Trainable Tree Distance and an application to Question Categorisation

Martin Emms Department of Computer Science, Trinity College, Dublin

Martin.Emms@tcd.ie

Syntactic structures are placed into semantic categories via distances to k nearest neighbours in a pre-categorised set. Variants of tree-distance are used, in particular a stochastic variant. A Viterbi Expectation Maximisation algorithm is proposed via which the parameters of the stochastic model are learned. We show that a 67.7% base-line using standard unit-costs can be improved to 72.5% by cost adaptation.

Tree distance

Standard Edit Distance

a Tai-mapping σ between trees ${\mathcal S}$ and ${\mathcal T}$ is a partial 1-to-1 mapping which

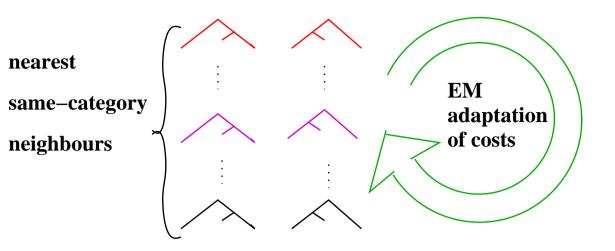
(T1) preserves left-to-right order (T2) preserves ancestry

Where $\gamma(n)$ is the label of node n, and Σ is all labels, a summed cost can be assigned to a mapping, assuming a cost-table C size $|\Sigma + 1| \times |\Sigma + 1|$:

```
\begin{array}{ll} \text{Deletions}: \ n \in \mathcal{S}, \neg \exists n' \in \mathcal{T}, \langle n, n' \rangle \in \sigma \ Cost = \mathcal{C}[x][\lambda] \ \text{where} \ x = \gamma(n) \\ \text{Insertions}: \ n' \in \mathcal{T}, \neg \exists n \in \mathcal{S}, \langle n, n' \rangle \in \sigma \ Cost = \mathcal{C}[\lambda][y] \ \text{where} \ y = \gamma(n') \\ \text{Swaps/Matches}: \ n \in \mathcal{S}, n' \in \mathcal{T}, \langle n, n' \rangle \in \sigma \ Cost = \mathcal{C}[x][y] \ \text{where} \ x = \gamma(n), y = \gamma(n') \end{array}
```

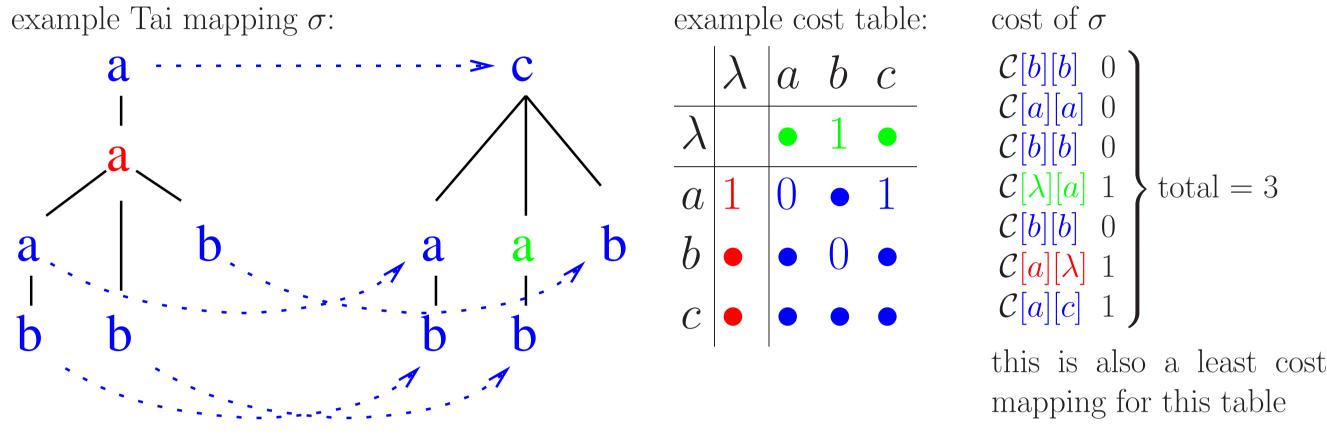
Cost Adaptation via Expectation Maximisation

in scripts between same-category neighbours, intuitively edit-operations should not have uniform probability eg. P(who/when) <<P(state/country). We propose to use a corpus of same-category nearest neighbours to adapt costs using an Expectation-Maximisation algorithm.



