On stochastic tree distances and their training via expectation-maximisation

On stochastic tree distances and their training via expectation-maximisation

Martin Emms

February 6, 2012

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation All-scripts EM Viterbi EM

Experiments Experiment One Experiment Two

Conclusions

・ロト・日本・日本・日本・日本

a partial mapping $\sigma : S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

Definition

(*Tree- or Tai-distance*) between S and T is the cost of the least-costly Tai mapping from S to T

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへ⊙

a partial mapping $\sigma : S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

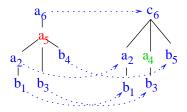
Definition

(Tree- or Tai-distance) between ${\cal S}$ and ${\cal T}$ is the cost of the least-costly Tai mapping from ${\cal S}$ to ${\cal T}$

イロト イロト イヨト イヨト

3

example Tai mapping σ :



a partial mapping $\sigma : S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

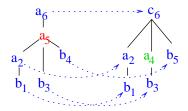
Definition

(*Tree- or Tai-distance*) between S and T is the cost of the least-costly Tai mapping from S to T

example Tai mapping σ :

Cost of a mapping given by cost of

イロト イロト イヨト イヨト

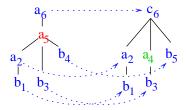


a partial mapping $\sigma : S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

Definition

(*Tree- or Tai-distance*) between ${\cal S}$ and ${\cal T}$ is the cost of **the least-costly Tai mapping** from ${\cal S}$ to ${\cal T}$

example Tai mapping σ :



Cost of a mapping given by cost of

<ロト (四) (正) (正)

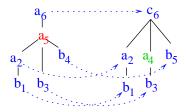
deletions eg. a5 has no image

a partial mapping $\sigma : S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

Definition

(*Tree- or Tai-distance*) between ${\cal S}$ and ${\cal T}$ is the cost of **the least-costly Tai mapping** from ${\cal S}$ to ${\cal T}$

example Tai mapping σ :



Cost of a mapping given by cost of

deletions eg. a5 has no image

insertions eg. a₄ has no source

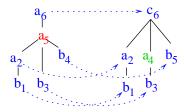
<ロト (四) (正) (正)

a partial mapping $\sigma: S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

Definition

(*Tree- or Tai-distance*) between S and T is the cost of the least-costly Tai mapping from S to T

example Tai mapping σ :

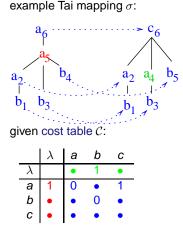


Cost of a mapping given by cost of deletions eg. a_5 has no image insertions eg. a_4 has no source match/swaps eg. a_6 goes to c_6

a partial mapping $\sigma : S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

Definition

(*Tree- or Tai-distance*) between ${\cal S}$ and ${\cal T}$ is the cost of **the least-costly Tai mapping** from ${\cal S}$ to ${\cal T}$



Cost of a mapping given by cost of deletions eg. a_5 has no image insertions eg. a_4 has no source match/swaps eg. a_6 goes to c_6

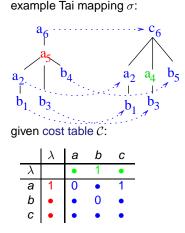
イロト イロト イヨト イヨト

æ

a partial mapping $\sigma: S \mapsto T$ is a Tai mapping iff σ respects left-to-right order and ancestry. Giving costs to mappings leads to

Definition

(*Tree- or Tai-distance*) between S and T is the cost of the least-costly Tai mapping from S to T



Cost of a mapping given by cost of deletions eg. a_5 has no image insertions eg. a_4 has no source match/swaps eg. a_6 goes to c_6

total cost of $\boldsymbol{\sigma}$ is sum on non-zero costs

 $\mathcal{C}[\lambda][a] + \mathcal{C}[a][\lambda] + \mathcal{C}[a][c] = 3$

this is also a least cost mapping for this table

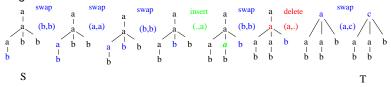
Script-based definition Tree Distance

 Can also consider sequence of 'edits' turning a source tree S into a target tree T

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Script-based definition Tree Distance

Can also consider sequence of 'edits' turning a source tree S into a target tree T

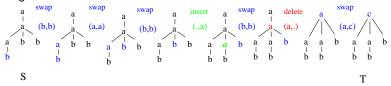


イロト イヨト イヨト イヨト

and seek to define distance via least-cost script

Script-based definition Tree Distance

Can also consider sequence of 'edits' turning a source tree S into a target tree T



and seek to define distance via least-cost script

 The mapping- and script-based definitions are known to be equivalent, with a script serving as a serialised representation of a mapping. (Tai 79, Kuboyama 07)

・ロト ・四ト ・ヨト ・ヨト

Stochastic string distances

 for the case of strings (linear trees), a stochastic variant was first proposed by Ristand and Yianilos (98)

Stochastic string distances

- for the case of strings (linear trees), a stochastic variant was first proposed by Ristand and Yianilos (98)
- where Σ is an alphabet, let *edit operation identifiers*, *EdOp*, be:

 $\textit{EdOp} = ((\Sigma \cup \{\lambda\}) \times (\Sigma \cup \{\lambda\})) \backslash \langle \lambda, \lambda \rangle$

and represent a script with $op_1 \dots op_n #$, with each $op_i \in EdOp$.

