
On stochastic tree distances and their training via expectation-maximisation

On stochastic tree distances and their training via
expectation-maximisation

Martin Emms

February 6, 2012

On stochastic tree distances and their training via expectation-maximisation

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM

Experiments
Expermiment One
Experiment Two

Conclusions

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Cost of a mapping given by cost of

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Cost of a mapping given by cost of

deletions eg. a5 has no image

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Cost of a mapping given by cost of

deletions eg. a5 has no image

insertions eg. a4 has no source

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Cost of a mapping given by cost of

deletions eg. a5 has no image

insertions eg. a4 has no source

match/swaps eg. a6 goes to c6

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Cost of a mapping given by cost of

deletions eg. a5 has no image

insertions eg. a4 has no source

match/swaps eg. a6 goes to c6

given cost table C:

λ a b c
λ • 1 •

a 1 0 • 1
b • • 0 •
c • • • •

Standard Tree Distance
a partial mapping σ : S 7→ T is a Tai mapping iff σ respects left-to-right order
and ancestry. Giving costs to mappings leads to

Definition

(Tree- or Tai-distance) between S and T is the cost of the least-costly Tai
mapping from S to T

example Tai mapping σ:

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

Cost of a mapping given by cost of

deletions eg. a5 has no image

insertions eg. a4 has no source

match/swaps eg. a6 goes to c6

given cost table C:

λ a b c
λ • 1 •

a 1 0 • 1
b • • 0 •
c • • • •

total cost of σ is sum on non-zero
costs

C[λ][a] + C[a][λ] + C[a][c] = 3

this is also a least cost mapping for
this table

Script-based definition Tree Distance

◮ Can also consider sequence of ’edits’ turning a source tree S into a
target tree T

Script-based definition Tree Distance

◮ Can also consider sequence of ’edits’ turning a source tree S into a
target tree T

swap swap swap insert swap delete swap

(b,b) (a,a) (b,b) (.,a)

a

a

ba b

b

a

a

ba b

b

a

a

b

b

a b

a

a

ba b

b

a

a b

bb

a

a

a b

bb

a

a (b,b) a (a,.) (a,c)

a

b

a

b

a

b a

b

a

b

b

c

S T

and seek to define distance via least-cost script

Script-based definition Tree Distance

◮ Can also consider sequence of ’edits’ turning a source tree S into a
target tree T

swap swap swap insert swap delete swap

(b,b) (a,a) (b,b) (.,a)

a

a

ba b

b

a

a

ba b

b

a

a

b

b

a b

a

a

ba b

b

a

a b

bb

a

a

a b

bb

a

a (b,b) a (a,.) (a,c)

a

b

a

b

a

b a

b

a

b

b

c

S T

and seek to define distance via least-cost script
◮ The mapping- and script-based definitions are known to be equivalent,

with a script serving as a serialised representation of a mapping.
(Tai 79, Kuboyama 07)

Stochastic string distances

◮ for the case of strings (linear trees), a stochastic variant was first
proposed by Ristand and Yianilos (98)

Stochastic string distances

◮ for the case of strings (linear trees), a stochastic variant was first
proposed by Ristand and Yianilos (98)

◮ where Σ is an alphabet, let edit operation identifiers, EdOp, be:

EdOp = ((Σ ∪ {λ}) × (Σ ∪ {λ}))\〈λ, λ〉

and represent a script with op1 . . . opn#, with each opi ∈ EdOp.
◮ assuming a prob distribution p on EdOp ∪ {#}, define a script probability

as

P(e1 . . . en) =
∏

i

p(ei)

Stochastic string distances

◮ for the case of strings (linear trees), a stochastic variant was first
proposed by Ristand and Yianilos (98)

◮ where Σ is an alphabet, let edit operation identifiers, EdOp, be:

EdOp = ((Σ ∪ {λ}) × (Σ ∪ {λ}))\〈λ, λ〉

and represent a script with op1 . . . opn#, with each opi ∈ EdOp.
◮ assuming a prob distribution p on EdOp ∪ {#}, define a script probability

as

P(e1 . . . en) =
∏

i

p(ei)

◮ Can think of a script as yielding a pair of strings (s, t). If E(s, t) is all
scripts which yield (s, t), they defined

all-paths stochastic edit distance:
the sum of the probabilities of all scripts e ∈ E(s, t)

viterbi stochastic edit distance:
prob. of the most probable e ∈ E(s, t)

Stochastic tree distances

this can be adapted to the case of trees (first proposed by Boyer et al 2007)

Stochastic tree distances

this can be adapted to the case of trees (first proposed by Boyer et al 2007)

Definition (All-scripts stochastic Tai similarity/distance)

The all-scripts stochastic Tai similarity, ΘA
s (S, T), is the sum of the

probabilities of all edit-scripts which represent a Tai-mapping from S to T .
The all-scripts stochastic Tai distance, ∆A

s (S,T), is its negated logarithm, ie.

