Dynamic EM in Neologism Evolution

Martin Emms

October 20, 2013

Motivation

Models

Dynamic Model Static Model

EM Estimation

Experiments Data and Settings Results

Comparisons and Future Work

semantic neologism: when an old word acquires a new usage/meaning

semantic neologism: when an *old* word acquires a *new* usage/meaning example *bricked*

semantic neologism: when an *old* word acquires a *new* usage/meaning example *bricked*

old sense: a construction process involving bricks, as in (from 2001) In 1611 she was **bricked** into one of the rooms

semantic neologism: when an *old* word acquires a *new* usage/meaning example *bricked*

old sense: a construction process involving bricks, as in (from 2001) ... In 1611 she was **bricked** into one of the rooms ...

recent sense: render a piece of equipment, often a phone, entirely unresponsive, as in (from 2011)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

I've tried to flash a custom ROM and now I think I've $\ensuremath{\textit{bricked}}$ my phone

Other examples

crawled some kind of movement vs. traversal of www by a web-crawler *tweet* high-pitched bird noise vs. post to Twitter web-site

Other examples

crawled some kind of movement vs. traversal of www by a web-crawler *tweet* high-pitched bird noise vs. post to Twitter web-site

can make problems for SMT when its training data pre-dates the neologism's emergence

some translations into German via Google Translate¹:

English	German (via Google Translate)
he is a regular tweeter	er ist ein regelmaessiger Hochtoener
he has bricked my phone	er hat mein Handy zugemauert

Other examples

crawled some kind of movement vs. traversal of www by a web-crawler *tweet* high-pitched bird noise vs. post to Twitter web-site

can make problems for SMT when its training data pre-dates the neologism's emergence

some translations into German via Google Translate¹:

English	German (via Google Translate)
he is a regular tweeter	er ist ein regelmaessiger Hochtoener
he has bricked my phone	er hat mein Handy zugemauert

The question is:

Can semantic neologisms be detected from untagged text?

¹Executed May 2013.

Representation and Notation

To talk about an occurrence of an ambiguous word will use:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- W: words to left and right of a target
- W_i : *i*-th word in **W**
- Y: year of occurrence
- S: sense of target occurrence of targets

Representation and Notation

To talk about an occurrence of an ambiguous word will use:

- W: words to left and right of a target
- W_i : *i*-th word in **W**
- Y: year of occurrence
- S: sense of target occurrence of targets

Eg. samples of bricked:

2001: ... In 1611 she was **bricked** into one of the rooms ... 2011: I've tried to flash a custom ROM and now I think I've **bricked** my phone

become instances:

 $Y = 2001, S = 1, W = \langle L, In, 1611, she, was, into, one, of, the, rooms \rangle$ $Y = 2011, S = 2, W = \langle and, now, I, think, I've, my, phone, R, R, R \rangle$

Outline

Motivation

Models Dynamic Model Static Model

EM Estimation

xperiments Data and Settin Results

Comparisons and Future Work

Time dependent Sense Model

Without loss of generality, using the chain rule, we have

 $p(Y, S, \mathbf{W}) = p(Y) \times p(S|Y) \times p(\mathbf{W}|S, Y)$

The p(S|Y) term directly expresses the idea that the prevalence of a sense can vary with the year

(日)

Time dependent Sense Model

Without loss of generality, using the chain rule, we have

 $p(Y, S, \mathbf{W}) = p(Y) \times p(S|Y) \times p(\mathbf{W}|S, Y)$

The p(S|Y) term directly expresses the idea that the prevalence of a sense can vary with the year

If we now assume that $p(\mathbf{W}|S, Y) = p(\mathbf{W}|S)$ ie. W is conditionally independent of Y given S we get first line below

Definition (Dynamic Sense Model)

$$p(Y, S, \mathbf{W}) = p(Y) \times p(S|Y) \times p(\mathbf{W}|S)$$
(1)

=

(2)

Time dependent Sense Model

Without loss of generality, using the chain rule, we have

 $p(Y, S, \mathbf{W}) = p(Y) \times p(S|Y) \times p(\mathbf{W}|S, Y)$

The p(S|Y) term directly expresses the idea that the prevalence of a sense can vary with the year

If we now assume that $p(\mathbf{W}|S, Y) = p(\mathbf{W}|S)$ ie. W is conditionally independent of Y given S we get first line below