► assuming a prob distribution p on EdOp ∪ {#}, define a script probability as

$$P(e_1 \dots e_n) = \prod_i p(e_i)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Stochastic string distances

- for the case of strings (linear trees), a stochastic variant was first proposed by Ristand and Yianilos (98)
- where Σ is an alphabet, let *edit operation identifiers*, *EdOp*, be:

 $\textit{EdOp} = ((\Sigma \cup \{\lambda\}) \times (\Sigma \cup \{\lambda\})) \backslash \langle \lambda, \lambda \rangle$

and represent a script with $op_1 \dots op_n #$, with each $op_i \in EdOp$.

► assuming a prob distribution p on EdOp ∪ {#}, define a script probability as

$$P(e_1 \ldots e_n) = \prod_i p(e_i)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Can think of a script as *yielding* a pair of strings (s, t). If E(s, t) is all scripts which yield (s, t), they defined

all-paths stochastic edit distance:

the sum of the probabilities of all scripts $e \in E(s, t)$

viterbi stochastic edit distance:

prob. of the most probable $e \in E(s, t)$

Stochastic tree distances

this can be adapted to the case of trees (first proposed by Boyer et al 2007)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Stochastic tree distances

this can be adapted to the case of trees (first proposed by Boyer et al 2007)

Definition (All-scripts stochastic Tai similarity/distance)

The all-scripts stochastic Tai similarity, $\Theta_s^A(S, T)$, is the sum of the probabilities of all edit-scripts which represent a *Tai*-mapping from *S* to *T*. The all-scripts stochastic Tai distance, $\Delta_s^A(S, T)$, is its negated logarithm, ie.

 $2^{-\Delta_s^{\mathcal{A}}(S,T)} = \Theta_s^{\mathcal{A}}(S,T)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへ⊙

Stochastic tree distances

this can be adapted to the case of trees (first proposed by Boyer et al 2007)

Definition (All-scripts stochastic Tai similarity/distance)

The all-scripts stochastic Tai similarity, $\Theta_s^A(S, T)$, is the sum of the probabilities of all edit-scripts which represent a *Tai*-mapping from *S* to *T*. The all-scripts stochastic Tai distance, $\Delta_s^A(S, T)$, is its negated logarithm, ie.

 $2^{-\Delta_s^{\mathcal{A}}(S,T)} = \Theta_s^{\mathcal{A}}(S,T)$

Definition (Viterbi-script stochastic Tai similarity/distance)

The Viterbi-script stochastic Tai similarity, $\Theta_s^V(S, T)$, is the probability of the most probable edit-script which represents a *Tai*-mapping from *S* to *T*. The Viterbi-script stochastic Tai distance, $\Delta_s^V(S, T)$, is its negated logarithm, ie.

 $2^{-\Delta_s^V(S,T)} = \Theta_s^V(S,T)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへ⊙

- ◆ □ ▶ → @ ▶ → 注 ▶ → 注 → のへで

a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

a possible use of a distance is k-NN classifier:

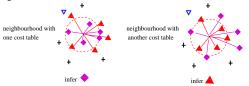
cat(S) = VOTE({categories of k nearest neighbours of S })

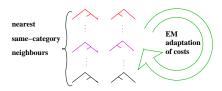
► change cost table ⇒ change nearest neighbours ⇒ change categorisation:

a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

► change cost table ⇒ change nearest neighbours ⇒ change categorisation:



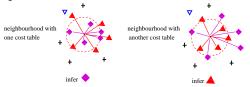


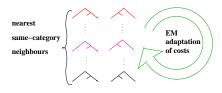
scripts between between samecategory neighbours should have distinctive probs

a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

► change cost table ⇒ change nearest neighbours ⇒ change categorisation:





scripts between between samecategory neighbours should have distinctive probs ⇒ perhaps can use Expectation-Maximisation techniques to adapt edit-probs from a corpus of same-category nearest neighbours On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation All-scripts EM Viterbi EM

Experiments Expermiment On Experiment Two

Conclusions

◆□ > ◆□ > ◆ □ > ◆ □ > ● ● ● ● ● ●

All-scripts EM

Brute force All-paths EM (infeasible)

Let the *brute-force all-scripts EM algorithm*, EM_{bf}^{A} , be iterations of pair of steps