2−∆A
s (S,T) = ΘA

s (S,T)

Stochastic tree distances

this can be adapted to the case of trees (first proposed by Boyer et al 2007)

Definition (All-scripts stochastic Tai similarity/distance)

The all-scripts stochastic Tai similarity, ΘA
s (S, T), is the sum of the

probabilities of all edit-scripts which represent a Tai-mapping from S to T .
The all-scripts stochastic Tai distance, ∆A

s (S,T), is its negated logarithm, ie.

2−∆A
s (S,T) = ΘA

s (S,T)

Definition (Viterbi-script stochastic Tai similarity/distance)

The Viterbi-script stochastic Tai similarity, ΘV
s (S,T), is the probability of the

most probable edit-script which represents a Tai-mapping from S to T . The
Viterbi-script stochastic Tai distance, ∆V

s (S, T), is its negated logarithm, ie.

2−∆V
s (S,T) = ΘV

s (S,T)

EM Cost adaptation

EM Cost adaptation

◮ a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

EM Cost adaptation

◮ a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

◮ change cost table ⇒ change nearest neighbours ⇒ change
categorisation:

��
��
��

��
��
�� ��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

���
���
���
���

���
���
���
���

infer infer

neighbourhood with

another cost table

neighbourhood with

one cost table

EM Cost adaptation

◮ a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

◮ change cost table ⇒ change nearest neighbours ⇒ change
categorisation:

��
��
��

��
��
�� ��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

���
���
���
���

���
���
���
���

infer infer

neighbourhood with

another cost table

neighbourhood with

one cost table

adaptation
EM

of costs

nearest

same−category

neighbours

scripts between between same-
category neighbours should have
distinctive probs

EM Cost adaptation

◮ a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

◮ change cost table ⇒ change nearest neighbours ⇒ change
categorisation:

��
��
��

��
��
�� ��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

���
���
���
���

���
���
���
���

infer infer

neighbourhood with

another cost table

neighbourhood with

one cost table

adaptation
EM

of costs

nearest

same−category

neighbours

scripts between between same-
category neighbours should have
distinctive probs ⇒ perhaps can
use Expectation-Maximisation tech-
niques to adapt edit-probs from a
corpus of same-category nearest
neighbours

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM

Experiments
Expermiment One
Experiment Two

Conclusions

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Brute force All-paths EM (infeasible)

Let the brute-force all-scripts EM algorithm, EMA
bf , be iterations of pair of

steps

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Brute force All-paths EM (infeasible)

Let the brute-force all-scripts EM algorithm, EMA
bf , be iterations of pair of

steps

(Exp)A generate a virtual corpus of scripts by treating each
training pair (S,T) as standing for all the edit-scripts
σ, which can relate S to T , weighting each by its condi-
tional probability P(σ/ΘA

s (S,T), under current probali-
ties CΘ

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Brute force All-paths EM (infeasible)

Let the brute-force all-scripts EM algorithm, EMA
bf , be iterations of pair of

steps

(Exp)A generate a virtual corpus of scripts by treating each
training pair (S,T) as standing for all the edit-scripts
σ, which can relate S to T , weighting each by its condi-
tional probability P(σ/ΘA

s (S,T), under current probali-
ties CΘ

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Brute force All-paths EM (infeasible)

Let the brute-force all-scripts EM algorithm, EMA
bf , be iterations of pair of

steps

(Exp)A generate a virtual corpus of scripts by treating each
training pair (S,T) as standing for all the edit-scripts
σ, which can relate S to T , weighting each by its condi-
tional probability P(σ/ΘA

s (S,T), under current probali-
ties CΘ

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

A virtual count or expectation γS,T (op) contributed by S,T for an operaton op
can be defined by

γS,T (op) =
∑

σ:S 7→T

[
P(σ)

ΘA
s (S, T)

× freq(op ∈ σ)]

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Brute force All-paths EM (infeasible)