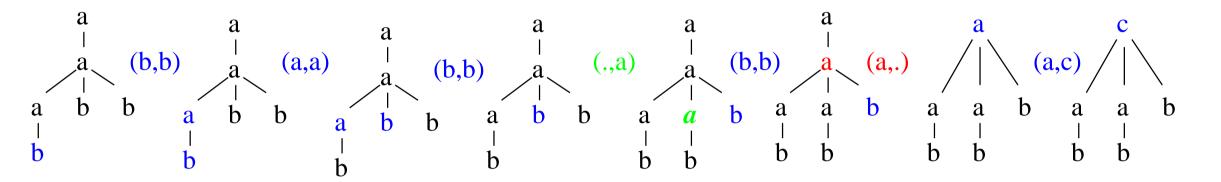
An exponentially expensive algorithm EM_{bf}^A would treat each training pair (S, T) of same-category neighbours as standing for all the edit-scripts $\mathcal{A} : S \mapsto T$, weighting each by its conditional probability, and thereby deriving weighted counts for each *op* (*see left below*). A *Viterbi variant*, EM^V , approximates this by computing counts from only the best-path \mathcal{V} (*see right below*). Feasibly implementing EM_{bf}^A is an unsolved problem. [2] contains an incorrect proposal.

Definition 0.1 (Tree- or Tai-distance) between S and T is the cost of the least-costly Tai mapping from S to T



Stochastic Edit Distance

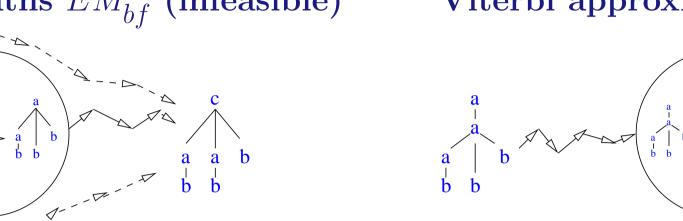
A Tai-mapping can also be serialised in a sequence of edit operations, called an edit-script:

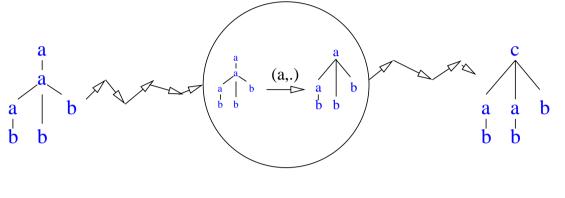


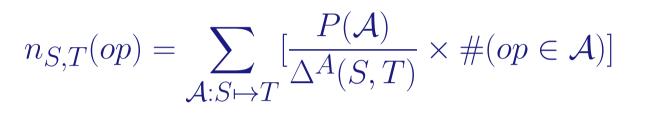
A probability distribution p on edit-script components $e \in (\Sigma \cup \{\lambda\}) \times (\Sigma \cup \{\lambda\})$ can be assumed, and an overall edit-script probability defined as

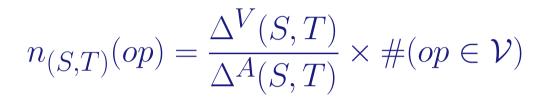
 $P(e_1 \dots e_n) = p(e_1) \times \dots \times p(e_n) \qquad (\text{equiv. } log(P(e_1 \dots e_n)) = log(p(e_1)) + \dots + log(p(e_n)))$ leading to the notions:

Definition 0.2 (All-paths and Viterbi stochastic Tai distance) $\Delta^A(S,T)$ is the sum of the probabilities of all edit-scripts which represent a Tai-mapping from S to T; $\Delta^V(S,T)$ is the probability Brute force All-paths EM_{hf}^A (infeasible)







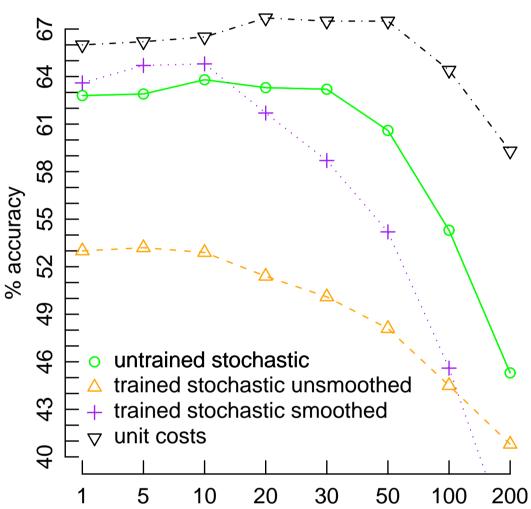


Costs are *initialised* to $C_u(d)$ where diagonal entries are *d* times more probable than non-diagonal and costs C derived by EM^V may be *smoothed* by interpolation with the original $C_u(d)$ according to $2^{-C_{\lambda}[x][y]} = \lambda(2^{-C[x][y]}) + (1-\lambda)(2^{-C_u(d)[x][y]})$

