}, and varying T_{j}, rank the pairings $\left\langle S_{i}, T_{j}\right\rangle$ by $\Delta\left(S_{i}, T_{j}\right)$ - typically used in hierarchical clustering.
same for a 'similarity' Θ scoring

For each kind of ordering can ask whether an ordering by Δ can be replicated by Θ, and vice-versa

Definition ($\mathrm{A}-, \mathrm{N}$ - and P -dual)

C^{Δ} and C^{Θ} are A-duals if the alignment orderings induced are the reverse of each other
C^{Δ} and C^{Θ} are N -duals if the neighbour orderings induced are the reverse of each other
C^{Δ} and C^{Θ} are P-duals if the pair orderings induced are the reverse of each other

The natural question is:

The natural question is: whether for every choice of C^{Δ}, there is a choice of C^{\ominus} which is a A-dual, N -dual or P -dual, and vice-versa.

The natural question is: whether for every choice of C^{Δ}, there is a choice of C^{\ominus} which is a A-dual, N -dual or P -dual, and vice-versa. More precisely we have the following

Order-relating Conjectures

The natural question is: whether for every choice of C^{Δ}, there is a choice of C^{\ominus} which is a A-dual, N -dual or P -dual, and vice-versa. More precisely we have the following

Order-relating Conjectures

A-duality $\{$

The natural question is: whether for every choice of C^{Δ}, there is a choice of C^{\ominus} which is a A-dual, N -dual or P -dual, and vice-versa. More precisely we have the following

Order-relating Conjectures

$$
\text { A-duality }\left\{\text { (i) } \quad \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals }\right)\right.
$$

The natural question is: whether for every choice of C^{Δ}, there is a choice of C^{\ominus} which is a A-dual, N -dual or P -dual, and vice-versa. More precisely we have the following

Order-relating Conjectures

$$
\text { A-duality } \begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals }\right)\end{cases}
$$

The natural question is: whether for every choice of C^{Δ}, there is a choice of C^{\ominus} which is a A-dual, N -dual or P -dual, and vice-versa. More precisely we have the following

Order-relating Conjectures

A-duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals }\right)\end{cases}$
N -duality $\{$

The natural question is: whether for every choice of C^{Δ}, there is a choice of C^{\ominus} which is a A-dual, N -dual or P -dual, and vice-versa. More precisely we have the following

Order-relating Conjectures

A-duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals) }\right.\end{cases}$
N -duality $\left\{\begin{array}{l}\text { (i) } \quad \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are } \mathrm{N} \text {-duals }\right) ~\end{array}\right.$

The natural question is: whether for every choice of C^{Δ}, there is a choice of C^{\ominus} which is a A-dual, N -dual or P -dual, and vice-versa. More precisely we have the following

Order-relating Conjectures

A-duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals) }\right.\end{cases}$
N -duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are } \mathrm{N} \text {-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are } \mathrm{N} \text {-duals }\right)\end{cases}$

The natural question is: whether for every choice of C^{Δ}, there is a choice of C^{\ominus} which is a A-dual, N -dual or P -dual, and vice-versa. More precisely we have the following

Order-relating Conjectures

A-duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals) }\right.\end{cases}$
N-duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are } N \text {-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are } N \text {-duals }\right)\end{cases}$
P-duality $\{$

The natural question is: whether for every choice of C^{Δ}, there is a choice of C^{\ominus} which is a A-dual, N -dual or P -dual, and vice-versa. More precisely we have the following

Order-relating Conjectures

A-duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals) }\right.\end{cases}$
N -duality $\left\{\right.$ (i) $\forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta}\right.$ and C^{\ominus} are N -duals)
(ii) $\forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta}\right.$ and C^{\ominus} are N -duals)

P-duality $\left\{\right.$ (i) $\quad \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta}\right.$ and C^{\ominus} are P -duals $)$

The natural question is: whether for every choice of C^{Δ}, there is a choice of C^{\ominus} which is a A-dual, N -dual or P -dual, and vice-versa. More precisely we have the following

Order-relating Conjectures

A-duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals) }\right.\end{cases}$
N -duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are } N \text {-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are } N \text {-duals }\right)\end{cases}$
P-duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are } P \text {-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are P-duals) }\right.\end{cases}$

The natural question is: whether for every choice of C^{Δ}, there is a choice of C^{\ominus} which is a A-dual, N -dual or P -dual, and vice-versa. More precisely we have the following

Order-relating Conjectures

A-duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals) }\right.\end{cases}$
N-duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are } \mathrm{N} \text {-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are } \mathrm{N} \text {-duals }\right)\end{cases}$
P-duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are } \mathrm{P} \text {-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are } \mathrm{P} \text {-duals) }\right.\end{cases}$
if these duality conjectures do not hold, then there are substantive difference, with the outcomes achievable by distances and similarities being distinct.

A-dualizing conversions

Lemma

A-dualizing conversions

Lemma

```
For any C}\mp@subsup{C}{}{\Delta}\mathrm{ , and }\delta\mathrm{ s.t.
0\leq \delta/2\leqmin(CD}(\cdot,\lambda),\mp@subsup{C}{}{\Delta}(\lambda,\cdot)
derive C}\mp@subsup{C}{}{\ominus}\mathrm{ via (i)
```


A-dualizing conversions

Lemma

$$
\begin{aligned}
& \text { For any } C^{\Delta} \text {, and } \delta \text { s.t. } \\
& 0 \leq \delta / 2 \leq \min \left(C^{\Delta}(\cdot, \lambda), C^{\Delta}(\lambda, \cdot)\right) \\
& \text { derive } C^{\Theta} \text { via (i) } \\
& \text { (i) }\left\{\begin{array}{l}
C^{\ominus}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\
C^{\ominus}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\
C^{\ominus}(x, y)=\delta-C^{\Delta}(x, y)
\end{array}\right.
\end{aligned}
$$

A-dualizing conversions

Lemma

For any C^{Δ}, and δ s.t.
$0 \leq \delta / 2 \leq \min \left(C^{\Delta}(\cdot, \lambda), C^{\Delta}(\lambda, \cdot)\right)$ derive C^{\ominus} via (i)

$$
\text { (i) }\left\{\begin{array}{l}
C^{\Theta}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\
C^{\Theta}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\
C^{\Theta}(x, y)=\delta-C^{\Delta}(x, y)
\end{array}\right.
$$

For any C^{\ominus}, and δ s.t. $0 \leq \delta \geq \max \left(C^{\Theta}(\cdot, \cdot)\right)$ derive C^{Δ} via (ii)

A-dualizing conversions

Lemma

For any C^{Δ}, and δ s.t.
$0 \leq \delta / 2 \leq \min \left(C^{\Delta}(\cdot, \lambda), C^{\Delta}(\lambda, \cdot)\right)$ derive C^{\ominus} via (i)
For any C^{\ominus}, and δ s.t. $0 \leq \delta \geq \max \left(C^{\Theta}(\cdot, \cdot)\right)$ derive C^{Δ} via (ii)

$$
\begin{aligned}
& \text { (i) }\left\{\begin{array}{l}
C^{\Theta}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\
C^{\Theta}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\
C^{\Theta}(x, y)=\delta-C^{\Delta}(x, y)
\end{array}\right. \\
& \text { (ii) }\left\{\begin{array}{l}
C^{\Delta}(x, \lambda)=C^{\Theta}(x, \lambda)+\delta / 2 \\
C^{\Delta}(\lambda, y)=C^{\Theta}(\lambda, y)+\delta / 2 \\
C^{\Delta}(x, y)=\delta-C^{\Theta}(x, y)
\end{array}\right.
\end{aligned}
$$

A-dualizing conversions

Lemma

For any C^{Δ}, and δ s.t.
$0 \leq \delta / 2 \leq \min \left(C^{\Delta}(\cdot, \lambda), C^{\Delta}(\lambda, \cdot)\right)$ derive C^{\ominus} via (i)
(i) $\left\{\begin{array}{l}C^{\Theta}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\ C^{\Theta}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\ C^{\Theta}(x, y)=\delta-C^{\Delta}(x, y)\end{array}\right.$