Let the brute-force all-scripts EM algorithm, EMA
bf , be iterations of pair of

steps

(Exp)A generate a virtual corpus of scripts by treating each
training pair (S,T) as standing for all the edit-scripts
σ, which can relate S to T , weighting each by its condi-
tional probability P(σ/ΘA

s (S,T), under current probali-
ties CΘ

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

A virtual count or expectation γS,T (op) contributed by S,T for an operaton op
can be defined by

γS,T (op) =
∑

σ:S 7→T

[
P(σ)

ΘA
s (S, T)

× freq(op ∈ σ)]

(Exp)A accumulates the γS,T (op) for all op’s, for all (S,T)

Brute force All-paths EM (infeasible)

Brute force All-paths EM (infeasible)

a

a b

b b

a

c

b

b

b

aa

σi)P(A =Σ σ 1

σ i

σ n

= occ. of (a,.)

(a,.)

b
b

b
a

aa

a b

b b

a

Θ

γS,T (op) =
∑

σ:S 7→T

[
P(σ)

ΘA
s (S,T)

× freq(op ∈ σ)]

Brute force All-paths EM (infeasible)

a

a b

b b

a

c

b

b

b

aa

σi)P(A =Σ σ 1

σ i

σ n

= occ. of (a,.)

(a,.)

b
b

b
a

aa

a b

b b

a

Θ

γS,T (op) =
∑

σ:S 7→T

[
P(σ)

ΘA
s (S,T)

× freq(op ∈ σ)]

◮ infeasible

for HMMs and stochastic string distance the key to making feasible algorithm
is to split the expectations γ(S,T) into position specific version γ(S,T)[i , j]

for HMMs and stochastic string distance the key to making feasible algorithm
is to split the expectations γ(S,T) into position specific version γ(S,T)[i , j]

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

for HMMs and stochastic string distance the key to making feasible algorithm
is to split the expectations γ(S,T) into position specific version γ(S,T)[i , j]

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

γ(S,T)[4][4](m,m′), the expectation for a swap (m,m′) at (4, 4) has the
semantics

γ(S,T)[4, 4](m,m′) =
∑

σ∈E(S,T),(m4,m
′

4)∈σ

[
p(σ)

ΘA
s (S,T)

]

=
1

ΘA
s (S, T)

×
∑

σ∈E(S,T),(m4,m
′

4)∈σ

[p(σ)]

in words,

the sum over the conditional probabilities of any script σ containing
a m4,m′

4 substitution, given that it is a script between S and T

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Efficient calculation of γ(S,T)[i][j](op) ?

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

So how to efficiently calculate:

1

ΘA
s (S,T)

×
∑

σ∈E(S,T),(m4,m
′

4)∈σ

[p(σ)]

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Efficient calculation of γ(S,T)[i][j](op) ?

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

(i)

(ii)

(iii)

Boyer et al (2007) suggest the fectorisation

∑

e1∈E([·1],[·2(·1)])

[p(e1)]×
∑

e2∈E([·2·3],[·3])

[p(e2)]×p(m,m′)×
∑

e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)]

but we can show that this is not a sound factorisation

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Unsoundness

∑

σ∈E(S,T),(m4,m
′

4)

p(σ)

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Unsoundness

∑

σ∈E(S,T),(m4,m
′

4)

p(σ) means sum p(σ) for scripts which represent a
mapping containing (m4,m′

4)

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Unsoundness

∑

σ∈E(S,T),(m4,m
′

4)

p(σ) means sum p(σ) for scripts which represent a
mapping containing (m4,m′

4)

⇒ if an ancestor of m4 is in the mapping (ie. not deleted)
then its image under the mapping must be an ancestor of m′

4 also

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Unsoundness

∑

σ∈E(S,T),(m4,m
′

4)

p(σ) means sum p(σ) for scripts which represent a
mapping containing (m4,m′

4)

⇒ if an ancestor of m4 is in the mapping (ie. not deleted)
then its image under the mapping must be an ancestor of m′

4 also

so ·6 of S being mapped to ·7 of T is consistent with (m4,m′

4)

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Unsoundness

∑

σ∈E(S,T),(m4,m
′

4)

p(σ) means sum p(σ) for scripts which represent a
mapping containing (m4,m′

4)

⇒ if an ancestor of m4 is in the mapping (ie. not deleted)
then its image under the mapping must be an ancestor of m′