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

All-scripts EM

Brute force All-paths EM (infeasible)

Let the *brute-force all-scripts EM algorithm*, EM_{bf}^{A} , be iterations of pair of steps

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

(Exp)_A generate a virtual corpus of scripts by treating each training pair (S, T) as standing for all the edit-scripts σ , which can relate S to T, weighting each by its conditional probability $P(\sigma/\Theta_s^A(S,T))$, under current probalities C^{Θ}

All-scripts EM

Brute force All-paths EM (infeasible)

Let the *brute-force all-scripts EM algorithm*, *EM*^A_{bf}, be iterations of pair of steps

- **(Exp)**_A generate a virtual corpus of scripts by treating each training pair (S, T) as standing for all the edit-scripts σ , which can relate S to T, weighting each by its conditional probability $P(\sigma/\Theta_s^A(S,T))$, under current probalities C^{Θ}
- (Max) apply maximum likelihood estimation to the virtual corpus to derive a new probability table.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

All-scripts EM

Brute force All-paths EM (infeasible)

Let the *brute-force all-scripts EM algorithm*, EM_{bf}^{A} , be iterations of pair of steps

- **(Exp)**_A generate a virtual corpus of scripts by treating each training pair (S, T) as standing for all the edit-scripts σ , which can relate S to T, weighting each by its conditional probability $P(\sigma/\Theta_s^A(S,T))$, under current probalities C^{Θ}
- (Max) apply maximum likelihood estimation to the virtual corpus to derive a new probability table.

A virtual count or expectation $\gamma_{S,T}(op)$ contributed by S, T for an operaton op can be defined by

$$\gamma_{\mathsf{S},\mathsf{T}}(op) = \sum_{\sigma:\mathsf{S}\mapsto\mathsf{T}} \left[\frac{\mathsf{P}(\sigma)}{\Theta_{\mathsf{s}}^{\mathsf{A}}(\mathsf{S},\mathsf{T})} \times \mathsf{freq}(op \in \sigma)\right]$$

All-scripts EM

Brute force All-paths EM (infeasible)

Let the *brute-force all-scripts EM algorithm*, EM_{bf}^{A} , be iterations of pair of steps

- **(Exp)**_A generate a virtual corpus of scripts by treating each training pair (S, T) as standing for all the edit-scripts σ , which can relate S to T, weighting each by its conditional probability $P(\sigma/\Theta_s^A(S,T))$, under current probalities C^{Θ}
- (Max) apply maximum likelihood estimation to the virtual corpus to derive a new probability table.

A virtual count or expectation $\gamma_{S,T}(op)$ contributed by S, T for an operaton op can be defined by

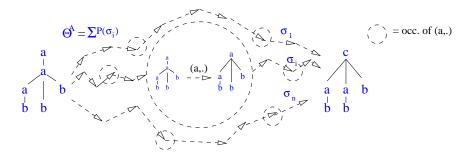
$$\gamma_{\mathsf{S},\mathsf{T}}(op) = \sum_{\sigma:\mathsf{S}\mapsto\mathsf{T}} \left[\frac{\mathsf{P}(\sigma)}{\Theta_s^{\mathsf{A}}(\mathsf{S},\mathsf{T})} \times \mathit{freq}(op \in \sigma)\right]$$

(Exp)_A accumulates the $\gamma_{S,T}(op)$ for all op's, for all (S,T)

Brute force All-paths EM (infeasible)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

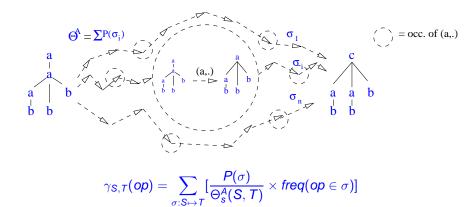
Brute force All-paths EM (infeasible)



$$\gamma_{S,T}(op) = \sum_{\sigma: S \mapsto T} [\frac{P(\sigma)}{\Theta_s^A(S,T)} \times freq(op \in \sigma)]$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Brute force All-paths EM (infeasible)



(日) (四) (三) (三) (三)

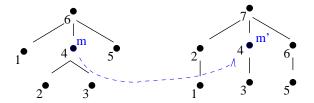
- 2

▶ infeasible

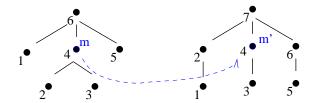
for HMMs and stochastic string distance the key to making feasible algorithm is to split the expectations $\gamma_{(S,T)}$ into position specific version $\gamma_{(S,T)}[i, j]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

for HMMs and stochastic string distance the key to making feasible algorithm is to split the expectations $\gamma_{(S,T)}$ into position specific version $\gamma_{(S,T)}[i, j]$



for HMMs and stochastic string distance the key to making feasible algorithm is to split the expectations $\gamma_{(S,T)}$ into position specific version $\gamma_{(S,T)}[i, j]$