For any C^{\ominus}, and δ s.t.
(ii) $\left\{\begin{array}{l}C^{\Delta}(x, \lambda)=C^{\Theta}(x, \lambda)+\delta / 2 \\ C^{\Delta}(\lambda, y)=C^{\Theta}(\lambda, y)+\delta / 2 \\ C^{\Delta}(x, y)=\delta-C^{\Theta}(x, y)\end{array}\right.$
then in either case, for any $\alpha: S \mapsto T$

$$
\begin{equation*}
\Delta(\alpha)+\Theta(\alpha)=\delta / 2 \times\left(\sum_{s \in S}(1)+\sum_{t \in T}(1)\right) \tag{3}
\end{equation*}
$$

A-dualizing conversions

Lemma

For any C^{Δ}, and δ s.t.
$0 \leq \delta / 2 \leq \min \left(C^{\Delta}(\cdot, \lambda), C^{\Delta}(\lambda, \cdot)\right)$ derive C^{\ominus} via (i)
(i) $\left\{\begin{array}{l}C^{\ominus}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\ C^{\ominus}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\ C^{\ominus}(x, y)=\delta-C^{\Delta}(x, y)\end{array}\right.$

For any C^{\ominus}, and δ s.t. $0 \leq \delta \geq \max \left(C^{\ominus}(\cdot, \cdot)\right)$ derive C^{Δ} via (ii)
(ii) $\left\{\begin{array}{l}C^{\Delta}(x, \lambda)=C^{\Theta}(x, \lambda)+\delta / 2 \\ C^{\Delta}(\lambda, y)=C^{\Theta}(\lambda, y)+\delta / 2 \\ C^{\Delta}(x, y)=\delta-C^{\Theta}(x, y)\end{array}\right.$
then in either case, for any $\alpha: S \mapsto T$

$$
\begin{equation*}
\Delta(\alpha)+\Theta(\alpha)=\delta / 2 \times\left(\sum_{s \in S}(1)+\sum_{t \in T}(1)\right) \tag{3}
\end{equation*}
$$

Theorem

A-duality (i) and (ii) hold

- so distance and similarity are interchangeable?
- so distance and similarity are interchangeable?
- the above concerns alignment duals
- so distance and similarity are interchangeable?
- the above concerns alignment duals
- but what about N duals ? (k-NN)
- so distance and similarity are interchangeable?
- the above concerns alignment duals
- but what about N duals ? (k-NN)
- and what about P duals ? (hierarchical clustering)

Outline

Distance and Similarity
 Distance
 Similarity
 Order-equivalence Notions

Alignment Duality

Neighbour and Pair Ordering
Distance to Similarity

Similarity to Distance

Empirical Investigation

Dist to Sim: N- and P-duals

consider N -duality(i) and P-duality(i): can Neighbour- and Pair-orderings by Δ be replicated by Θ ?

Dist to Sim: N- and P-duals

consider N -duality(i) and P-duality(i): can Neighbour- and Pair-orderings by Δ be replicated by Θ ?
Δ-to- Θ conversion for A-duality was
(i) $\left\{\begin{array}{l}C^{\ominus}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\ C^{\Theta}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\ C^{\Theta}(x, y)=\delta-C^{\Delta}(x, y)\end{array}\right.$

Dist to Sim: N- and P-duals

consider N -duality(i) and P-duality(i): can Neighbour- and Pair-orderings by Δ be replicated by Θ ?
Δ-to- Θ conversion for A-duality was
(i) $\left\{\begin{array}{l}C^{\Theta}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\ C^{\Theta}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\ C^{\Theta}(x, y)=\delta-C^{\Delta}(x, y)\end{array}\right.$
and setting $\delta=0$ gives
(i) $\left\{\begin{array}{l}C^{\ominus}(x, \lambda)=C^{\Delta}(x, \lambda) \\ C^{\ominus}(\lambda, y)=C^{\Delta}(\lambda, y) \\ C^{\ominus}(x, y)=-C^{\Delta}(x, y)\end{array}\right.$

Dist to Sim: N- and P-duals

consider N-duality(i) and P-duality(i): can Neighbour- and Pair-orderings by Δ be replicated by Θ ?
Δ-to- Θ conversion for A-duality was
(i) $\left\{\begin{array}{l}C^{\ominus}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\ C^{\ominus}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\ C^{\ominus}(x, y)=\delta-C^{\Delta}(x, y)\end{array}\right.$
and setting $\delta=0$ gives
(i) $\left\{\begin{array}{l}C^{\ominus}(x, \lambda)=C^{\Delta}(x, \lambda) \\ C^{\ominus}(\lambda, y)=C^{\Delta}(\lambda, y) \\ C^{\ominus}(x, y)=-C^{\Delta}(x, y)\end{array}\right.$
and this implies: $\Theta(S, T)=-1 \times \Delta(S, T)$, hence

Dist to Sim: N - and P -duals

consider N-duality(i) and P-duality(i): can Neighbour- and Pair-orderings by Δ be replicated by Θ ?
Δ-to- Θ conversion for A-duality was
(i) $\left\{\begin{array}{l}C^{\ominus}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\ C^{\Theta}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\ C^{\Theta}(x, y)=\delta-C^{\Delta}(x, y)\end{array}\right.$
and setting $\delta=0$ gives
(i) $\left\{\begin{array}{l}C^{\ominus}(x, \lambda)=C^{\Delta}(x, \lambda) \\ C^{\ominus}(\lambda, y)=C^{\Delta}(\lambda, y) \\ C^{\ominus}(x, y)=-C^{\Delta}(x, y)\end{array}\right.$
and this implies: $\Theta(S, T)=-1 \times \Delta(S, T)$, hence

Theorem

N-duality (i) and P-duality (i) hold

Outline

Distance and Similarity
 Distance
 Similarity
 Order-equivalence Notions

Alignment Duality

Neighbour and Pair Ordering
Distance to Similarity
Similarity to Distance

Empirical Investigation

On order equivalences between distance and similarity measures on sequences and trees

－Neighbour and Pair Ordering
－Similarity to Distance－
클
4产

The Θ-to- Δ conversion of A-duality
was
(ii) $\left\{\begin{array}{l}C^{\Delta}(x, \lambda)=C^{\Theta}(x, \lambda)+\delta / 2 \\ C^{\Delta}(\lambda, y)=C^{\Theta}(\lambda, y)+\delta / 2 \\ C^{\Delta}(x, y)=\delta-C^{\Theta}(x, y)\end{array}\right.$

The Θ-to- Δ conversion of A-duality was
(ii) $\left\{\begin{array}{l}C^{\Delta}(x, \lambda)=C^{\ominus}(x, \lambda)+\delta / 2 \\ C^{\Delta}(\lambda, y)=C^{\Theta}(\lambda, y)+\delta / 2 \\ C^{\Delta}(x, y)=\delta-C^{\Theta}(x, y)\end{array}\right.$ with condition: $0 \leq \delta \geq \max \left(C^{\ominus}(\cdot, \cdot)\right)$

The Θ-to- Δ conversion of A-duality
was
(ii) $\left\{\begin{array}{l}C^{\Delta}(x, \lambda)=C^{\Theta}(x, \lambda)+\delta / 2 \\ C^{\Delta}(\lambda, y)=C^{\Theta}(\lambda, y)+\delta / 2 \\ C^{\Delta}(x, y)=\delta-C^{\Theta}(x, y)\end{array}\right.$
with condition: $0 \leq \delta \geq \max \left(C^{\ominus}(\cdot, \cdot)\right)$
you can only choose $\delta=0$ if all $C^{\Theta}(x, y) \leq 0$; for most natural settings of C^{\ominus} that is not true.