4 also

but ·6 of S being mapped to ·6 of T is not consistent with (m4,m′

4)

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

(i)

(ii)

(iii)

so the problem with the factorisation
∑

e1∈E([·1],[·2(·1)])

[p(e1)]×
∑

e2∈E([·2·3],[·3])

[p(e2)]× p(m,m′)×
∑

e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)]

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

(i)

(ii)

(iii)

so the problem with the factorisation
∑

e1∈E([·1],[·2(·1)])

[p(e1)]×
∑

e2∈E([·2·3],[·3])

[p(e2)]× p(m,m′)×
∑

e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)]

is the third term sums both things consistent and inconsistent with (m4,m′

4)

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

(i)

(ii)

(iii)

so the problem with the factorisation
∑

e1∈E([·1],[·2(·1)])

[p(e1)]×
∑

e2∈E([·2·3],[·3])

[p(e2)]× p(m,m′)×
∑

e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)]

is the third term sums both things consistent and inconsistent with (m4,m′

4)

∑
e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)] =

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

(i)

(ii)

(iii)

so the problem with the factorisation
∑

e1∈E([·1],[·2(·1)])

[p(e1)]×
∑

e2∈E([·2·3],[·3])

[p(e2)]× p(m,m′)×
∑

e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)]

is the third term sums both things consistent and inconsistent with (m4,m′

4)

∑
e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)] =

7

6

5

6

5 +

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

(i)

(ii)

(iii)

so the problem with the factorisation
∑

e1∈E([·1],[·2(·1)])

[p(e1)]×
∑

e2∈E([·2·3],[·3])

[p(e2)]× p(m,m′)×
∑

e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)]

is the third term sums both things consistent and inconsistent with (m4,m′

4)

∑
e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)] =

7

6

5

6

5 +

6

5

7

6

5

+ . . .

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

For general trees, a feasible equivalent to the brute-force EMbf
A remains an

unsolved problem.

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

Viterbi EM

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM

Experiments
Expermiment One
Experiment Two

Conclusions

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

Viterbi EM

Let the Viterbi EM algorithm EMV , be iterations of pair of steps

(Exp)V generate a virtual corpus of scripts by treating each
training pair (S,T) as standing for the best edit-script
σ, which can relate S to T , weighting it by its conditional
probability P(σ)/ΘA

s (S,T), under current costs C

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

Viterbi EM

Let the Viterbi EM algorithm EMV , be iterations of pair of steps

(Exp)V generate a virtual corpus of scripts by treating each
training pair (S,T) as standing for the best edit-script
σ, which can relate S to T , weighting it by its conditional
probability P(σ)/ΘA

s (S,T), under current costs C

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

Where V is the best-script, the virtual count or expectation γS,T (op)
contributed by S, T for the operation op is defined by

γ(S,T)(op) =
ΘV

s (S,T)

ΘA
s (S,T)

× freq(op ∈ V)

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

Viterbi EM

Let the Viterbi EM algorithm EMV , be iterations of pair of steps

(Exp)V generate a virtual corpus of scripts by treating each
training pair (S,T) as standing for the best edit-script
σ, which can relate S to T , weighting it by its conditional
probability P(σ)/ΘA

s (S,T), under current costs C

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

Where V is the best-script, the virtual count or expectation γS,T (op)
contributed by S, T for the operation op is defined by

γ(S,T)(op) =
ΘV

s (S,T)

ΘA
s (S,T)

× freq(op ∈ V)

(Exp)V accumulates the γS,T (op) for all op’s, for all (S, T)

Viterbi approximation EMV (feasible)

All paths

a

a b

b b

a

c

b

b

b

aa

σi)P(A =Σ σ 1

σ i

σ n

= occ. of (a,.)

(a,.)

b
b

b
a

aa

a b

b b

a

Θ

γS,T (op) =
∑

σ:S 7→T

[
P(σ)

ΘA
s (S,T)

× freq(op ∈ σ)]

Viterbi approximation EMV (feasible)

Viterbi

a

a b

b b

a

c

b

b

b

aa

V)P(

i(a,.)

b
b

b
a

aa

a b

b b

a
V

V = = occ. of (a,.)

on best−path V

σi)P(A =ΣΘ Θ

γ(S,T)(op) =
ΘV

s (S,T)

ΘA
s (S,T)

× freq(op ∈ V)

On stochastic tree distances and their training via expectation-maximisation

Experiments

Data set: QuestionBank

On stochastic tree distances and their training via expectation-maximisation

Experiments

Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions
ENTY NUM LOCHUM 2755

On stochastic tree distances and their training via expectation-maximisation

Experiments

Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions
ENTY NUM LOCHUM 2755

Cat Example
NUM When was London ’s Docklands Light Railway constructed ?

