
On stochastic tree distances and their training via expectation-maximisation

On stochastic tree distances and their training via
expectation-maximisation

Martin Emms

April 2, 2012

On stochastic tree distances and their training via expectation-maximisation

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM

Experiments
Synthetic Data
Real Data
Further details: Experiment One
Further details: Experiment Two

Conclusions

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Simple edit distance

Consider transforming a sequence S into T , S ⇒ T

At any given moment an initial portion of S has been transformed into an
initial portion of T , S[0..(i − 1)] ⇒ T [0..(j − 1)].

Suppose the process is allowed to continue in one of 4 ways

◮ delete

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Simple edit distance

Consider transforming a sequence S into T , S ⇒ T

At any given moment an initial portion of S has been transformed into an
initial portion of T , S[0..(i − 1)] ⇒ T [0..(j − 1)].

Suppose the process is allowed to continue in one of 4 ways

◮ delete the next symbol of S; denote this operation with (S[i], λ), where
S[i] is the next symbol of S

◮ insert

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Simple edit distance

Consider transforming a sequence S into T , S ⇒ T

At any given moment an initial portion of S has been transformed into an
initial portion of T , S[0..(i − 1)] ⇒ T [0..(j − 1)].

Suppose the process is allowed to continue in one of 4 ways

◮ delete the next symbol of S; denote this operation with (S[i], λ), where
S[i] is the next symbol of S

◮ insert the next ungenerated symbol of T ; denote this operation with
(λ,T [j]), where T [j] is the next symbol of T

◮ swap

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Simple edit distance

Consider transforming a sequence S into T , S ⇒ T

At any given moment an initial portion of S has been transformed into an
initial portion of T , S[0..(i − 1)] ⇒ T [0..(j − 1)].

Suppose the process is allowed to continue in one of 4 ways

◮ delete the next symbol of S; denote this operation with (S[i], λ), where
S[i] is the next symbol of S

◮ insert the next ungenerated symbol of T ; denote this operation with
(λ,T [j]), where T [j] is the next symbol of T

◮ swap the next symbol of S for the next ungenerated symbol T , if these
are different; denote this operation with (S[i], T [j]), where S[i] is the next
symbol of S, and T [j] is the next symbol of T

◮ match

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Simple edit distance

Consider transforming a sequence S into T , S ⇒ T

At any given moment an initial portion of S has been transformed into an
initial portion of T , S[0..(i − 1)] ⇒ T [0..(j − 1)].

Suppose the process is allowed to continue in one of 4 ways

◮ delete the next symbol of S; denote this operation with (S[i], λ), where
S[i] is the next symbol of S

◮ insert the next ungenerated symbol of T ; denote this operation with
(λ,T [j]), where T [j] is the next symbol of T

◮ swap the next symbol of S for the next ungenerated symbol T , if these
are different; denote this operation with (S[i], T [j]), where S[i] is the next
symbol of S, and T [j] is the next symbol of T

◮ match just skip past the next symbol of S as it is the same as the next
ungenerated symbol of T ; denote this also with (S[i], T [j])

Call the sequence of ops edit-script between S and T .

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

s
o
l
d

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

s
o
l
d

o
l
d

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

s
o
l
d

o
l
d

e
l
d

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

s
o
l
d

o
l
d

e
l
d

e
l
d

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

s
o
l
d

o
l
d

e
l
d

e
l
d

e
l
d

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

s
o
l
d

o
l
d

e
l
d

e
l
d

e
l
d

e
l
d
e

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

s
o
l
d

o
l
d

e
l
d

e
l
d

e
l
d

e
l
d
e

e
l
d
e
r

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

s
o
l
d

o
l
d

e
l
d

e
l
d

e
l
d

e
l
d
e

e
l
d
e
r

(λ, e)
(λ, l)
(s, d)
(o, e)
(l , λ)
(d , r)