The Θ-to- Δ conversion of A-duality was
(ii) $\left\{\begin{array}{l}C^{\Delta}(x, \lambda)=C^{\Theta}(x, \lambda)+\delta / 2 \\ C^{\Delta}(\lambda, y)=C^{\Theta}(\lambda, y)+\delta / 2 \\ C^{\Delta}(x, y)=\delta-C^{\Theta}(x, y)\end{array}\right.$
with condition: $0 \leq \delta \geq \max \left(C^{\Theta}(\cdot, \cdot)\right)$
you can only choose $\delta=0$ if all $C^{\Theta}(x, y) \leq 0$; for most natural settings of C^{\ominus} that is not true.
so can't show N-duality(ii) and P-duality(ii) this way

Sim－to－Dist：P－duality（ii）fails

P－duality（ii）is stronger than N－duality（ii）．We can fairly easily show P－duality（ii）does not hold

Sim-to-Dist: P-duality(ii) fails

P-duality(ii) is stronger than N-duality(ii). We can fairly easily show P-duality(ii) does not hold

Theorem

P-duality (ii) does not hold, that is, there are C^{\ominus} such that there is no C^{Δ} such that C^{\ominus} and C^{Δ} are P-duals.

Sim-to-Dist: P-duality(ii) fails

P-duality(ii) is stronger than N-duality(ii). We can fairly easily show P-duality(ii) does not hold

Theorem

P-duality (ii) does not hold, that is, there are C^{\ominus} such that there is no C^{Δ} such that C^{\ominus} and C^{Δ} are P-duals.
consider the equiv. classes
$[\Delta]_{d}=\{\langle S, T\rangle \mid \Delta(S, T)=d\}, \quad[\Theta]_{s}=\{\langle S, T\rangle \mid \Theta(S, T)=s\}$

Sim-to-Dist: P-duality(ii) fails

P-duality(ii) is stronger than N-duality(ii). We can fairly easily show P-duality(ii) does not hold

Theorem

P-duality (ii) does not hold, that is, there are C^{\ominus} such that there is no C^{Δ} such that C^{\ominus} and C^{Δ} are P-duals.
consider the equiv. classes
$[\Delta]_{d}=\{\langle S, T\rangle \mid \Delta(S, T)=d\}, \quad[\Theta]_{s}=\{\langle S, T\rangle \mid \Theta(S, T)=s\}$
If C^{Δ} is a P -dual of C^{\ominus} then
$\Delta-\uparrow$ seq. of equiv. classes

Sim-to-Dist: P-duality(ii) fails

P-duality(ii) is stronger than N-duality(ii). We can fairly easily show P-duality(ii) does not hold

Theorem

P-duality (ii) does not hold, that is, there are C^{\ominus} such that there is no C^{Δ} such that C^{\ominus} and C^{Δ} are P-duals.
consider the equiv. classes
$[\Delta]_{d}=\{\langle S, T\rangle \mid \Delta(S, T)=d\}, \quad[\Theta]_{s}=\{\langle S, T\rangle \mid \Theta(S, T)=s\}$
If C^{Δ} is a P-dual of C^{Θ} then
$\Delta-\uparrow$ seq. of equiv. classes

$$
\ldots<[\Delta]_{d}<\ldots
$$

$$
\}=
$$

Sim-to-Dist: P-duality(ii) fails

P-duality(ii) is stronger than N-duality(ii). We can fairly easily show P-duality(ii) does not hold

Theorem

P-duality (ii) does not hold, that is, there are C^{\ominus} such that there is no C^{Δ} such that C^{\ominus} and C^{Δ} are P-duals.
consider the equiv. classes
$[\Delta]_{d}=\{\langle S, T\rangle \mid \Delta(S, T)=d\}, \quad[\Theta]_{s}=\{\langle S, T\rangle \mid \Theta(S, T)=s\}$
If C^{Δ} is a P-dual of C^{Θ} then
$\left.\begin{array}{c}\Delta-\uparrow \text { seq. of equiv. classes } \\ \ldots<[\Delta]_{d}<\ldots\end{array}\right\}=\{\Theta-\downarrow$ seq. of equiv. classes

Sim-to-Dist: P-duality(ii) fails

P-duality(ii) is stronger than N-duality(ii). We can fairly easily show P-duality(ii) does not hold

Theorem

P-duality (ii) does not hold, that is, there are C^{\ominus} such that there is no C^{Δ} such that C^{\ominus} and C^{Δ} are P-duals.
consider the equiv. classes
$[\Delta]_{d}=\{\langle S, T\rangle \mid \Delta(S, T)=d\}, \quad[\Theta]_{s}=\{\langle S, T\rangle \mid \Theta(S, T)=s\}$
If C^{Δ} is a P-dual of C^{\ominus} then
$\left.\begin{array}{c}\Delta-\uparrow \text { seq. of equiv. classes } \\ \ldots<[\Delta]_{d}<\ldots\end{array}\right\}=\left\{\begin{array}{c}\Theta-\downarrow \text { seq. of equiv. classes } \\ \ldots>[\Theta]_{s}>\ldots\end{array}\right.$

Sim-to-Dist: P-duality(ii) fails

P-duality(ii) is stronger than N-duality(ii). We can fairly easily show P-duality(ii) does not hold

Theorem

P-duality (ii) does not hold, that is, there are C^{\ominus} such that there is no C^{Δ} such that C^{\ominus} and C^{Δ} are P-duals.
consider the equiv. classes
$[\Delta]_{d}=\{\langle S, T\rangle \mid \Delta(S, T)=d\}, \quad[\Theta]_{s}=\{\langle S, T\rangle \mid \Theta(S, T)=s\}$
If C^{Δ} is a P-dual of C^{\ominus} then
$\left.\begin{array}{c}\Delta-\uparrow \text { seq. of equiv. classes } \\ \ldots<[\Delta]_{d}<\ldots\end{array}\right\}=\left\{\begin{array}{c}\Theta-\downarrow \text { seq. of equiv. classes } \\ \ldots>[\Theta]_{s}>\ldots\end{array}\right.$
Δ must have a min class $[\Delta]_{\text {min }}$

Sim-to-Dist: P-duality(ii) fails

P-duality(ii) is stronger than N-duality(ii). We can fairly easily show P-duality(ii) does not hold

Theorem

P-duality (ii) does not hold, that is, there are C^{\ominus} such that there is no C^{Δ} such that C^{\ominus} and C^{Δ} are P-duals.
consider the equiv. classes
$[\Delta]_{d}=\{\langle S, T\rangle \mid \Delta(S, T)=d\}, \quad[\Theta]_{s}=\{\langle S, T\rangle \mid \Theta(S, T)=s\}$
If C^{Δ} is a P-dual of C^{\ominus} then
$\left.\begin{array}{c}\Delta-\uparrow \text { seq. of equiv. classes } \\ \ldots<[\Delta]_{d}<\ldots\end{array}\right\}=\left\{\begin{array}{c}\Theta-\downarrow \text { seq. of equiv. classes } \\ \ldots>[\Theta]_{s}>\ldots\end{array}\right.$
Δ must have a min class $[\Delta]_{\text {min }}$
Θ need not have max class $[\Theta]_{\max }$

Sim-to-Dist: P-duality(ii) fails

P-duality(ii) is stronger than N-duality(ii). We can fairly easily show P-duality(ii) does not hold

Theorem

P-duality (ii) does not hold, that is, there are C^{\ominus} such that there is no C^{Δ} such that C^{\ominus} and C^{Δ} are P-duals.
consider the equiv. classes
$[\Delta]_{d}=\{\langle S, T\rangle \mid \Delta(S, T)=d\}, \quad[\Theta]_{s}=\{\langle S, T\rangle \mid \Theta(S, T)=s\}$
If C^{Δ} is a P -dual of C^{\ominus} then
$\left.\begin{array}{c}\Delta-\uparrow \text { seq. of equiv. classes } \\ \ldots<[\Delta]_{d}<\ldots\end{array}\right\}=\left\{\begin{array}{c}\Theta-\downarrow \text { seq. of equiv. classes } \\ \ldots>[\Theta]_{s}>\ldots\end{array}\right.$
Δ must have a min class [$\Delta]_{\text {min }}$
Θ need not have max class $[\Theta]_{\text {max }}$
eg. $C^{\ominus}(a, a)=1, C^{\Theta}(a, \lambda)=0 \Rightarrow$ $\Theta(a, a)=1 \ldots \Theta\left(a^{n}, a^{n}\right)=n$