(SBARQ (WHADVP (WRB When))(SQ (VBD was)(NP (NP (NNP London)(POS ’s))(NNPS Docklands)

(JJ Light)(NN Railway))(VP (VBN constructed)))(. ?))

LOC What country is the biggest producer of tungsten ?
(SBARQ (WHNP (WDT What)(NN country))(SQ (VBZ is)(NP (NP (DT the)(JJS biggest)(NN producer))

(PP (IN of)(NP (NN tungsten)))))(. ?))

HUM What is the name of the managing director of Apricot Computer ?
(WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN name))(PP (IN of)(NP (NP (DT the)(JJ managing)(NN director))

On stochastic tree distances and their training via expectation-maximisation

Experiments

Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions
ENTY NUM LOCHUM 2755

Cat Example
NUM When was London ’s Docklands Light Railway constructed ?

(SBARQ (WHADVP (WRB When))(SQ (VBD was)(NP (NP (NNP London)(POS ’s))(NNPS Docklands)

(JJ Light)(NN Railway))(VP (VBN constructed)))(. ?))

LOC What country is the biggest producer of tungsten ?
(SBARQ (WHNP (WDT What)(NN country))(SQ (VBZ is)(NP (NP (DT the)(JJS biggest)(NN producer))

(PP (IN of)(NP (NN tungsten)))))(. ?))

HUM What is the name of the managing director of Apricot Computer ?
(WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN name))(PP (IN of)(NP (NP (DT the)(JJ managing)(NN director))

Intuitiion: in scripts between between same-category neighbours should have
distinctive probs eg. . P(who/when) << P(state/country).

On stochastic tree distances and their training via expectation-maximisation

Experiments

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

On stochastic tree distances and their training via expectation-maximisation

Experiments

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

On stochastic tree distances and their training via expectation-maximisation

Experiments

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

cat(T) = VOTE({categories of k nearest neighbours of T })

◮ compare

On stochastic tree distances and their training via expectation-maximisation

Experiments

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

cat(T) = VOTE({categories of k nearest neighbours of T })

◮ compare

tree-distance with standard unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

cat(T) = VOTE({categories of k nearest neighbours of T })

◮ compare

tree-distance with standard unit costs

stochastic tree-distance with untrained costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

cat(T) = VOTE({categories of k nearest neighbours of T })

◮ compare

tree-distance with standard unit costs

stochastic tree-distance with untrained costs

stochastic tree distance with trained costs
training by EMV on same-category neighbours from the Example set

Experimental outcome (brief)

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs
untrained

Experimental outcome (brief)

◮ standard unit-costs
▽, max. 67.7%

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs
untrained

Experimental outcome (brief)

◮ standard unit-costs
▽, max. 67.7%

◮ initial stochastic costs
▽ max. 63.8%
worse than unit costs

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs
untrained

Experimental outcome (brief)

◮ standard unit-costs
▽, max. 67.7%

◮ initial stochastic costs
▽ max. 63.8%
worse than unit costs

◮ best EMV -adapted costs
◦, max. 72.5%
about 5% better than unit-costs
(▽, max. 67.7%)

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs
untrained

On stochastic tree distances and their training via expectation-maximisation

Experiments

Stochastic cost initialisation

EMV needs an initialisation of its parameters.

we used a basically uniform initialisation except

On stochastic tree distances and their training via expectation-maximisation

Experiments

Stochastic cost initialisation

EMV needs an initialisation of its parameters.

we used a basically uniform initialisation except

diagonal entries are d times more probable than non-diagonal.