Definition (Dynamic Sense Model)

$$p(Y, S, \mathbf{W}) = p(Y) \times p(S|Y) \times p(\mathbf{W}|S)$$
(1)

$$= p(Y) \times p(S|Y) \times \prod_{i} p(W_{i}|S)$$
(2)

▲日▼▲□▼▲□▼▲□▼ □ のので

Second line above by treating W as 'bag of words'

Outline

Motivation

Models Dynamic Model Static Model

EM Estimation

xperiments Data and Setting Results

Comparisons and Future Work

If we further assume that p(S|Y) = p(S) we get:

Definition (Static Sense Model)

 $p(Y, S, \mathbf{W}) = p(Y) \times p(S) \times p(\mathbf{W}|S)$

Let θ be all parameters: p(Y), p(S|Y), p(W|S).

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Data has no sense annotation.

Let θ be all parameters: p(Y), p(S|Y), p(W|S).

Data has no $\underline{\mathsf{sense}}$ annotation. So use EM to make converging sequence of estimates

 $\theta_0 \to \ldots \to \theta_n \to \theta_{n+1} \to \ldots \to \theta_{\text{final}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Let θ be all parameters: p(Y), p(S|Y), p(W|S).

Data has no $\underline{\mathsf{sense}}$ annotation. So use EM to make converging sequence of estimates

 $\theta_0 \to \ldots \to \theta_n \to \theta_{n+1} \to \ldots \to \theta_{\text{final}}$

 θ_n goes to θ_{n+1} by an **E**-step, followed by a **M** step

Let θ be all parameters: p(Y), p(S|Y), p(W|S).

Data has no sense annotation. So use $\mathsf{E}\mathsf{M}$ to make converging sequence of estimates

 $\theta_0 \to \ldots \to \theta_n \to \theta_{n+1} \to \ldots \to \theta_{final}$

 θ_n goes to θ_{n+1} by an **E**-step, followed by a **M** step

(E) generate a virtual corpus of disambiguated instances by treating each training instance (Y^d, \mathbf{W}^d) as standing for all possible completions with a sense, (Y^d, S, \mathbf{W}^d) , weighting each by its conditional probability $P(S|Y^d, \mathbf{W}^d; \theta_n)$, under current probabilities θ_n

Let θ be all parameters: p(Y), p(S|Y), p(W|S).

Data has no sense annotation. So use $\mathsf{E}\mathsf{M}$ to make converging sequence of estimates

 $\theta_0 \to \ldots \to \theta_n \to \theta_{n+1} \to \ldots \to \theta_{final}$

 θ_n goes to θ_{n+1} by an **E**-step, followed by a **M** step

- (E) generate a virtual corpus of disambiguated instances by treating each training instance (Y^d, \mathbf{W}^d) as standing for all possible completions with a sense, (Y^d, S, \mathbf{W}^d) , weighting each by its conditional probability $P(S|Y^d, \mathbf{W}^d; \theta_n)$, under current probabilities θ_n
- (M) apply maximum likelihood estimation to the virtual corpus to derive new estimates θ_{n+1} .

EM update equations

For each data item d, let $\gamma_{\theta_n}^d(s)$ be the conditional S-prob under θ_n ie.

$$\gamma^d_{\theta_n}(s) := P(S = s | Y = y^d, \mathbf{W} = \mathbf{w}^d; \theta_n)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

can prove the E-M cycle leads to update formulae:

EM update equations

For each data item d, let $\gamma_{\theta_n}^d(s)$ be the conditional S-prob under θ_n ie.

$$\gamma^d_{ heta_n}(s) := P(S = s | Y = y^d, \mathbf{W} = \mathbf{w}^d; heta_n)$$

can prove the E-M cycle leads to update formulae:

$$P(S = s | Y = y; \theta_{n+1}) = \frac{\sum_{d} (\text{if } Y^{d} = y \text{ then } \gamma_{\theta_{n}}^{d}(s) \text{ else } 0)}{\sum_{d} (\text{if } Y^{d} = y \text{ then } 1 \text{ else } 0)}$$

$$P(w|S = s; \theta_{n+1}) = \frac{\sum_{d} (\gamma_{\theta_{n}}^{d}(s) \times freq(w \in \mathbf{W}^{d}))}{\sum_{d} (\gamma_{\theta_{n}}^{d}(s) \times length(\mathbf{W}^{d}))}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Dynamic EM in Neologism Evolution Experiments Data and Settings