Sim-to-Dist: P-duality(ii) fails

P-duality(ii) is stronger than N-duality(ii). We can fairly easily show P-duality(ii) does not hold

Theorem

P-duality (ii) does not hold, that is, there are C^{\ominus} such that there is no C^{Δ} such that C^{\ominus} and C^{Δ} are P-duals.
consider the equiv. classes
$[\Delta]_{d}=\{\langle S, T\rangle \mid \Delta(S, T)=d\}, \quad[\Theta]_{s}=\{\langle S, T\rangle \mid \Theta(S, T)=s\}$
If C^{Δ} is a P -dual of C^{\ominus} then
$\left.\begin{array}{c}\Delta-\uparrow \text { seq. of equiv. classes } \\ \ldots<[\Delta]_{d}<\ldots\end{array}\right\}=\left\{\begin{array}{c}\Theta-\downarrow \text { seq. of equiv. classes } \\ \ldots>[\Theta]_{s}>\ldots\end{array}\right.$
Δ must have a min class $[\Delta]_{\text {min }}$ Θ need not have max class $[\Theta]_{\text {max }}$
eg. $C^{\ominus}(a, a)=1, C^{\Theta}(a, \lambda)=0 \Rightarrow$ $\Theta(a, a)=1 \ldots \Theta\left(a^{n}, a^{n}\right)=n$
in that case $\Delta-\uparrow$ sequence cannot be equal to the $\Theta-\downarrow$ sequence

Sim-to-Dist: N-duality(ii) fails

Theorem

There is C^{\ominus} such that there is no C^{Δ} with $C^{\Delta}(x, \lambda)=C^{\Delta}(\lambda, x)$ such that C^{\ominus} and C^{Δ} are N-duals

Sim-to-Dist: N-duality(ii) fails

Theorem

There is C^{\ominus} such that there is no C^{Δ} with $C^{\Delta}(x, \lambda)=C^{\Delta}(\lambda, x)$ such that C^{\ominus} and C^{Δ} are N-duals

Proof outline

Let $S=a a$, and set of neighbours be $\{a, a a a\}$

Sim-to-Dist: N-duality(ii) fails

Theorem

There is C^{\ominus} such that there is no C^{Δ} with $C^{\Delta}(x, \lambda)=C^{\Delta}(\lambda, x)$ such that C^{\ominus} and C^{Δ} are N-duals

Proof outline

Let $S=a a$, and set of neighbours be $\{a, a a a\}$
can define C^{\ominus} such that [aaa, a] $=\Theta-\downarrow$ neigbour ordering

Sim-to-Dist: N-duality(ii) fails

Theorem

There is C^{\ominus} such that there is no C^{Δ} with $C^{\Delta}(x, \lambda)=C^{\Delta}(\lambda, x)$ such that C^{\ominus} and C^{Δ} are N-duals

Proof outline

Let $S=a a$, and set of neighbours be $\{a, a a a\}$
can define C^{\ominus} such that [aaa, a] $=\Theta-\downarrow$ neigbour ordering
cannot define C^{Δ} such that [aaa, a] $=\Delta-\uparrow$ neightbour ordering

further details

Let $C^{\Theta}(a, a)=x>0, \quad C^{\Theta}(a, \lambda)=C^{\Theta}(\lambda, a)=y>0$
further details

Let $C^{\ominus}(a, a)=x>0, \quad C^{\ominus}(a, \lambda)=C^{\ominus}(\lambda, a)=y>0$

$\alpha:$ aa \mapsto aaa	$\Theta(\alpha)$
2a-matches	$2 x-y$

further details

Let $C^{\ominus}(a, a)=x>0, \quad C^{\ominus}(a, \lambda)=C^{\ominus}(\lambda, a)=y>0$

$\alpha:$ aa \mapsto aaa	$\Theta(\alpha)$
2 a-matches	$2 x-y$

1 a-matches $\quad x-3 y$

further details

Let $C^{\Theta}(a, a)=x>0, \quad C^{\Theta}(a, \lambda)=C^{\Theta}(\lambda, a)=y>0$

$\alpha:$ aa \mapsto aaa	$\Theta(\alpha)$
2 a-matches	$2 x-y$

1 a-matches $\quad x-3 y$
0 a-matches $-5 y$

further details

Let $C^{\Theta}(a, a)=x>0, \quad C^{\Theta}(a, \lambda)=C^{\Theta}(\lambda, a)=y>0$

$\alpha:$ aa \mapsto aaa	$\Theta(\alpha)$	
2 a-matches	$2 x-y$	(max)

1 a-matches $x-3 y$
0 a-matches $-5 y$

further details

Let $C^{\Theta}(a, a)=x>0, \quad C^{\Theta}(a, \lambda)=C^{\Theta}(\lambda, a)=y>0$

$$
\begin{array}{lllll}
\alpha: \text { aa } \mapsto \text { aaa } & \Theta(\alpha) & & \alpha: a a \mapsto a & \Theta(\alpha) \\
\cline { 1 - 2 } \begin{array}{lll}
2 \text { a-matches } & 2 x-y & (\max) \\
\text { 1 a-matches } & x-3 y & \\
0 \text { a-matches } & -5 y &
\end{array} &
\end{array}
$$

further details

Let $C^{\Theta}(a, a)=x>0, \quad C^{\Theta}(a, \lambda)=C^{\Theta}(\lambda, a)=y>0$

$\alpha: \mathrm{aa} \mapsto \mathrm{aaa}$	$\Theta(\alpha)$	$\alpha: a a \mapsto a$	$\Theta(\alpha)$
2 a-matches	$2 x-y$ (max)	1 a-matches	$x-y$

1 a-matches $x-3 y$
0 a-matches $-5 y$

further details

Let $C^{\Theta}(a, a)=x>0, \quad C^{\Theta}(a, \lambda)=C^{\Theta}(\lambda, a)=y>0$

$\alpha: \mathrm{aa} \mapsto \mathrm{aaa}$	$\Theta(\alpha)$	$\alpha: a a \mapsto a$	$\Theta(\alpha)$
2 a-matches	$2 x-y$ (max)	1 a-matches	$x-y$
1 a-matches	$x-3 y$	0 a-matches	$-3 y$
0 a-matches	$-5 y$		

further details

Let $C^{\Theta}(a, a)=x>0, \quad C^{\Theta}(a, \lambda)=C^{\Theta}(\lambda, a)=y>0$

$\alpha: \mathrm{aa} \mapsto \mathrm{aaa}$	$\Theta(\alpha)$		$\alpha: a \boldsymbol{a} \mapsto a$	$\Theta(\alpha)$	
2 a-matches	$2 x-y$	(max)	1 a -matches	$x-y \quad(m a x)$	
1 a-matches	$x-3 y$		0 a-matches	$-3 y$	
0 a-matches	-5y				

further details

Let $C^{\Theta}(a, a)=x>0, \quad C^{\Theta}(a, \lambda)=C^{\Theta}(\lambda, a)=y>0$

$\alpha: \mathrm{aa} \mapsto \mathrm{aa}$	$\Theta(\alpha)$	$\alpha: \mathrm{aa} \mapsto \mathrm{a}$	$\Theta(\alpha)$
2 a-matches	$2 x-y$ (max)	1 a-matches	$x-y \quad(\max)$
1 a-matches	$x-3 y$	0 a-matches	$-3 y$
0 a-matches	$-5 y$		

So $(\Theta(a a, a a a)=2 x-y)>(\Theta(a a, a)=x-y)$
So $[a a a, a]=\Theta-\downarrow$ neigbour ordering

Let $C^{\Delta}(a, a)=x^{\prime}$, and $C^{\Delta}(a, \lambda)=C^{\Delta}(\lambda, a)=y^{\prime}$.