 $\gamma_{(S,T)}[4][4](m,m')$, the expectation for a swap (m,m') at (4,4) has the semantics

$$\gamma_{(S,T)}[4,4](m,m') = \sum_{\sigma \in E(S,T), (m_4,m'_4) \in \sigma} [\frac{\rho(\sigma)}{\Theta_s^A(S,T)}]$$
$$= \frac{1}{\Theta_s^A(S,T)} \times \sum_{\sigma \in E(S,T), (m_4,m'_4) \in \sigma} [\rho(\sigma)]$$

in words,

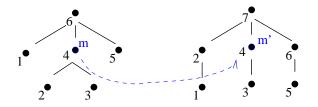
the sum over the conditional probabilities of any script σ containing a m_4 , m'_4 substitution, given that it is a script between *S* and *T*

《曰》 《聞》 《臣》 《臣》 三臣

-EM for cost adaptation

All-scripts EM

Efficient calculation of $\gamma_{(S,T)}[i][j](op)$?



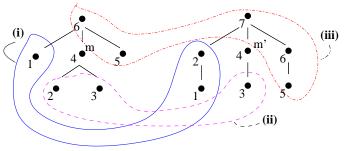
So how to efficiently calculate:

$$\frac{1}{\Theta_{s}^{A}(S,T)} \times \sum_{\sigma \in E(S,T), (m_{4},m_{4}') \in \sigma} [p(\sigma)]$$

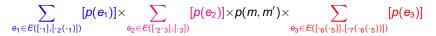
- EM for cost adaptation

All-scripts EM

Efficient calculation of $\gamma_{(S,T)}[i][j](op)$?



Boyer et al (2007) suggest the fectorisation



but we can show that this is not a sound factorisation

EM for cost adaptation

All-scripts EM

Unsoundness

 $\sum_{\sigma\in E(S,T),(m_4,m_4')}p(\sigma)$

EM for cost adaptation

All-scripts EM

Unsoundness

$$\sum_{\sigma \in E(S,T), (m_4, m_4')} p(\sigma)$$

means sum $p(\sigma)$ for scripts which represent a mapping containing (m_4, m'_4)

-EM for cost adaptation

All-scripts EM

Unsoundness

$$\sum_{\sigma \in E(S,T), (m_4, m'_4)} p(\sigma)$$

means sum $p(\sigma)$ for scripts which represent a mapping containing (m_4, m'_4)

 \Rightarrow if an ancestor of m_4 is in the mapping (ie. not deleted) then its image under the mapping must be an ancestor of m'_4 also -EM for cost adaptation

All-scripts EM

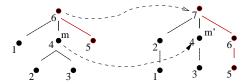
Unsoundness

 $\sum_{\sigma\in E(\mathfrak{S},T),(m_{4},m_{4}')}p(\sigma$

 $p(\sigma)$ means sum $p(\sigma)$ for scripts which represent a mapping containing (m_4, m'_4)

 \Rightarrow if an ancestor of m_4 is in the mapping (ie. not deleted) then its image under the mapping must be an ancestor of m'_4 also

so \cdot_6 of S being mapped to \cdot_7 of T is consistent with (m_4, m'_4)



-EM for cost adaptation

All-scripts EM

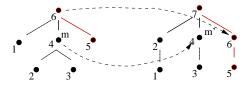
Unsoundness

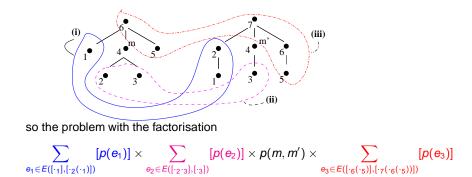
 $\sum_{\sigma \in E(S,T), (m_4,m_4')} p(\sigma$

 $p(\sigma)$ means sum $p(\sigma)$ for scripts which represent a mapping containing (m_4, m'_4)

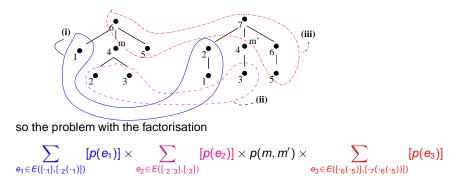
 \Rightarrow if an ancestor of m_4 is in the mapping (ie. not deleted) then its image under the mapping must be an ancestor of m'_4 also

but \cdot_6 of S being mapped to \cdot_6 of T is not consistent with (m_4, m'_4)