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

d

l

d

e

l

s

o

e

r

(λ, e)
(λ, l)
(s, d)
(o, e)
(l , λ)
(d , r)

d

l

d

e

l

s

o

e

r

each script corresponds to an order preserving, partial mapping, and
vice-versa

Costs for scripts or mappings

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

d

l

d

e

l

s

o

e

r

a cost table defines label-dependent costs

Costs for scripts or mappings

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

d

l

d

e

l

s

o

e

r

a cost table defines label-dependent costs

for example with
table

a

λ
λ

0

z 0

1

1

1 1
1

1

a z

Costs for scripts or mappings

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

d

l

d

e

l

s

o

e

r

a cost table defines label-dependent costs

for example with
table

a

λ
λ

0

z 0

1

1

1 1
1

1

a z

total cost of script or mapping is 4

Costs for scripts or mappings

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

d

l

d

e

l

s

o

e

r

a cost table defines label-dependent costs

for example with
table

a

λ
λ

0

z 0

1

1

1 1
1

1

a z

total cost of script or mapping is 4
this is also a least cost mapping/script for this
table

Costs for scripts or mappings

(s, λ)
(o, e)
(l , l)
(d , d)
(λ, e)
(λ, r)

d

l

d

e

l

s

o

e

r

a cost table defines label-dependent costs

for example with
table

a

λ
λ

0

z 0

1

1

1 1
1

1

a z

total cost of script or mapping is 4
this is also a least cost mapping/script for this
table

Definition

(Sequence-distance) between S and T is the
cost of the least-costly mapping/scirpt
from S to T

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Tree edits

a trees S can be transformed into a tree T , by delete, insert, swap/match
operations

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Tree edits

a trees S can be transformed into a tree T , by delete, insert, swap/match
operations

delete

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Tree edits

a trees S can be transformed into a tree T , by delete, insert, swap/match
operations

delete

x

dtrs of x made dtrs of x ’s parent m

insert

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Tree edits

a trees S can be transformed into a tree T , by delete, insert, swap/match
operations

delete

x

dtrs of x made dtrs of x ’s parent m

insert

y

some dtrs of m made dtrs new
daughter y of m

swap/match

On stochastic tree distances and their training via expectation-maximisation

Standard tree- and sequence-distances

Tree edits

a trees S can be transformed into a tree T , by delete, insert, swap/match
operations

delete

x

dtrs of x made dtrs of x ’s parent m

insert

y

some dtrs of m made dtrs new
daughter y of m

swap/match

x y

node x turned to node y

Example

swap

(b,b)

a

a

ba b

b

a

a

ba

b

S

a

b

a

b

b

c

T

b

Example

swap

(a,a)

a

a

ba b

b

a

a

ba b

b

a

a

b

b

a b
a

b

a

b

b

c

S T

Example

swap

(b,b)

a

a

b

b

a b

a

a

ba b

b

a

b

a

b

b

c

T

a

a

ba b

b

a

a

ba b

b

S

Example

insert

(.,a)

a

a

ba b

b

a

a

ba b

b

a

a

b

b

a b

a

a

ba b

b

a

a b

bb

a

a

a

b

a

b

b

c

S T

Example

swapa

a

ba b

b

a

a

ba b

b

a

a

b

b

a b

a

a

ba b

b

a

a b

bb

a

a

a b

bb

a

a (b,b) a

a

b

a

b

b

c

S T

Example

deletea

a

ba b

b

a

a

ba b

a

a

b

b

a b

a

a

ba b

b

a

a b

bb

a

a

a b

bb

a

a a (a,.)