Let $C^{\Delta}(a, a)=x^{\prime}$, and $C^{\Delta}(a, \lambda)=C^{\Delta}(\lambda, a)=y^{\prime}$.
two cases: $\left\{\begin{array}{l}\text { (i) in-del }<\text { swap: } 2 y^{\prime}<x^{\prime}, \text { so } x^{\prime}=2 y^{\prime}+\epsilon \text {, for some } \epsilon>0 \\ \text { (ii) in-del } \geq \text { swap: } 2 y^{\prime} \geq x^{\prime} \text {, so } y^{\prime}=x^{\prime} / 2+\kappa \text {, for some } \kappa \geq 0\end{array}\right.$

Let $C^{\Delta}(a, a)=x^{\prime}$, and $C^{\Delta}(a, \lambda)=C^{\Delta}(\lambda, a)=y^{\prime}$.
two cases: $\left\{\begin{array}{l}\text { (i) in-del }<\text { swap: } 2 y^{\prime}<x^{\prime}, \text { so } x^{\prime}=2 y^{\prime}+\epsilon \text {, for some } \epsilon>0 \\ \text { (ii) in-del } \geq \text { swap: } 2 y^{\prime} \geq x^{\prime} \text {, so } y^{\prime}=x^{\prime} / 2+\kappa \text {, for some } \kappa \geq 0\end{array}\right.$
(i)
(ii)

$\alpha:$ aa \mapsto aaa	$\Delta(\alpha)$
2 a-matches	$2 x^{\prime}+y^{\prime}$
1 a-matches	$x^{\prime}+3 y^{\prime}$
0 a-matches	$5 y^{\prime}$

Let $C^{\Delta}(a, a)=x^{\prime}$, and $C^{\Delta}(a, \lambda)=C^{\Delta}(\lambda, a)=y^{\prime}$.
two cases: $\left\{\begin{array}{l}\text { (i) in-del }<\text { swap: } 2 y^{\prime}<x^{\prime}, \text { so } x^{\prime}=2 y^{\prime}+\epsilon \text {, for some } \epsilon>0 \\ \text { (ii) in-del } \geq \text { swap: } 2 y^{\prime} \geq x^{\prime} \text {, so } y^{\prime}=x^{\prime} / 2+\kappa \text {, for some } \kappa \geq 0\end{array}\right.$

$\alpha:$ aa \mapsto aaa	$\Delta(\alpha)$	$x^{\prime}=2 y^{\prime}+\epsilon$
$2 a$-matches	$2 x^{\prime}+y^{\prime}$	$5 y^{\prime}+2 \epsilon$
1 a-matches	$x^{\prime}+3 y^{\prime}$	$5 y^{\prime}+\epsilon$
0 a-matches	$5 y^{\prime}$	$5 y^{\prime}(\min =\Delta(a a, a a a))$

Let $C^{\Delta}(a, a)=x^{\prime}$, and $C^{\Delta}(a, \lambda)=C^{\Delta}(\lambda, a)=y^{\prime}$.
two cases: $\left\{\begin{array}{l}\text { (i) in-del }<\text { swap: } 2 y^{\prime}<x^{\prime}, \text { so } x^{\prime}=2 y^{\prime}+\epsilon \text {, for some } \epsilon>0 \\ \text { (ii) in-del } \geq \text { swap: } 2 y^{\prime} \geq x^{\prime} \text {, so } y^{\prime}=x^{\prime} / 2+\kappa \text {, for some } \kappa \geq 0\end{array}\right.$

		(i)	(ii)
$\alpha:$ aa \mapsto aaa	$\Delta(\alpha)$	$x^{\prime}=2 y^{\prime}+\epsilon$	$y^{\prime}=x^{\prime} / 2+\kappa$
2 a-matches	$2 x^{\prime}+y^{\prime}$	$5 y^{\prime}+2 \epsilon$	$2.5 x^{\prime}+\kappa$ (eq. $\left.\min =\Delta(a a, a a a)\right)$
1 a-matches	$x^{\prime}+3 y^{\prime}$	$5 y^{\prime}+\epsilon$	$2.5 x^{\prime}+3 \kappa$
0 a-matches	$5 y^{\prime}$	$5 y^{\prime}(\min =\Delta(a a, a a a))$	$2.5 x^{\prime}+5 \kappa$

Let $C^{\Delta}(a, a)=x^{\prime}$, and $C^{\Delta}(a, \lambda)=C^{\Delta}(\lambda, a)=y^{\prime}$.
two cases: $\left\{\begin{array}{l}\text { (i) in-del }<\text { swap: } 2 y^{\prime}<x^{\prime}, \text { so } x^{\prime}=2 y^{\prime}+\epsilon \text {, for some } \epsilon>0 \\ \text { (ii) in-del } \geq \text { swap: } 2 y^{\prime} \geq x^{\prime} \text {, so } y^{\prime}=x^{\prime} / 2+\kappa \text {, for some } \kappa \geq 0\end{array}\right.$

$\alpha:$ aa \mapsto aaa	$\Delta(\alpha)$	(i)	(ii)
2 a-matches	$2 x^{\prime}+y^{\prime}$	$5 y^{\prime}+2 \epsilon$	$y^{\prime}=x^{\prime} / 2+\kappa$
1 a-matches	$x^{\prime}+3 y^{\prime}$	$5 y^{\prime}+\epsilon$	$2.5 x^{\prime}+\kappa($ eq. $\min =\Delta(a a, a a a))$
0 a-matches	$5 y^{\prime}$	$5 y^{\prime}(\min =\Delta(a a, a a a))$	$2.5 x^{\prime}+3 \kappa$
$\alpha:$ aa $\mapsto a$	$\Delta(\alpha)$		
1a-matches	$x^{\prime}+y^{\prime}$		
0 a-matches	$3 y^{\prime}$		

Let $C^{\Delta}(a, a)=x^{\prime}$, and $C^{\Delta}(a, \lambda)=C^{\Delta}(\lambda, a)=y^{\prime}$.
two cases: $\left\{\begin{array}{l}\text { (i) in-del }<\operatorname{swap}: 2 y^{\prime}<x^{\prime}, \text { so } x^{\prime}=2 y^{\prime}+\epsilon \text {, for some } \epsilon>0 \\ \text { (ii) in-del } \geq \operatorname{swap}: 2 y^{\prime} \geq x^{\prime} \text {, so } y^{\prime}=x^{\prime} / 2+\kappa, \text { for some } \kappa \geq 0\end{array}\right.$

$\alpha:$ aa \mapsto aaa	$\Delta(\alpha)$	$x^{\prime}=2 y^{\prime}+\epsilon$	(ii)
2 a-matches	$2 x^{\prime}+y^{\prime}$	$5 y^{\prime}+2 \epsilon$	$y^{\prime}=x^{\prime} / 2+\kappa$
1 a-matches	$x^{\prime}+3 y^{\prime}$	$5 y^{\prime}+\epsilon$	$2.5 x^{\prime}+\kappa$ (eq. $\left.\min =\Delta(a a, a a a)\right)$
0 a-matches	$5 y^{\prime}$	$5 y^{\prime}(\min =\Delta(a a, a a a))$	$2.5 x^{\prime}+3 \kappa$
		$2.5 x^{\prime}+5 \kappa$	
$\alpha:$ aa $\mapsto a$	$\Delta(\alpha)$	$x^{\prime}=2 y^{\prime}+\epsilon$	
1a-matches	$x^{\prime}+y^{\prime}$	$3 y^{\prime}+\epsilon$	
0 a-matches	$3 y^{\prime}$	$3 y^{\prime}(\min =\Delta(a a, a))$	

