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Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Cost of a mapping given by cost of

deletions eg. a5 has no image

insertions eg. a4 has no source

match/swaps eg. a6 goes to c6

given cost table C:

λ a b c
λ • 1 •

a 1 0 • 1
b • • 0 •
c • • • •

total cost of σ is sum on non-zero
costs

C[λ][a] + C[a][λ] + C[a][c] = 3

this is also a least cost mapping for
this table
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and seek to define distance via least-cost script
◮ The mapping- and script-based definitions are known to be equivalent,

with a script serving as a serialised representation of a mapping.
(Tai 79, Kuboyama 07)
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◮ for the case of strings (linear trees), a stochastic variant was first
proposed by Ristand and Yianilos (98)

◮ where Σ is an alphabet, let edit operation identifiers, EdOp, be:

EdOp = ((Σ ∪ {λ}) × (Σ ∪ {λ}))\〈λ, λ〉

and represent a script with op1 . . . opn#, with each opi ∈ EdOp.
◮ assuming a prob distribution p on EdOp ∪ {#}, define a script probability

as

P(e1 . . . en) =
∏

i

p(ei)

◮ Can think of a script as yielding a pair of strings (s, t). If E(s, t) is all
scripts which yield (s, t), they defined

all-paths stochastic edit distance:
the sum of the probabilities of all scripts e ∈ E(s, t)

viterbi stochastic edit distance:
prob. of the most probable e ∈ E(s, t)
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this can be adapted to the case of trees (first proposed by Boyer et al 2007)

Definition (All-scripts stochastic Tai similarity/distance)

The all-scripts stochastic Tai similarity, ΘA
s (S, T ), is the sum of the

probabilities of all edit-scripts which represent a Tai-mapping from S to T .
The all-scripts stochastic Tai distance, ∆A

s (S,T ), is its negated logarithm, ie.

2−∆A
s (S,T ) = ΘA

s (S,T )

Definition (Viterbi-script stochastic Tai similarity/distance)

The Viterbi-script stochastic Tai similarity, ΘV
s (S,T ), is the probability of the

most probable edit-script which represents a Tai-mapping from S to T . The
Viterbi-script stochastic Tai distance, ∆V

s (S, T ), is its negated logarithm, ie.

2−∆V
s (S,T ) = ΘV

s (S,T )
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◮ a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

◮ change cost table ⇒ change nearest neighbours ⇒ change
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adaptation
EM

of costs

nearest

same−category

neighbours

scripts between between same-
category neighbours should have
distinctive probs ⇒ perhaps can
use Expectation-Maximisation tech-
niques to adapt edit-probs from a
corpus of same-category nearest
neighbours
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Brute force All-paths EM (infeasible)

Let the brute-force all-scripts EM algorithm, EMA
bf , be iterations of pair of

steps

(Exp)A generate a virtual corpus of scripts by treating each
training pair (S,T ) as standing for all the edit-scripts
σ, which can relate S to T , weighting each by its condi-
tional probability P(σ/ΘA

s (S,T ), under current probali-
ties CΘ

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

A virtual count or expectation γS,T (op) contributed by S,T for an operaton op
can be defined by

γS,T (op) =
∑

σ:S 7→T

[
P(σ)

ΘA
s (S, T )

× freq(op ∈ σ)]

(Exp)A accumulates the γS,T (op) for all op’s, for all (S,T )
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◮ infeasible
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γ(S,T )[4][4](m,m′), the expectation for a swap (m,m′) at (4, 4) has the
semantics

γ(S,T )[4, 4](m,m′) =
∑

σ∈E(S,T ),(m4,m
′

4)∈σ

[
p(σ)

ΘA
s (S,T )

]

=
1

ΘA
s (S, T )

×
∑

σ∈E(S,T ),(m4,m
′

4)∈σ

[p(σ)]

in words,

the sum over the conditional probabilities of any script σ containing
a m4,m′

4 substitution, given that it is a script between S and T
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(i)

(ii)

(iii)

Boyer et al (2007) suggest the fectorisation

∑

e1∈E([·1],[·2(·1)])

[p(e1)]×
∑

e2∈E([·2·3 ],[·3])

[p(e2)]×p(m,m′)×
∑

e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)]

but we can show that this is not a sound factorisation
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For general trees, a feasible equivalent to the brute-force EMbf
A remains an

unsolved problem.