a

b

a

b

a

b a

b

a

b

b

c

S T

b

Example

swap swap swap insert swap delete swap

(b,b) (a,a) (b,b) (.,a)

a

a

ba b

b

a

a

ba b

b

a

a

b

b

a b

a

a

ba b

b

a

a b

bb

a

a

a b

bb

a

a (b,b) a (a,.) (a,c)

a

b

a

b

a

b a

b

a

b

b

c

S T

Example

swap swap swap insert swap delete swap

(b,b) (a,a) (b,b) (.,a)

a

a

ba b

b

a

a

ba b

b

a

a

b

b

a b

a

a

ba b

b

a

a b

bb

a

a

a b

bb

a

a (b,b) a (a,.) (a,c)

a

b

a

b

a

b a

b

a

b

b

c

S T

The script encodes a partial map-
ping σ : S 7→ T

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

it is a mapping which respects left-
to-right order and ancestry – call
such mappings Tai mappings

Example

swap swap swap insert swap delete swap

(b,b) (a,a) (b,b) (.,a)

a

a

ba b

b

a

a

ba b

b

a

a

b

b

a b

a

a

ba b

b

a

a b

bb

a

a

a b

bb

a

a (b,b) a (a,.) (a,c)

a

b

a

b

a

b a

b

a

b

b

c

S T

The script encodes a partial map-
ping σ : S 7→ T

b1 b3

b4

a5

a6

a2

b1

a2

b3

4a b5

c6

it is a mapping which respects left-
to-right order and ancestry – call
such mappings Tai mappings

costs can be assigned to scripts or
mappings

Definition

(Tree- or Tai-distance) between S
and T is the cost of the
least-costly Tai mapping (or
script) from S to T

Stochastic string distances

◮ for the case of strings (linear trees), a stochastic variant was first
proposed by Ristad and Yianilos (98)

Stochastic string distances

◮ for the case of strings (linear trees), a stochastic variant was first
proposed by Ristad and Yianilos (98)

◮ where Σ is an alphabet, let edit operation identifiers, EdOp, be:

EdOp = ((Σ ∪ {λ}) × (Σ ∪ {λ}))\〈λ, λ〉

and represent a script with op1 . . . opn#, with each opi ∈ EdOp.
◮ assuming a prob distribution p on EdOp ∪ {#}, define a script probability

as

P(e1 . . . en) =
∏

i

p(ei)

Stochastic string distances

◮ for the case of strings (linear trees), a stochastic variant was first
proposed by Ristad and Yianilos (98)

◮ where Σ is an alphabet, let edit operation identifiers, EdOp, be:

EdOp = ((Σ ∪ {λ}) × (Σ ∪ {λ}))\〈λ, λ〉

and represent a script with op1 . . . opn#, with each opi ∈ EdOp.
◮ assuming a prob distribution p on EdOp ∪ {#}, define a script probability

as

P(e1 . . . en) =
∏

i

p(ei)

◮ Can think of a script as yielding a pair of strings (s, t). If E(s, t) is all
scripts which yield (s, t), they defined

all-paths stochastic edit distance:
the sum of the probabilities of all scripts e ∈ E(s, t)

viterbi stochastic edit distance:
prob. of the most probable e ∈ E(s, t)

Stochastic tree distances

this can be adapted to the case of trees (first proposed by Boyer et al 2007)

Stochastic tree distances

this can be adapted to the case of trees (first proposed by Boyer et al 2007)

Definition (All-scripts stochastic Tai similarity/distance)

The all-scripts stochastic Tai similarity, ΘA
s (S, T), is the sum of the

probabilities of all edit-scripts which represent a Tai-mapping from S to T .
The all-scripts stochastic Tai distance, ∆A

s (S,T), is its negated logarithm, ie.

2−∆A
s (S,T) = ΘA

s (S,T)

Stochastic tree distances

this can be adapted to the case of trees (first proposed by Boyer et al 2007)

Definition (All-scripts stochastic Tai similarity/distance)

The all-scripts stochastic Tai similarity, ΘA
s (S, T), is the sum of the

probabilities of all edit-scripts which represent a Tai-mapping from S to T .
The all-scripts stochastic Tai distance, ∆A

s (S,T), is its negated logarithm, ie.