Let $C^{\Delta}(a, a)=x^{\prime}$, and $C^{\Delta}(a, \lambda)=C^{\Delta}(\lambda, a)=y^{\prime}$.
two cases: $\left\{\begin{array}{l}\text { (i) in-del }<\operatorname{swap}: 2 y^{\prime}<x^{\prime}, \text { so } x^{\prime}=2 y^{\prime}+\epsilon \text {, for some } \epsilon>0 \\ \text { (ii) in-del } \geq \operatorname{swap}: 2 y^{\prime} \geq x^{\prime} \text {, so } y^{\prime}=x^{\prime} / 2+\kappa, \text { for some } \kappa \geq 0\end{array}\right.$

$\alpha:$ aa \mapsto aaa	$\Delta(\alpha)$	(i)	(ii)
2 a-matches	$2 x^{\prime}+y^{\prime}$	$5 y^{\prime}+2 \epsilon$	$y^{\prime}=x^{\prime} / 2+\kappa$
1 a-matches	$x^{\prime}+3 y^{\prime}$	$5 y^{\prime}+\epsilon$	$2.5 x^{\prime}+\kappa($ eq. $\min =\Delta(a a, a a a))$
0 a-matches	$5 y^{\prime}$	$5 y^{\prime}(\min =\Delta(a a, a a a))$	$2.5 x^{\prime}+3 \kappa$
$\alpha:$ aa $\mapsto a$	$\Delta(\alpha)$	$x^{\prime}=2 x^{\prime}+5 \kappa$	
1a-matches	$x^{\prime}+y^{\prime}$	$3 y^{\prime}+\epsilon$	$y^{\prime}=x^{\prime} / 2+\kappa$
0 a-matches	$3 y^{\prime}$	$3 y^{\prime}(\min =\Delta($ aa, a) $)$	$1.5 x^{\prime}+\kappa($ eq. $\min =\Delta(a a, a))$
		$1.5 x^{\prime}+3 \kappa$	

Let $C^{\Delta}(a, a)=x^{\prime}$, and $C^{\Delta}(a, \lambda)=C^{\Delta}(\lambda, a)=y^{\prime}$.
two cases: $\left\{\begin{array}{l}\text { (i) in-del < swap: } 2 y^{\prime}<x^{\prime}, \text { so } x^{\prime}=2 y^{\prime}+\epsilon, \text { for some } \epsilon>0 \\ \text { (ii) in-del } \geq \text { swap: } 2 y^{\prime} \geq x^{\prime} \text {, so } y^{\prime}=x^{\prime} / 2+\kappa \text {, for some } \kappa \geq 0\end{array}\right.$

$\alpha:$ aa \mapsto aaa	$\Delta(\alpha)$	(i)	$x^{\prime}=2 y^{\prime}+\epsilon$
2 a-matches	$2 x^{\prime}+y^{\prime}$	$5 y^{\prime}+2 \epsilon$	$y^{\prime}=x^{\prime} / 2+\kappa$
1 a-matches	$x^{\prime}+3 y^{\prime}$	$5 y^{\prime}+\epsilon$	$2.5 x^{\prime}+\kappa($ eq. $\min =\Delta(a a, a a a))$
0 a-matches	$5 y^{\prime}$	$5 y^{\prime}(\min =\Delta(a a, a a a))$	$2.5 x^{\prime}+3 \kappa$
$\alpha:$ aa $\mapsto a$	$\Delta(\alpha)$	$x^{\prime}=2 y^{\prime}+\epsilon$	$y^{\prime}=x^{\prime} / 2+\kappa$
1a-matches	$x^{\prime}+y^{\prime}$	$3 y^{\prime}+\epsilon$	$1.5 x^{\prime}+\kappa($ eq. $\min =\Delta(a a, a))$
$0 a$-matches	$3 y^{\prime}$	$3 y^{\prime}(\min =\Delta($ aa,$a))$	$1.5 x^{\prime}+3 \kappa$

case (i): $\left(\Delta(a a, a a a)=5 y^{\prime}\right)>\left(\Delta(a a, a)=3 y^{\prime}\right)$
case (ii) $\left(\Delta(a a, a a a)=2.5 x^{\prime}+\kappa\right)>\left(\Delta(a a, a)=1.5 x^{\prime}+\kappa\right)$

Let $C^{\Delta}(a, a)=x^{\prime}$, and $C^{\Delta}(a, \lambda)=C^{\Delta}(\lambda, a)=y^{\prime}$.
two cases: $\left\{\begin{array}{l}\text { (i) in-del }<\text { swap: } 2 y^{\prime}<x^{\prime}, \text { so } x^{\prime}=2 y^{\prime}+\epsilon \text {, for some } \epsilon>0 \\ \text { (ii) in-del } \geq \text { swap: } 2 y^{\prime} \geq x^{\prime} \text {, so } y^{\prime}=x^{\prime} / 2+\kappa \text {, for some } \kappa \geq 0\end{array}\right.$

$\alpha:$ aa \mapsto aaa	$\Delta(\alpha)$	$x^{\prime}=2 y^{\prime}+\epsilon$	(ii)
2 a-matches	$2 x^{\prime}+y^{\prime}$	$5 y^{\prime}+2 \epsilon$	$y^{\prime}=x^{\prime} / 2+\kappa$
1 a-matches	$x^{\prime}+3 y^{\prime}$	$5 y^{\prime}+\epsilon$	$2.5 x^{\prime}+\kappa($ eq. $\min =\Delta(a a, a a a))$
0 a-matches	$5 y^{\prime}$	$5 y^{\prime}(\min =\Delta(a a, a a a))$	$2.5 x^{\prime}+3 \kappa$
		$2.5 x^{\prime}+5 \kappa$	
$\alpha:$ aa $\mapsto a$	$\Delta(\alpha)$	$x^{\prime}=2 y^{\prime}+\epsilon$	$y^{\prime}=x^{\prime} / 2+\kappa$
1a-matches	$x^{\prime}+y^{\prime}$	$3 y^{\prime}+\epsilon$	$1.5 x^{\prime}+\kappa($ eq. $\min =\Delta(a a, a))$
0 a-matches	$3 y^{\prime}$	$3 y^{\prime}(\min =\Delta(a a, a))$	$1.5 x^{\prime}+3 \kappa$

case (i): $\left(\Delta(a a, a a a)=5 y^{\prime}\right)>\left(\Delta(a a, a)=3 y^{\prime}\right)$
case (ii) $\left(\Delta(a a, a a a)=2.5 x^{\prime}+\kappa\right)>\left(\Delta(a a, a)=1.5 x^{\prime}+\kappa\right)$
in neither case do we get $\Delta-\uparrow=[a a a, a]$
-Similarity to Distance

the Order-relating Conjectures revisited

the Order-relating Conjectures revisited

A-duality $\left\{\begin{array}{lll}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals) }\right. & \text { TRUE } \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals) }\right. & \text { TRUE }\end{array}\right.$
N-duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are } N \text {-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are } N \text {-duals }\right)\end{cases}$
P-duality $\begin{cases}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are P-duals }\right) \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are P-duals) }\right.\end{cases}$

the Order-relating Conjectures revisited

the Order-relating Conjectures revisited

A-duality $\left\{\begin{array}{lll}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals) }\right. & \text { TRUE } \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are A-duals) }\right. & \text { TRUE }\end{array}\right.$
N-duality $\left\{\begin{array}{lll}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are N-duals) }\right. & \text { TRUE } \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are N-duals) }\right. & \text { FALSE }\end{array}\right.$
P-duality $\left\{\begin{array}{lll}\text { (i) } & \forall C^{\Delta} \exists C^{\ominus}\left(C^{\Delta} \text { and } C^{\ominus} \text { are P-duals }\right) & \text { TRUE } \\ \text { (ii) } & \forall C^{\ominus} \exists C^{\Delta}\left(C^{\Delta} \text { and } C^{\ominus} \text { are P-duals) }\right. & \text { FALSE }\end{array}\right.$

the Order-relating Conjectures revisited

this means

the Order-relating Conjectures revisited

this means

- any hierarchical clustering outcome achieved via Δ can be replicated via Θ, but not vice-versa

the Order-relating Conjectures revisited

this means

- any hierarchical clustering outcome achieved via Δ can be replicated via Θ, but not vice-versa
- any categorisation outcome using nearest-neighbours achieved via Δ can be replicated via Θ, but not vice-versa

the Order-relating Conjectures revisited

this means

- any hierarchical clustering outcome achieved via Δ can be replicated via Θ, but not vice-versa
- any categorisation outcome using nearest-neighbours achieved via Δ can be replicated via Θ, but not vice-versa
- in this sense 'similarity' and 'distance' comparison measures on sequences and trees are not interchangeable.