Outline

Motivation

lodels Dynamic Mod Static Model

EM Estimation

Experiments Data and Settings Results

Comparisons and Future Work

- to get time-specific samples used the Google facility to specify a time period for searched documents
 eg. search: "bricked" 1/1/2000 – 31/12/2000
- saved 100 per year
- used window 5 words to the left of the target, and 5 words to the right

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ▶ per-sense word probs initialised to overall corpus probs + some noise
- sense distribs initialised $\frac{7}{20}$, $\frac{11}{20}$, $\frac{2}{20}$

Outline

Motivation

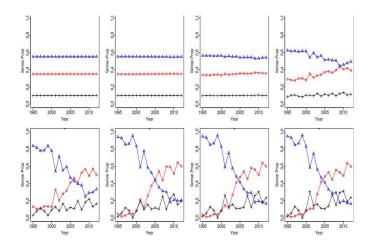
lodels Dynamic Mode Static Model

EM Estimation

Experiments Data and Settin Results

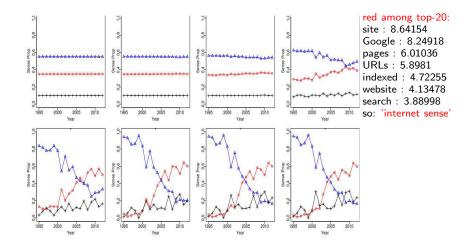
Comparisons and Future Work

EM converging to solution for 'crawled'



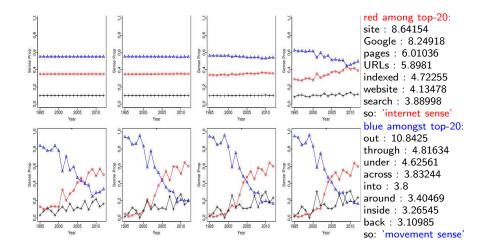
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

EM converging to solution for 'crawled'

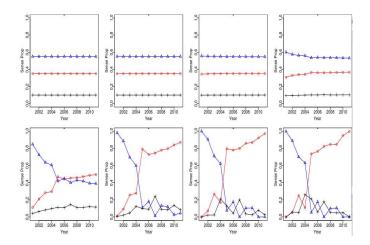


◆ロ > ◆母 > ◆臣 > ◆臣 > ● 臣 = の Q @

EM converging to solution for 'crawled'

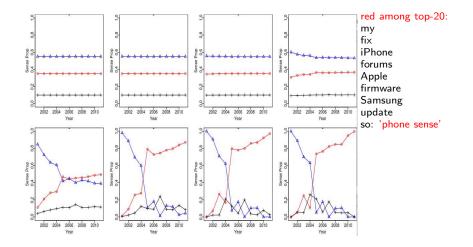


EM converging to solution for 'bricked'



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

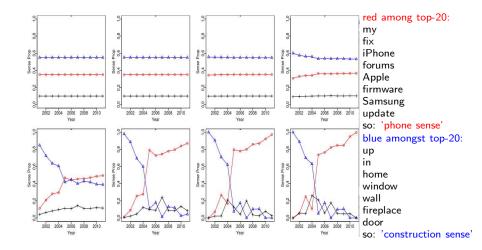
EM converging to solution for 'bricked'



ヘロト ヘ部ト ヘヨト ヘヨト

æ

EM converging to solution for 'bricked'



▲□▶▲□▶▲□▶▲□▶ ■ のQで

Comparing to labelled target

the algorithm learns from data with no sense data. For 'bricked' we hand-labelled to give a target to compare to.

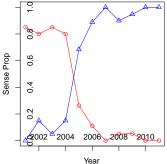
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Comparing to labelled target

the algorithm learns from data with no sense data. For 'bricked' we hand-labelled to give a target to compare to.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

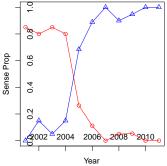
▶ The inferred sense distrib resembles the empirical target:



Comparing to labelled target

the algorithm learns from data with no sense data. For 'bricked' we hand-labelled to give a target to compare to.

▶ The inferred sense distrib resembles the empirical target:



 If the EM-trained models are used to label the data, then dynamic model accuracy: 82.4%.
 static model accuracy: 76.1%

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions and Further Directions

- some evidence that can spot a semantic neologism
- further data
- more elaborate models: prior on year-to-year change

comparison to LDA and dynamic topic models