On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

Viterbi EM

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM

Experiments
Expermiment One
Experiment Two

Conclusions



On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

Viterbi EM

Let the Viterbi EM algorithm EMV , be iterations of pair of steps

(Exp)V generate a virtual corpus of scripts by treating each
training pair (S,T ) as standing for the best edit-script
σ, which can relate S to T , weighting it by its conditional
probability P(σ)/ΘA

s (S,T ), under current costs C



On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

Viterbi EM

Let the Viterbi EM algorithm EMV , be iterations of pair of steps

(Exp)V generate a virtual corpus of scripts by treating each
training pair (S,T ) as standing for the best edit-script
σ, which can relate S to T , weighting it by its conditional
probability P(σ)/ΘA

s (S,T ), under current costs C

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

Where V is the best-script, the virtual count or expectation γS,T (op)
contributed by S, T for the operation op is defined by

γ(S,T )(op) =
ΘV

s (S,T )

ΘA
s (S,T )

× freq(op ∈ V)



On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

Viterbi EM

Let the Viterbi EM algorithm EMV , be iterations of pair of steps

(Exp)V generate a virtual corpus of scripts by treating each
training pair (S,T ) as standing for the best edit-script
σ, which can relate S to T , weighting it by its conditional
probability P(σ)/ΘA

s (S,T ), under current costs C

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

Where V is the best-script, the virtual count or expectation γS,T (op)
contributed by S, T for the operation op is defined by

γ(S,T )(op) =
ΘV

s (S,T )

ΘA
s (S,T )

× freq(op ∈ V)

(Exp)V accumulates the γS,T (op) for all op’s, for all (S, T )
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Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions
ENTY NUM LOCHUM 2755

Cat Example
NUM When was London ’s Docklands Light Railway constructed ?

(SBARQ (WHADVP (WRB When))(SQ (VBD was)(NP (NP (NNP London)(POS ’s))(NNPS Docklands)

(JJ Light)(NN Railway))(VP (VBN constructed)))(. ?))

LOC What country is the biggest producer of tungsten ?
(SBARQ (WHNP (WDT What)(NN country))(SQ (VBZ is)(NP (NP (DT the)(JJS biggest)(NN producer))

(PP (IN of)(NP (NN tungsten)))))(. ?))

HUM What is the name of the managing director of Apricot Computer ?
(WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN name))(PP (IN of)(NP (NP (DT the)(JJ managing)(NN director))
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Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions
ENTY NUM LOCHUM 2755

Cat Example
NUM When was London ’s Docklands Light Railway constructed ?

(SBARQ (WHADVP (WRB When))(SQ (VBD was)(NP (NP (NNP London)(POS ’s))(NNPS Docklands)

(JJ Light)(NN Railway))(VP (VBN constructed)))(. ?))

LOC What country is the biggest producer of tungsten ?
(SBARQ (WHNP (WDT What)(NN country))(SQ (VBZ is)(NP (NP (DT the)(JJS biggest)(NN producer))

(PP (IN of)(NP (NN tungsten)))))(. ?))

HUM What is the name of the managing director of Apricot Computer ?
(WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN name))(PP (IN of)(NP (NP (DT the)(JJ managing)(NN director))

Intuitiion: in scripts between between same-category neighbours should have
distinctive probs eg. . P(who/when) << P(state/country).



On stochastic tree distances and their training via expectation-maximisation

Experiments

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier



On stochastic tree distances and their training via expectation-maximisation

Experiments

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples



On stochastic tree distances and their training via expectation-maximisation

Experiments

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

cat(T ) = VOTE({categories of k nearest neighbours of T })

◮ compare



On stochastic tree distances and their training via expectation-maximisation

Experiments

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

cat(T ) = VOTE({categories of k nearest neighbours of T })

◮ compare

tree-distance with standard unit costs



On stochastic tree distances and their training via expectation-maximisation

Experiments

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

cat(T ) = VOTE({categories of k nearest neighbours of T })

◮ compare

tree-distance with standard unit costs

stochastic tree-distance with untrained costs



On stochastic tree distances and their training via expectation-maximisation

Experiments

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

cat(T ) = VOTE({categories of k nearest neighbours of T })

◮ compare

tree-distance with standard unit costs

stochastic tree-distance with untrained costs

stochastic tree distance with trained costs
training by EMV on same-category neighbours from the Example set
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◮ standard unit-costs
▽, max. 67.7%

◮ initial stochastic costs
▽ max. 63.8%
worse than unit costs

◮ best EMV -adapted costs
◦, max. 72.5%
about 5% better than unit-costs
(▽, max. 67.7%)

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam  0.99lam  0.99
lam  0.9
lam  0.5
lam  0.1
unit costs
untrained



On stochastic tree distances and their training via expectation-maximisation

Experiments

Stochastic cost initialisation

EMV needs an initialisation of its parameters.

we used a basically uniform initialisation except



On stochastic tree distances and their training via expectation-maximisation

Experiments

Stochastic cost initialisation

EMV needs an initialisation of its parameters.

we used a basically uniform initialisation except

diagonal entries are d times more probable than non-diagonal.