Experiments

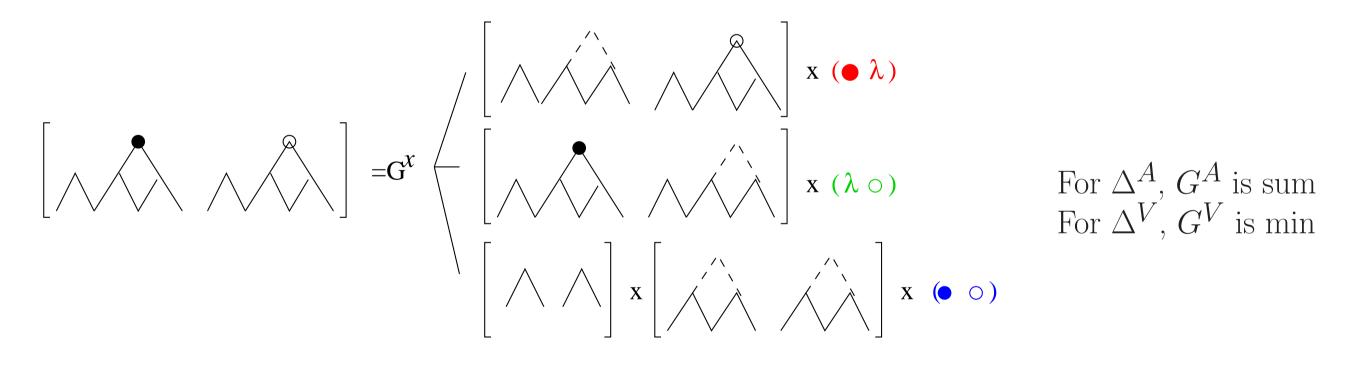
Experiment One

- unsmoothed EM^V -adapted costs (\triangle ,max. 53.2%) worse than initial, stochastic costs (\circ , max. 63.8%). Testing on the training set though gives 95% accuracy: $\Rightarrow EM^V$ made the best-scripts connecting the training pairs too probable, over-fitting the cost table.
- *smoothing* the adapted costs (+,max. 64.8%) improves over initial costs (○) but is still below unit costs (▽).



of the most probable edit-script

Algorithms to calculate $\Delta^{V}(S,T)$ and $\Delta^{A}(S,T)$ can be based on the following decomposition



Classification via Tree distance

A syntactic structure T can be given a semantic category via its distances to k nearest neighbours in a pre-categorised example set:

mum distances in the panel.

Different settings for the cost table will give different nearest neighbours and thereby categorisation outcomes, leading to the question of cost-adaptation:

k values

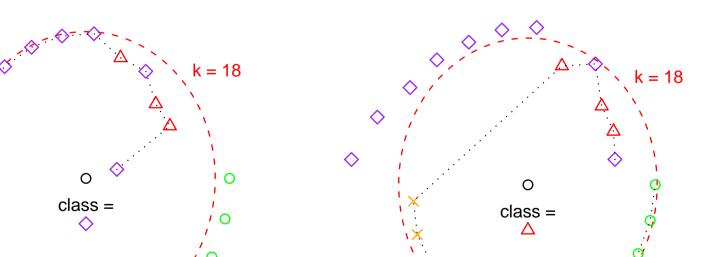
Despite poor categorisation performace, some of the adapted costs seem intuitive. Here is a sample from top 1% of adapted swap costs, which are plausibly discounted relative to others:

8.50 ? . 9.51 NNS NN 9.78 a the 11.03 was is 12.31 The the 13.60 can do 13.83 many much 13.92 city state Experiment Two

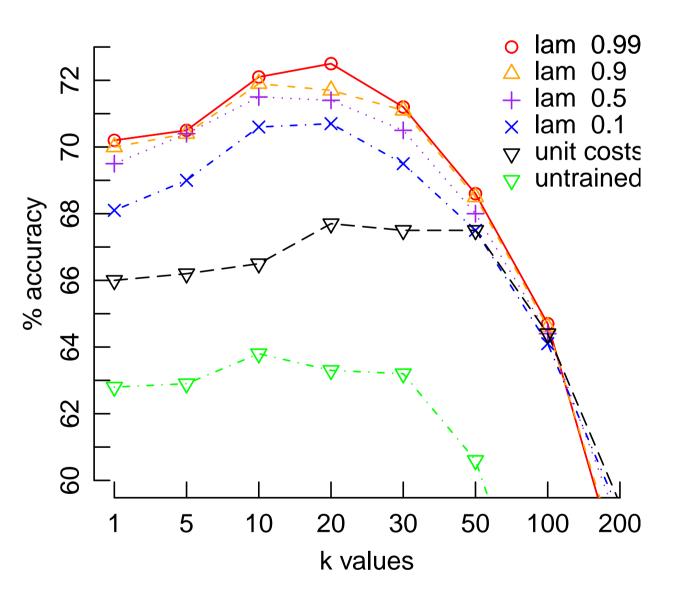
• cost 0 means prob $1 \Rightarrow$ a strictly stochastically valid cost table cannot have a zero cost diagonal; perhaps this impedes good categorisation: note the stochastic initialisation $C_u(3)$ (\bigtriangledown , max. 63.8%) is below unit-costs (\bigtriangledown , max. 67.7%). We consider outcomes with final step zeroing the diagonal – this move is also standardly made in cost-adaptation for *string distance* used in duplicate detection [1].