On stochastic tree distances and their training via expectation-maximisation

Experiments

Stochastic cost initialisation

EMV needs an initialisation of its parameters.

we used a basically uniform initialisation except

diagonal entries are d times more probable than non-diagonal.

examples for d = 3, 10, 100, and 1000 are:

3 λ a b
λ 3.7 3.7 3.7
a 3.7 2.115 3.7
b 3.7 3.7 2.115

10 λ a b
λ 4.755 4.755 4.755
a 4.755 1.433 4.755
b 4.755 4.755 1.433

100 λ a b
λ 7.693 7.693 7.693
a 7.693 1.05 7.693
b 7.693 7.693 1.05

1000 λ a b
λ 10.97 10.97 10.97
a 10.97 1.005 10.97
b 10.97 10.97 1.005

NOTE: diagonal entries are not insignificant

On stochastic tree distances and their training via expectation-maximisation

Experiments

Smoothing

We used a smoothing option on a table C∆ derived by EMV , interpolating it
with the stochastic initialisation C∆

u(d) as follows:

On stochastic tree distances and their training via expectation-maximisation

Experiments

Smoothing

We used a smoothing option on a table C∆ derived by EMV , interpolating it
with the stochastic initialisation C∆

u(d) as follows:

2−C∆
λ[x][y] = λ(2−C∆

[x][y]) + (1 − λ)(2−C∆
u(d)[x][y])

with 0 ≤ λ ≤ 1

λ = 1 gives all the weight to the derived table

λ = 0 gives all the weight to the initial table

On stochastic tree distances and their training via expectation-maximisation

Experiments

Expermiment One

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM

Experiments
Expermiment One
Experiment Two

Conclusions

On stochastic tree distances and their training via expectation-maximisation

Experiments

Expermiment One

Experiment One

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

40
43

46
49

52
55

58
61

64
67

untrained stochasticuntrained stochastic
trained stochastic unsmoothed
trained stochastic smoothed
unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Expermiment One

Experiment One

◮ unit-costs (▽, max. 67.7%)
exceeds non-adapted C∆

u(3)
costs (◦, max. 63.8%)

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

40
43

46
49

52
55

58
61

64
67

untrained stochasticuntrained stochastic
trained stochastic unsmoothed
trained stochastic smoothed
unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Expermiment One

Experiment One

◮ unit-costs (▽, max. 67.7%)
exceeds non-adapted C∆

u(3)
costs (◦, max. 63.8%)

◮ unsmoothed EMV -adapted costs
(△,max. 53.2%) worse than
initial, stochastic costs (◦, max.
63.8%)

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

40
43

46
49

52
55

58
61

64
67

untrained stochasticuntrained stochastic
trained stochastic unsmoothed
trained stochastic smoothed
unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Expermiment One

Experiment One

◮ unit-costs (▽, max. 67.7%)
exceeds non-adapted C∆

u(3)
costs (◦, max. 63.8%)

◮ unsmoothed EMV -adapted costs
(△,max. 53.2%) worse than
initial, stochastic costs (◦, max.
63.8%)

◮ EMV -adapted costs on training
set gives 95% accuracy: ⇒ EMV

makes training pairs too probable,
and over-fits.

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

40
43

46
49

52
55

58
61

64
67

untrained stochasticuntrained stochastic
trained stochastic unsmoothed
trained stochastic smoothed
unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Expermiment One

Experiment One

◮ unit-costs (▽, max. 67.7%)
exceeds non-adapted C∆

u(3)
costs (◦, max. 63.8%)

◮ unsmoothed EMV -adapted costs
(△,max. 53.2%) worse than
initial, stochastic costs (◦, max.
63.8%)

◮ EMV -adapted costs on training
set gives 95% accuracy: ⇒ EMV

makes training pairs too probable,
and over-fits.

◮ smoothing adapted costs (+,max.
64.8%) improves over initial costs
(◦) but is still below unit costs (▽). k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

40
43

46
49

52
55

58
61

64
67

untrained stochasticuntrained stochastic
trained stochastic unsmoothed
trained stochastic smoothed
unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Expermiment One

Despite poor performace of the EMV -adapted costs, some of the adapted
costs seem intuitive. Here is a sample from top 1% of adapted swap costs,
which are plausibly discounted relative to others:

8.50 ? .
8.93 NNP NN
9.47 VBD VBZ
9.51 NNS NN
9.78 a the
11.03 was is
11.03 ’s is

12.31 The the
12.65 you I
13.60 can do
13.83 many much
13.92 city state
13.93 city country

On stochastic tree distances and their training via expectation-maximisation

Experiments

Experiment Two

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM

Experiments
Expermiment One
Experiment Two

Conclusions

On stochastic tree distances and their training via expectation-maximisation

Experiments

Experiment Two

◮ Recall: For the stochastic distance ∆V
s cost-table entries represent

probabilities via

2−C∆
(x,y) = p(x , y)

On stochastic tree distances and their training via expectation-maximisation

Experiments

Experiment Two

◮ Recall: For the stochastic distance ∆V
s cost-table entries represent

probabilities via

2−C∆
(x,y) = p(x , y)

◮ a single 0 entry in C∆implies infinite cost entries everywhere else.