On stochastic tree distances and their training via expectation-maximisation

Experiments

Stochastic cost initialisation

EMV needs an initialisation of its parameters.

we used a basically uniform initialisation except

diagonal entries are d times more probable than non-diagonal.

examples for d = 3, 10, 100, and 1000 are:

3 λ a b
λ 3.7 3.7 3.7
a 3.7 2.115 3.7
b 3.7 3.7 2.115

10 λ a b
λ 4.755 4.755 4.755
a 4.755 1.433 4.755
b 4.755 4.755 1.433

100 λ a b
λ 7.693 7.693 7.693
a 7.693 1.05 7.693
b 7.693 7.693 1.05

1000 λ a b
λ 10.97 10.97 10.97
a 10.97 1.005 10.97
b 10.97 10.97 1.005

NOTE: diagonal entries are not insignificant
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Smoothing

We used a smoothing option on a table C∆ derived by EMV , interpolating it
with the stochastic initialisation C∆

u(d) as follows:

2−C∆
λ[x ][y ] = λ(2−C∆

[x ][y ]) + (1 − λ)(2−C∆
u(d)[x ][y ])

with 0 ≤ λ ≤ 1

λ = 1 gives all the weight to the derived table

λ = 0 gives all the weight to the initial table
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Experiment One

◮ unit-costs (▽, max. 67.7%)
exceeds non-adapted C∆

u(3)
costs (◦, max. 63.8%)

◮ unsmoothed EMV -adapted costs
(△,max. 53.2%) worse than
initial, stochastic costs (◦, max.
63.8%)

◮ EMV -adapted costs on training
set gives 95% accuracy: ⇒ EMV

makes training pairs too probable,
and over-fits.

◮ smoothing adapted costs (+,max.
64.8%) improves over initial costs
(◦) but is still below unit costs (▽). k values
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Expermiment One

Despite poor performace of the EMV -adapted costs, some of the adapted
costs seem intuitive. Here is a sample from top 1% of adapted swap costs,
which are plausibly discounted relative to others:

8.50 ? .
8.93 NNP NN
9.47 VBD VBZ
9.51 NNS NN
9.78 a the
11.03 was is
11.03 ’s is

12.31 The the
12.65 you I
13.60 can do
13.83 many much
13.92 city state
13.93 city country
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Experiments

Experiment Two

◮ Recall: For the stochastic distance ∆V
s cost-table entries represent

probabilities via

2−C∆
(x,y) = p(x , y)

◮ a single 0 entry in C∆implies infinite cost entries everywhere else.
⇒ a stochastically valid cost table cannot have zero costs on the
diagonal

◮ perhaps this impedes good categorisation; note also the unit-cost
setting, which is clearly ’uniform’ in a sense, out-performs the ’uniform’
stochastic initialisations

◮ suggests final step in which all the entries on the cost-table’s diagonal
are zeroed.

◮ Bilenko et al 2003 does essentially this in work on stochastic string
distance
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◮ now with smoothing at varius
levels of interpolation
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with the diagonal zeroed, the
EMV -adapted costs clearly
out-perform the unit-costs case
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Experiment Two

Experiment Two

◮ now with smoothing at varius
levels of interpolation
(λ ∈ {0.99, 0.9, 0.5, 0.1}) and
with the diagonal zeroed, the
EMV -adapted costs clearly
out-perform the unit-costs case
(▽).

◮ the best result being 72.5%
(k = 20, λ = 0.99), as compared
to 67.5% for unit-costs (k = 20)
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Conclusions

◮ evidence to show that Viterbi EM cost-adaptation can increase the
performance of a tree-distance based classifier, and improve it to above
that attained in the unit-cost setting,

◮ experiments on further data-sets is required: one possibility is the
NLP-related tasks of question-answering, where the need is to assess
pairs of sentences for their likelihood to be a question-answer pairs. A
training set of such pairs could also serve as potential input to the cost
adaptation algorithm.
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