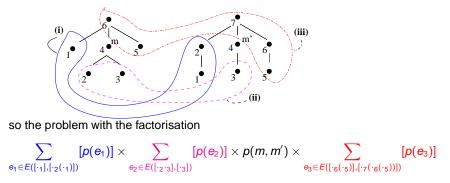




・ロト・日本・モート・モート しょうくの

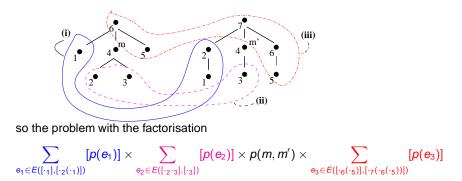


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへ⊙



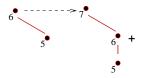
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへ⊙

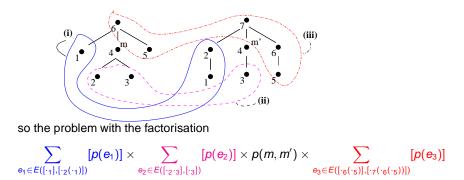
 $\sum_{e_3 \in E([\cdot_6(\cdot_5)], [\cdot_7(\cdot_6(\cdot_5))])} [p(e_3)] =$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへ⊙

 $\sum_{e_3 \in E([\cdot_6(\cdot_5)], [\cdot_7(\cdot_6(\cdot_5))])} [p(e_3)] =$





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへ⊙

 $\sum_{e_3 \in E([\cdot_6(\cdot_5)], [\cdot_7(\cdot_6(\cdot_5))])} [\rho(e_3)] =$

EM for cost adaptation

All-scripts EM

For general trees, a feasible equivalent to the brute-force EM_A^{bf} remains an unsolved problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

-EM for cost adaptation

Viterbi EM

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation

All-scripts EN Viterbi EM

Experiments

Experiment One Experiment Two

Conclusions

▲□▶▲@▶▲臣▶▲臣▶ 臣 のへで

Viterbi EM

Let the Viterbi EM algorithm EM^V , be iterations of pair of steps

(Exp)_V generate a virtual corpus of scripts by treating each training pair (S, T) as standing for the best edit-script σ , which can relate S to T, weighting it by its conditional probability $P(\sigma)/\Theta_s^A(S,T)$, under current costs C

EM for cost adaptation

Let *the Viterbi EM algorithm EM*^V, be iterations of pair of steps

- $(Exp)_V$ generate a virtual corpus of scripts by treating each training pair (S, T) as standing for the best edit-script σ , which can relate S to T, weighting it by its conditional probability $P(\sigma)/\Theta_s^A(S,T)$, under current costs C
- (Max) apply maximum likelihood estimation to the virtual corpus to derive a new probability table.

Where \mathcal{V} is the best-script, the virtual count or expectation $\gamma_{S,T}(op)$ contributed by S, T for the operation op is defined by

$$\gamma_{(\mathcal{S},\mathcal{T})}(\textit{op}) = rac{\Theta_s^V(\mathcal{S},\mathcal{T})}{\Theta_s^A(\mathcal{S},\mathcal{T})} imes \textit{freq}(\textit{op} \in \mathcal{V})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

EM for cost adaptation

Let *the Viterbi EM algorithm EM*^V, be iterations of pair of steps

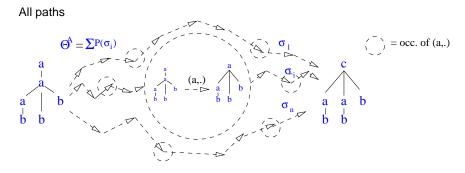
- $(Exp)_{V}$ generate a virtual corpus of scripts by treating each training pair (S, T) as standing for the best edit-script σ , which can relate S to T, weighting it by its conditional probability $P(\sigma)/\Theta_{s}^{A}(S,T)$, under current costs C
- (Max) apply maximum likelihood estimation to the virtual corpus to derive a new probability table.

Where \mathcal{V} is the best-script, the virtual count or expectation $\gamma_{S,T}(op)$ contributed by S, T for the operation op is defined by

$$\gamma_{(\mathcal{S},\mathcal{T})}(op) = \frac{\Theta_{s}^{\mathcal{V}}(\mathcal{S},\mathcal{T})}{\Theta_{s}^{\mathcal{A}}(\mathcal{S},\mathcal{T})} \times \textit{freq}(op \in \mathcal{V})$$

(Exp)_V accumulates the $\gamma_{S,T}(op)$ for all op's, for all (S, T)

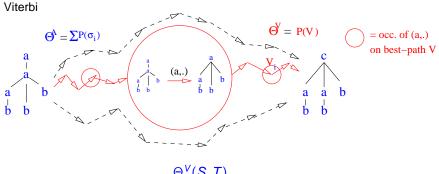
Viterbi approximation EM^V (feasible)



$$\gamma_{\mathcal{S},\mathcal{T}}(op) = \sum_{\sigma: \mathcal{S} \mapsto \mathcal{T}} [\frac{\mathcal{P}(\sigma)}{\Theta_{\mathcal{S}}^{\mathcal{A}}(\mathcal{S},\mathcal{T})} \times \textit{freq}(op \in \sigma)]$$