On stochastic tree distances and their training via expectation-maximisation

Experiments

Experiment Two

◮ Recall: For the stochastic distance ∆V
s cost-table entries represent

probabilities via

2−C∆
(x,y) = p(x , y)

◮ a single 0 entry in C∆implies infinite cost entries everywhere else.
⇒ a stochastically valid cost table cannot have zero costs on the
diagonal

On stochastic tree distances and their training via expectation-maximisation

Experiments

Experiment Two

◮ Recall: For the stochastic distance ∆V
s cost-table entries represent

probabilities via

2−C∆
(x,y) = p(x , y)

◮ a single 0 entry in C∆implies infinite cost entries everywhere else.
⇒ a stochastically valid cost table cannot have zero costs on the
diagonal

◮ perhaps this impedes good categorisation; note also the unit-cost
setting, which is clearly ’uniform’ in a sense, out-performs the ’uniform’
stochastic initialisations

On stochastic tree distances and their training via expectation-maximisation

Experiments

Experiment Two

◮ Recall: For the stochastic distance ∆V
s cost-table entries represent

probabilities via

2−C∆
(x,y) = p(x , y)

◮ a single 0 entry in C∆implies infinite cost entries everywhere else.
⇒ a stochastically valid cost table cannot have zero costs on the
diagonal

◮ perhaps this impedes good categorisation; note also the unit-cost
setting, which is clearly ’uniform’ in a sense, out-performs the ’uniform’
stochastic initialisations

◮ suggests final step in which all the entries on the cost-table’s diagonal
are zeroed.

On stochastic tree distances and their training via expectation-maximisation

Experiments

Experiment Two

◮ Recall: For the stochastic distance ∆V
s cost-table entries represent

probabilities via

2−C∆
(x,y) = p(x , y)

◮ a single 0 entry in C∆implies infinite cost entries everywhere else.
⇒ a stochastically valid cost table cannot have zero costs on the
diagonal

◮ perhaps this impedes good categorisation; note also the unit-cost
setting, which is clearly ’uniform’ in a sense, out-performs the ’uniform’
stochastic initialisations

◮ suggests final step in which all the entries on the cost-table’s diagonal
are zeroed.

◮ Bilenko et al 2003 does essentially this in work on stochastic string
distance

On stochastic tree distances and their training via expectation-maximisation

Experiments

Experiment Two

Experiment Two

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Experiment Two

Experiment Two

◮ now with smoothing at varius
levels of interpolation
(λ ∈ {0.99, 0.9, 0.5, 0.1}) and
with the diagonal zeroed, the
EMV -adapted costs clearly
out-perform the unit-costs case
(▽).

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Experiment Two

Experiment Two

◮ now with smoothing at varius
levels of interpolation
(λ ∈ {0.99, 0.9, 0.5, 0.1}) and
with the diagonal zeroed, the
EMV -adapted costs clearly
out-perform the unit-costs case
(▽).

◮ the best result being 72.5%
(k = 20, λ = 0.99), as compared
to 67.5% for unit-costs (k = 20)

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs

On stochastic tree distances and their training via expectation-maximisation

Conclusions

Conclusions

On stochastic tree distances and their training via expectation-maximisation

Conclusions

Conclusions

◮ evidence to show that Viterbi EM cost-adaptation can increase the
performance of a tree-distance based classifier, and improve it to above
that attained in the unit-cost setting,

On stochastic tree distances and their training via expectation-maximisation

Conclusions

Conclusions

◮ evidence to show that Viterbi EM cost-adaptation can increase the
performance of a tree-distance based classifier, and improve it to above
that attained in the unit-cost setting,

◮ experiments on further data-sets is required: one possibility is the
NLP-related tasks of question-answering, where the need is to assess
pairs of sentences for their likelihood to be a question-answer pairs. A
training set of such pairs could also serve as potential input to the cost
adaptation algorithm.

	Outline
	Standard tree- and sequence-distances
	Stochastic tree- and sequence-distances
	EM for cost adaptation
	All-scripts EM
	Viterbi EM

	Experiments
	Expermiment One
	Experiment Two

	Conclusions