Sim to Dist: unreproducible clustering

single-link clustering of
$\left\{a^{5}, a^{4}, a^{3}, a^{2}, a^{1}\right\}$
using $C^{\Theta}(a, a)=1, C^{\Theta}(a, \lambda)=1$

Sim to Dist: unreproducible clustering

single-link clustering of $\left\{a^{5}, a^{4}, a^{3}, a^{2}, a^{1}\right\}$
using $C^{\ominus}(a, a)=1, C^{\ominus}(a, \lambda)=1$

using $C^{\Delta}(a, a)=0, C^{\Delta}(a, \lambda)=1$
all on the same level because
$\Delta\left(a^{m}, a^{m+1}\right)=1$

Sim to Dist: unreproducible clustering

Sim to Dist: unreproducible clustering

single-link clustering of $\left\{a^{5}, a^{4}, a^{3}, a^{2}, a^{1}\right\}$ using $C^{\Theta}(a, a)=1, C^{\Theta}(a, \lambda)=1$
using $C^{\Delta}(a, a)=1$
and $C^{\Delta}(a, \lambda)$
or $0.5 \leq C^{\Delta}(a, \lambda) \leq 5.5$
(so $2 C^{\bar{\Delta}}(a, \lambda) \geq C^{\bar{\Delta}}(a, a)$
or $0.1 \leq C^{\Delta}(a, \lambda) \leq 0.4$
(so $2 C^{\Delta}(a, \lambda)<C^{\Delta}(a, a)$)

dist swap:1 del:1 single

Dist to Sim: N-duality failures

There are conversions from Dist to Sim which make A-duals: to what degree does this make an N -duals?
Δ-to- Θ conversion for
A-duality was
(i)
$\left\{\begin{array}{l}C^{\ominus}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\ C^{\ominus}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\ C^{\ominus}(x, y)=\delta-C^{\Delta}(x, y)\end{array}\right.$

Dist to Sim: N-duality failures

There are conversions from Dist to Sim which make A-duals: to what degree does this make an N -duals?
Δ-to- Θ conversion for A-duality was
(i)

$$
\left\{\begin{array}{l}
C^{\ominus}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\
C^{\ominus}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\
C^{\ominus}(x, y)=\delta-C^{\Delta}(x, y)
\end{array}\right.
$$

eg. derived C^{\ominus} from unit-cost C^{Δ}

		A-dual C^{Θ} for varying δ						
	C^{Δ}	2	1.5	1	0.5	0.2	0.1	0
(x, λ)	1	0	0.25	0.5	0.75	0.9	0.95	1
(x, x)	0	2	1.5	1	0.5	0.2	0.1	0
(x, y)	1	1	0.5	0	-0.5	-0.8	-0.9	-1

Dist to Sim: N-duality failures

There are conversions from Dist to Sim which make A-duals: to what degree does this make an N -duals?
Δ-to- Θ conversion for A-duality was
(i)

$$
\left\{\begin{array}{l}
C^{\ominus}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\
C^{\ominus}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\
C^{\ominus}(x, y)=\delta-C^{\Delta}(x, y)
\end{array}\right.
$$

eg. derived C^{\ominus} from unit-cost C^{Δ}

		A-dual C^{Θ} for varying δ						
	C^{Δ}	2	1.5	1	0.5	0.2	0.1	0
(x, λ)	1	0	0.25	0.5	0.75	0.9	0.95	1
(x, x)	0	2	1.5	1	0.5	0.2	0.1	0
(x, y)	1	1	0.5	0	-0.5	-0.8	-0.9	-1

Dist to Sim: N-duality failures

There are conversions from Dist to Sim which make A-duals: to what degree does this make an N -duals?
Δ-to- Θ conversion for A-duality was
(i)

$$
\left\{\begin{array}{l}
C^{\ominus}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\
C^{\ominus}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\
C^{\ominus}(x, y)=\delta-C^{\Delta}(x, y)
\end{array}\right.
$$

eg. derived C^{\ominus} from unit-cost C^{Δ}

		A-dual C^{Θ} for varying δ						
	C^{Δ}	2	1.5	1	0.5	0.2	0.1	0
(x, λ)	1	0	0.25	0.5	0.75	0.9	0.95	1
(x, x)	0	2	1.5	1	0.5	0.2	0.1	0
(x, y)	1	1	0.5	0	-0.5	-0.8	-0.9	-1

for a S, make $\Delta-\uparrow$ neighb. ordering $N_{\Delta}(S)$

Dist to Sim: N-duality failures

There are conversions from Dist to Sim which make A-duals: to what degree does this make an N -duals?
Δ-to- Θ conversion for A-duality was
(i)

$$
\left\{\begin{array}{l}
C^{\Theta}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\
C^{\Theta}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\
C^{\Theta}(x, y)=\delta-C^{\Delta}(x, y)
\end{array}\right.
$$

eg. derived C^{\ominus} from unit-cost C^{Δ}

		A-dual C^{Θ} for varying δ						
	C^{Δ}	2	1.5	1	0.5	0.2	0.1	0
(x, λ)	1	0	0.25	0.5	0.75	0.9	0.95	1
(x, x)	0	2	1.5	1	0.5	0.2	0.1	0
(x, y)	1	1	0.5	0	-0.5	-0.8	-0.9	-1

for a S, make $\Delta-\uparrow$ neighb. ordering $N_{\Delta}(S)$ for a S, make $\Theta-\downarrow$ neighb. ordering $N_{\Theta}(S)$

Dist to Sim: N-duality failures

There are conversions from Dist to Sim which make A-duals: to what degree does this make an N -duals?
Δ-to- Θ conversion for A-duality was
(i)

$$
\left\{\begin{array}{l}
C^{\Theta}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\
C^{\Theta}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\
C^{\Theta}(x, y)=\delta-C^{\Delta}(x, y)
\end{array}\right.
$$

eg. derived C^{\ominus} from unit-cost C^{Δ}

		A-dual C^{Θ} for varying δ						
	C^{Δ}	2	1.5	1	0.5	0.2	0.1	0
(x, λ)	1	0	0.25	0.5	0.75	0.9	0.95	1
(x, x)	0	2	1.5	1	0.5	0.2	0.1	0
(x, y)	1	1	0.5	0	-0.5	-0.8	-0.9	-1

for a S, make $\Delta-\uparrow$ neighb. ordering $N_{\Delta}(S)$ for a S, make $\Theta-\downarrow$ neighb. ordering $N_{\Theta}(S)$ $\operatorname{tau}\left(N_{\Delta}(S), N_{\Theta}(S)\right)=$ kendall-tau comparison of ordering