(ロト 4回ト 4回ト 4回ト 三回 - 釣Aの

Viterbi approximation EM^V (feasible)



 $\gamma_{(\mathcal{S},\mathcal{T})}(\textit{op}) = \frac{\Theta_{s}^{V}(\mathcal{S},\mathcal{T})}{\Theta_{s}^{A}(\mathcal{S},\mathcal{T})} \times \textit{freq}(\textit{op} \in \mathcal{V})$

<ロト <回ト < 臣ト < 臣ト

Data set: QuestionBank

Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions

Cat Example

NUM When was London 's Docklands Light Railway constructed ? (SBARQ (WHADVP (WRB When))(SQ (VBD was)(NP (NP [NNP London)(POS 's))(NNPS Docklands) (JJ Light)(NN Railway))(VP (VBN constructed)))(. ?)) LOC What country is the biggest producer of tungsten ? (SBARQ (WHNP (WDT What)(NN country))(SQ (VBZ is)(NP (NP (DT the)(JJS biggest)(NN producer)) (PP (IN of)(NP (NN tungsten))))). ?))

HUM What is the name of the managing director of Apricot Computer ? (WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN name))(PP (IN of)(NP (NP (DT the)(JJ managing)(NN director)))

Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions

Cat Example

NUM When was London 's Docklands Light Railway constructed ? (SBARQ (WHADVP (WRB When))(SQ (VBD was)(NP (NP (NNP London)(POS 's))(NNPS Docklands) (JJ Light)(NN Railway))(VP (VBN constructed)))(. ?)) LOC What country is the biggest producer of tungsten ? (SBARQ (WHNP (WDT What)(NN country))(SQ (VBZ is)(NP (NP (DT the)(JJS biggest)(NN producer)) (PP (IN of)(NP (NN tungsten))))). ?))

HUM What is the name of the managing director of Apricot Computer ? (WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN name))(PP (IN of)(NP (NP (DT the)(JJ managing)(NN director))

Intuitiion: in scripts between between same-category neighbours should have distinctive probs eg. P(who/when) << P(state/country).

k-NN categorisation

 experiments make 9:1 split into Examples vs Testing and evaluate a distance measure in k-NN classifier

k-NN categorisation

 experiments make 9:1 split into Examples vs Testing and evaluate a distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its k nearest neighbours in Examples

k-NN categorisation

 experiments make 9:1 split into Examples vs Testing and evaluate a distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its k nearest neighbours in Examples

cat(T) = VOTE({categories of k nearest neighbours of T })

compare

k-NN categorisation

 experiments make 9:1 split into Examples vs Testing and evaluate a distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its k nearest neighbours in Examples

cat(T) = VOTE({categories of k nearest neighbours of T })

compare

tree-distance with standard unit costs

k-NN categorisation

 experiments make 9:1 split into Examples vs Testing and evaluate a distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its k nearest neighbours in Examples

cat(T) = VOTE({categories of k nearest neighbours of T })

compare

tree-distance with standard unit costs

stochastic tree-distance with untrained costs

k-NN categorisation

 experiments make 9:1 split into Examples vs Testing and evaluate a distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its k nearest neighbours in Examples

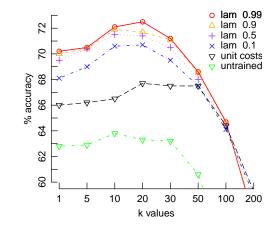
cat(T) = VOTE({categories of k nearest neighbours of T })

compare

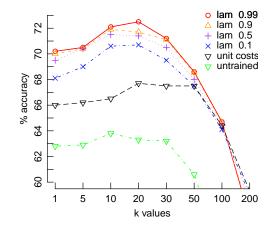
tree-distance with standard unit costs

stochastic tree-distance with untrained costs

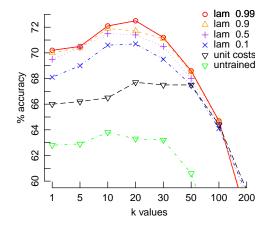
stochastic tree distance with trained costs training by EM^{V} on same-category neighbours from the Example set



◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

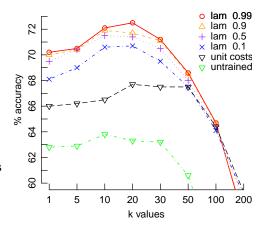


・ロト ・日下 ・ヨト



・ロト ・日下・ ・ ヨト・・

- best EM^V-adapted costs
 o, max. 72.5%
 about 5% better than unit-costs
 (▽, max. 67.7%)



・ロト ・日下・ ・ ヨト・・

Stochastic cost initialisation

 EM^{V} needs an initialisation of its parameters.

we used a basically uniform initialisation except

Stochastic cost initialisation

 EM^{\vee} needs an initialisation of its parameters.

we used a basically uniform initialisation except

diagonal entries are d times more probable than non-diagonal.