- now with smoothing at varius levels of interpolation ($\lambda \in \{0.99, 0.9, 0.5, 0.1\}$) and with the diagonal zeroed, the EM^V -adapted costs clearly outperform the unit-costs case (\bigtriangledown).
- the best result being 72.5% ($k = 20, \lambda = 0.99$), as compared to 67.5% for unit-costs (k = 20)

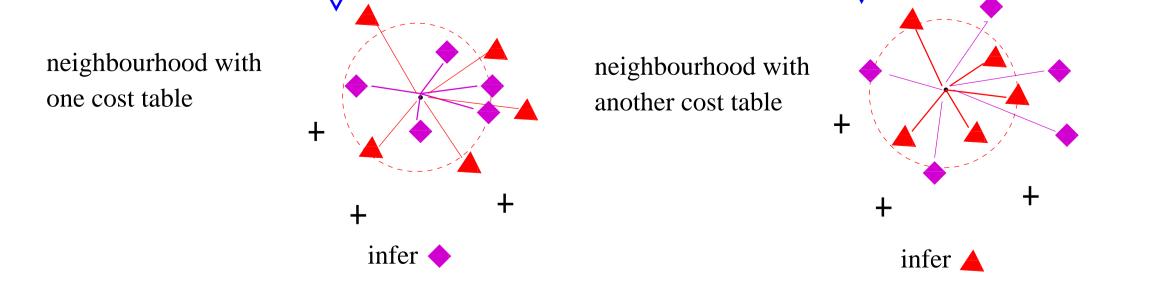
unit costs



adapted costs



plots to the left show an example of misleading neighbours 'migrating' out of the neighbourhood, for an item initially miscategorised as HUM \diamond under unit costs, then correctly categorised as ENTY \triangle under adapted costs, due in part to



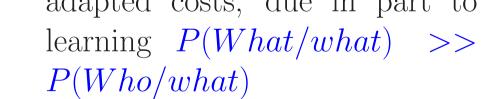
Data for experiments

QuestionBank (QB) is a hand-corrected syntactic corpus of questions [3]. A substantical subset of QB comes from a corpus of semantically categorised, syntactically unannotated questions (the CCG corpus from the University of Illinois 2001). From these we created a corpus of 2755 **semantically categorised, syntactically analysed** questions

Cat Perc Example

HUM 23.5% What is the name of the managing director of Apricot Computer ?
ENTY 22.5% What does the Peugeot company manufacture ?
DESC 19.4% What did John Hinckley do to impress Jodie Foster ?
NUM 16.7% When was London 's Docklands Light Railway constructed ?
LOC 16.5% What country is the biggest producer of tungsten ?
ABBR 1.4% What is the acronym for the rating system for air conditioner efficiency ?

Experiments were done on 9:1 splits of this data



Comparison and Conclusions

A cost-adapation procedure for $\Delta^V(S,T)$ has been shown to improve the kNN classification performance from 67.7% to 72.5% with adapted costs. If the SST(S,T) tree-kernel 'similarity' is used instead of $\Delta^V(S,T)$ in k-NN, a lower accuracy results: 64% – 69.4%. It remains to compare more closely the SST(S,T) and $\Delta^V(S,T)$ neighbourhoods. However deploying SST(S,T) as a kernel in one-vs-one SVM classification higher accuracies are attainable: 81.3%.

Issues for future work: larger data set, automatically parsed; integration with other lexicon or corpusbased similarity measures; application to other tasks: Question Answering, Entailment Recognition References

- [1] Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection using learnable string similarity measures. KDD 2003
- [2] Laurent Boyer, Amaury Habrard, and Marc Sebban. Learning metrics between tree structured data: Application to image recognition. ECML 2007
- [3] John Judge. Adapting and Developing Linguistic Resources for Question Answering. PhD thesis 2006.