Dist to Sim: N-duality failures

There are conversions from Dist to Sim which make A-duals: to what degree does this make an N -duals?
Δ-to- Θ conversion for A-duality was
(i)

$$
\left\{\begin{array}{l}
C^{\ominus}(x, \lambda)=C^{\Delta}(x, \lambda)-\delta / 2 \\
C^{\ominus}(\lambda, y)=C^{\Delta}(\lambda, y)-\delta / 2 \\
C^{\ominus}(x, y)=\delta-C^{\Delta}(x, y)
\end{array}\right.
$$

eg. derived C^{\ominus} from unit-cost
C^{Δ}

		A-dual C^{\ominus} for varying δ					
	C^{Δ}	2	1.5	1	0.5	0.2	0.1
0	0						
(x, λ)	1	0	0.25	0.5	0.75	0.9	0.95
(x, x)							
0	2	1.5	1	0.5	0.2	0.1	0
(x, y)	1	1	0.5	0	-0.5	-0.8	-0.9

Sim－to－Dist：N－duality failures

There are conversions from Sim to Dist which make A－duals：to what degree does this make an N －duals

Sim-to-Dist: N-duality failures

There are conversions from Sim to Dist which make A-duals: to what degree does this make an N -duals
Θ-to- Δ conversion for
A-duality was
(ii)
$\left\{\begin{array}{l}C^{\Delta}(x, \lambda)=C^{\ominus}(x, \lambda)+\delta / 2 \\ C^{\Delta}(\lambda, y)=C^{\ominus}(\lambda, y)+\delta / 2 \\ C^{\Delta}(x, y)=\delta-C^{\ominus}(x, y)\end{array}\right.$

Sim-to-Dist: N-duality failures

There are conversions from Sim to Dist which make A-duals: to what degree does this make an N -duals
Θ-to- Δ conversion for
A-duality was
(ii)

$$
\left\{\begin{array}{l}
C^{\Delta}(x, \lambda)=C^{\ominus}(x, \lambda)+\delta / 2 \\
C^{\Delta}(\lambda, y)=C^{\Theta}(\lambda, y)+\delta / 2 \\
C^{\Delta}(x, y)=\delta-C^{\Theta}(x, y)
\end{array}\right.
$$

A C^{\ominus} and several A-dual C^{Δ}

		A-dual C^{Δ} for varying δ						
	C^{Θ}	1	1.5	2	2.5	3	3.5	4
(x, λ)	0.5	1	1.25	1.5	1.75	2	2.25	2.5
(x, x)	1	0	0.5	1	1.5	2	2.5	3
(x, y)	0	1	1.5	2	2.5	3	3.5	4

Sim-to-Dist: N-duality failures

There are conversions from Sim to Dist which make A-duals: to what degree does this make an N -duals
Θ-to- Δ conversion for
A-duality was
(ii)

$$
\left\{\begin{array}{l}
C^{\Delta}(x, \lambda)=C^{\ominus}(x, \lambda)+\delta / 2 \\
C^{\Delta}(\lambda, y)=C^{\Theta}(\lambda, y)+\delta / 2 \\
C^{\Delta}(x, y)=\delta-C^{\Theta}(x, y)
\end{array}\right.
$$

A C^{\ominus} and several A-dual C^{Δ}

		A-dual C^{Δ} for varying δ						
	C^{Θ}	1	1.5	2	2.5	3	3.5	4
(x, λ)	0.5	1	1.25	1.5	1.75	2	2.25	2.5
(x, x)	1	0	0.5	1	1.5	2	2.5	3
(x, y)	0	1	1.5	2	2.5	3	3.5	4

Sim-to-Dist: N-duality failures

There are conversions from Sim to Dist which make A-duals: to what degree does this make an N -duals
Θ-to- Δ conversion for
A-duality was
(ii)

$$
\left\{\begin{array}{l}
C^{\Delta}(x, \lambda)=C^{\Theta}(x, \lambda)+\delta / 2 \\
C^{\Delta}(\lambda, y)=C^{\Theta}(\lambda, y)+\delta / 2 \\
C^{\Delta}(x, y)=\delta-C^{\Theta}(x, y)
\end{array}\right.
$$

A C^{\ominus} and several A-dual C^{Δ}

		A-dual C^{Δ} for varying δ						
	C^{\ominus}	1	1.5	2	2.5	3	3.5	4
(x, λ)	0.5	1	1.25	1.5	1.75	2	2.25	2.5
(x, x)	1	0	0.5	1	1.5	2	2.5	3
(x, y)	0	1	1.5	2	2.5	3	3.5	4

for a S, make $\Theta-\downarrow$ neighb. ordering $N_{\Theta}(S)$

Sim-to-Dist: N-duality failures

There are conversions from Sim to Dist which make A-duals: to what degree does this make an N -duals
Θ-to- Δ conversion for
A-duality was
(ii)

$$
\left\{\begin{array}{l}
C^{\Delta}(x, \lambda)=C^{\ominus}(x, \lambda)+\delta / 2 \\
C^{\Delta}(\lambda, y)=C^{\ominus}(\lambda, y)+\delta / 2 \\
C^{\Delta}(x, y)=\delta-C^{\ominus}(x, y)
\end{array}\right.
$$

A C^{\ominus} and several A-dual C^{Δ}

		A-dual C^{Δ} for varying δ						
	C^{Θ}	1	1.5	2	2.5	3	3.5	4
(x, λ)	0.5	1	1.25	1.5	1.75	2	2.25	2.5
(x, x)	1	0	0.5	1	1.5	2	2.5	3
(x, y)	0	1	1.5	2	2.5	3	3.5	4

for a S, make $\Theta-\downarrow$ neighb. ordering $N_{\Theta}(S)$
for a S, make Δ - \uparrow neighb. ordering $N_{\Delta}(S)$

Sim-to-Dist: N-duality failures

There are conversions from Sim to Dist which make A-duals: to what degree does this make an N -duals
Θ-to- Δ conversion for
A-duality was
(ii)

$$
\left\{\begin{array}{l}
C^{\Delta}(x, \lambda)=C^{\ominus}(x, \lambda)+\delta / 2 \\
C^{\Delta}(\lambda, y)=C^{\ominus}(\lambda, y)+\delta / 2 \\
C^{\Delta}(x, y)=\delta-C^{\ominus}(x, y)
\end{array}\right.
$$

A C^{\ominus} and several A-dual C^{Δ}

		A-dual C^{Δ} for varying δ						
	C^{Θ}	1	1.5	2	2.5	3	3.5	4
(x, λ)	0.5	1	1.25	1.5	1.75	2	2.25	2.5
(x, x)	1	0	0.5	1	1.5	2	2.5	3
(x, y)	0	1	1.5	2	2.5	3	3.5	4

for a S, make $\Theta-\downarrow$ neighb. ordering $N_{\Theta}(S)$
for a S, make $\Delta-\uparrow$ neighb.
ordering $N_{\Delta}(S)$
$\operatorname{tau}\left(N_{\Theta}(S), N_{\Delta}(S)\right)=$ kendall-tau comparison of ordering

Sim-to-Dist: N-duality failures

There are conversions from Sim to Dist which make A-duals: to what degree does this make an N -duals
Θ-to- Δ conversion for
A-duality was
(ii)

$$
\left\{\begin{array}{l}
C^{\Delta}(x, \lambda)=C^{\ominus}(x, \lambda)+\delta / 2 \\
C^{\Delta}(\lambda, y)=C^{\ominus}(\lambda, y)+\delta / 2 \\
C^{\Delta}(x, y)=\delta-C^{\ominus}(x, y)
\end{array}\right.
$$

A C^{\ominus} and several A-dual C^{Δ}

		A-dual C^{Δ} for varying δ						
	C^{\ominus}	1	1.5	2	2.5	3	3.5	4
(x, λ)	0.5	1	1.25	1.5	1.75	2	2.25	2.5
(x, x)	1	0	0.5	1	1.5	2	2.5	3
(x, y)	0	1	1.5	2	2.5	3	3.5	4

for a S, make $\Theta-\downarrow$ neighb. ordering $N_{\Theta}(S)$
for a S, make $\Delta-\uparrow$ neighb. ordering $N_{\Delta}(S)$ $\operatorname{tau}\left(N_{\Theta}(S), N_{\Delta}(S)\right)=$ kendall-tau comparison of ordering