Stochastic cost initialisation

 EM^{\vee} needs an initialisation of its parameters.

we used a basically uniform initialisation except

diagonal entries are d times more probable than non-diagonal.

examples for *d* = 3, 10, 100, and 1000 are:

3)	\ a	b		10	λ		а	b
λ 3	8.7 3.7	3.7		λ				4.755
a 3.7 2.115 3.7			а	4.755 1.433 4.755				
b 3	8.7 3.7	2.115		b	4	.755	4.755	1.433
400					- I			
100	λ a	a b		100	0	λ	а	b
	λ at 7.693 7		93	$\frac{100}{\lambda}$	0	$\frac{\lambda}{10.9}$		<i>b</i> 97 10.97
	7.693 7				0		97 10.9	

NOTE: diagonal entries are not insignificant

Smoothing

We used a *smoothing* option on a table C^{Δ} derived by EM^{V} , interpolating it with the stochastic initialisation $C^{\Delta}_{u}(d)$ as follows:

Smoothing

We used a *smoothing* option on a table C^{Δ} derived by EM^{V} , interpolating it with the stochastic initialisation $C^{\Delta}_{u}(d)$ as follows:

$$2^{-C^{\Delta}_{\lambda}[x][y]} = \lambda(2^{-C^{\Delta}[x][y]}) + (1-\lambda)(2^{-C^{\Delta}_{u}(d)[x][y]})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

with $0 \le \lambda \le 1$

- $\lambda = 1$ gives all the weight to the derived table
- $\lambda = 0$ gives all the weight to the initial table

Experiments

Expermiment One

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation All-scripts EM Viterbi EM

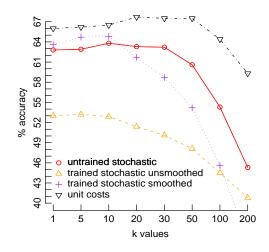
Experiments Experiment One Experiment Two

Conclusions

Experiments

Expermiment One

Experiment One



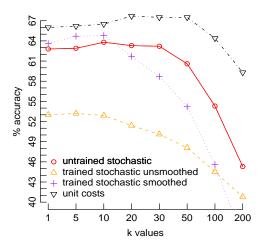
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Experiments

Expermiment One

Experiment One

unit-costs (∇, max. 67.7%) exceeds non-adapted C^Δ_u(3) costs (○, max. 63.8%)

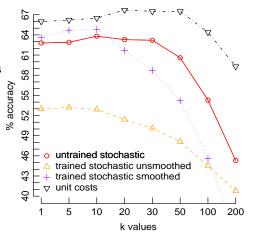


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

-Expermiment One

Experiment One

- unit-costs (▽, max. 67.7%) exceeds non-adapted C[∆]_u(3) costs (○, max. 63.8%)
- ► unsmoothed EM^V-adapted costs (△,max. 53.2%) worse than initial, stochastic costs (○, max. 63.8%)

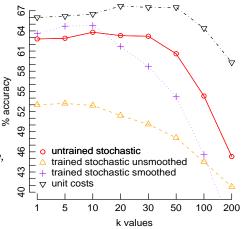


• □ > • (□) • • □ > • □ >

-Expermiment One

Experiment One

- ► unit-costs (∇, max. 67.7%) exceeds non-adapted C^Δ_u(3) costs (○, max. 63.8%)
- ► unsmoothed EM^V-adapted costs (△,max. 53.2%) worse than initial, stochastic costs (○, max. 63.8%)
- ► EM^V-adapted costs on training set gives 95% accuracy: ⇒ EM^V makes training pairs too probable, and over-fits.

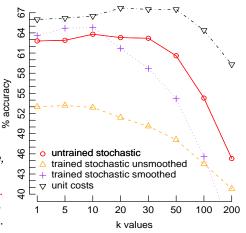


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

-Expermiment One

Experiment One

- unit-costs (∇, max. 67.7%) exceeds non-adapted C^Δ_u(3) costs (○, max. 63.8%)
- ► unsmoothed EM^V-adapted costs (△,max. 53.2%) worse than initial, stochastic costs (○, max. 63.8%)
- EM^V-adapted costs on training set gives 95% accuracy: ⇒ EM^V makes training pairs too probable, and over-fits.
- smoothing adapted costs (+,max. 64.8%) improves over initial costs
 (o) but is still below unit costs (\(\nabla\)).



Expermiment One

Despite poor performace of the EM^{V} -adapted costs, some of the adapted costs seem intuitive. Here is a sample from top 1% of adapted swap costs, which are plausibly discounted relative to others:

8.50	?		12.31	The	the
8.93	NNP	NN	12.65	you	I
9.47	VBD	VBZ	13.60	can	do
9.51	NNS	NN	13.83	many	much
9.78	а	the	13.92	city	state
11.03	was	is	13.93	city	country
11.03	's	is			

Experiments

Experiment Two

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation All-scripts EM Viterbi EM

Experiments Experiment One Experiment Two

Conclusions

 Recall: For the stochastic distance Δ^V_s cost-table entries represent probabilities via

$$2^{-C^{\Delta}(x,y)} = \rho(x,y)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Experiment Two

 Recall: For the stochastic distance Δ^V_s cost-table entries represent probabilities via

$$2^{-C^{\Delta}(x,y)} = p(x,y)$$

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

• a single 0 entry in C^{Δ} implies *infinite* cost entries everywhere else.

 Recall: For the stochastic distance Δ^V_s cost-table entries represent probabilities via

$$2^{-C^{\Delta}(x,y)} = p(x,y)$$

► a single 0 entry in C^Δimplies infinite cost entries everywhere else. ⇒ a stochastically valid cost table cannot have zero costs on the diagonal

-Experiment Two

 Recall: For the stochastic distance Δ^V_s cost-table entries represent probabilities via

$$2^{-C^{\Delta}(x,y)} = p(x,y)$$

- ► a single 0 entry in C^Δimplies *infinite* cost entries everywhere else. ⇒ a stochastically valid cost table cannot have zero costs on the diagonal
- perhaps this impedes good categorisation; note also the unit-cost setting, which is clearly 'uniform' in a sense, out-performs the 'uniform' stochastic initialisations

-Experiment Two

 Recall: For the stochastic distance Δ^V_s cost-table entries represent probabilities via

$$2^{-C^{\Delta}(x,y)} = p(x,y)$$

- ► a single 0 entry in C^Δimplies *infinite* cost entries everywhere else. ⇒ a stochastically valid cost table cannot have zero costs on the diagonal
- perhaps this impedes good categorisation; note also the unit-cost setting, which is clearly 'uniform' in a sense, out-performs the 'uniform' stochastic initialisations
- suggests final step in which all the entries on the cost-table's diagonal are zeroed.

-Experiment Two

 Recall: For the stochastic distance Δ^V_s cost-table entries represent probabilities via

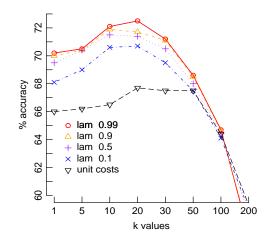
$$2^{-C^{\Delta}(x,y)} = p(x,y)$$

- a single 0 entry in C[∆]implies *infinite* cost entries everywhere else.
 ⇒ a stochastically valid cost table cannot have zero costs on the diagonal
- perhaps this impedes good categorisation; note also the unit-cost setting, which is clearly 'uniform' in a sense, out-performs the 'uniform' stochastic initialisations
- suggests final step in which all the entries on the cost-table's diagonal are zeroed.
- Bilenko et al 2003 does essentially this in work on stochastic string distance

Experiments

Experiment Two

Experiment Two



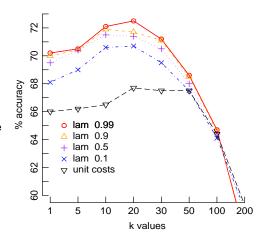
◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Experiments

Experiment Two

Experiment Two

▶ now with smoothing at varius levels of interpolation $(\lambda \in \{0.99, 0.9, 0.5, 0.1\})$ and with the diagonal zeroed, the EM^{V} -adapted costs clearly out-perform the unit-costs case (∇) .



・ロット (雪) (日) (日)

ъ

Experiments

-Experiment Two

Experiment Two

- ▶ now with smoothing at varius levels of interpolation $(\lambda \in \{0.99, 0.9, 0.5, 0.1\})$ and with the diagonal zeroed, the EM^{V} -adapted costs clearly out-perform the unit-costs case (∇) .
- the best result being 72.5%
 (k = 20, λ = 0.99), as compared to 67.5% for unit-costs (k = 20)



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ���

▲口>▲□>▲目>▲目> 目 ろんの

Conclusions

Conclusions

- Conclusions

Conclusions

 evidence to show that Viterbi EM cost-adaptation can increase the performance of a tree-distance based classifier, and improve it to above that attained in the unit-cost setting,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Conclusions

Conclusions

- evidence to show that Viterbi EM cost-adaptation can increase the performance of a tree-distance based classifier, and improve it to above that attained in the unit-cost setting,
- experiments on further data-sets is required: one possibility is the NLP-related tasks of question-answering, where the need is to assess pairs of sentences for their likelihood to be a question-answer pairs. A training set of such pairs could also serve as potential input to the cost adaptation algorithm.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@