2−∆A
s (S,T) = ΘA

s (S,T)

Definition (Viterbi-script stochastic Tai similarity/distance)

The Viterbi-script stochastic Tai similarity, ΘV
s (S,T), is the probability of the

most probable edit-script which represents a Tai-mapping from S to T . The
Viterbi-script stochastic Tai distance, ∆V

s (S, T), is its negated logarithm, ie.

2−∆V
s (S,T) = ΘV

s (S,T)

EM Cost adaptation

EM Cost adaptation

◮ a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

EM Cost adaptation

◮ a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

◮ change cost table ⇒ change nearest neighbours ⇒ change
categorisation:

��
��
��

��
��
�� ��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

���
���
���
���

���
���
���
���

infer infer

neighbourhood with

another cost table

neighbourhood with

one cost table

EM Cost adaptation

◮ a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

◮ change cost table ⇒ change nearest neighbours ⇒ change
categorisation:

��
��
��

��
��
�� ��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

���
���
���
���

���
���
���
���

infer infer

neighbourhood with

another cost table

neighbourhood with

one cost table

adaptation
EM

of costs

nearest

same−category

neighbours

scripts between between same-
category neighbours should have
distinctive probs

EM Cost adaptation

◮ a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

◮ change cost table ⇒ change nearest neighbours ⇒ change
categorisation:

��
��
��

��
��
�� ��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

���
���
���
���

���
���
���
���

infer infer

neighbourhood with

another cost table

neighbourhood with

one cost table

adaptation
EM

of costs

nearest

same−category

neighbours

scripts between between same-
category neighbours should have
distinctive probs ⇒ perhaps can
use Expectation-Maximisation tech-
niques to adapt edit-probs from a
corpus of same-category nearest
neighbours

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM

Experiments
Synthetic Data
Real Data
Further details: Experiment One
Further details: Experiment Two

Conclusions

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Brute force All-paths EM (infeasible)

Given a corpus of trainings pairs T P = . . . (S,T) . . ., let the brute-force
all-scripts EM algorithm, EMA

bf , be iterations of pair of steps

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Brute force All-paths EM (infeasible)

Given a corpus of trainings pairs T P = . . . (S,T) . . ., let the brute-force
all-scripts EM algorithm, EMA

bf , be iterations of pair of steps

(Exp)A generate a virtual corpus of scripts by treating each
training pair (S,T) as standing for all the edit-scripts
σ, which can relate S to T , weighting each by its condi-
tional probability P(σ/ΘA

s (S,T), under current probali-
ties CΘ

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Brute force All-paths EM (infeasible)

Given a corpus of trainings pairs T P = . . . (S,T) . . ., let the brute-force
all-scripts EM algorithm, EMA

bf , be iterations of pair of steps

(Exp)A generate a virtual corpus of scripts by treating each
training pair (S,T) as standing for all the edit-scripts
σ, which can relate S to T , weighting each by its condi-
tional probability P(σ/ΘA

s (S,T), under current probali-
ties CΘ

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Brute force All-paths EM (infeasible)

Given a corpus of trainings pairs T P = . . . (S,T) . . ., let the brute-force
all-scripts EM algorithm, EMA

bf , be iterations of pair of steps

(Exp)A generate a virtual corpus of scripts by treating each
training pair (S,T) as standing for all the edit-scripts
σ, which can relate S to T , weighting each by its condi-
tional probability P(σ/ΘA

s (S,T), under current probali-
ties CΘ

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

A virtual count or expectation γS,T (op) contributed by S,T for an operaton op
can be defined by

γS,T (op) =
∑

σ:S 7→T

[
P(σ)

ΘA
s (S, T)

× freq(op ∈ σ)]

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Brute force All-paths EM (infeasible)

Given a corpus of trainings pairs T P = . . . (S,T) . . ., let the brute-force
all-scripts EM algorithm, EMA

bf , be iterations of pair of steps

(Exp)A generate a virtual corpus of scripts by treating each
training pair (S,T) as standing for all the edit-scripts
σ, which can relate S to T , weighting each by its condi-
tional probability P(σ/ΘA

s (S,T), under current probali-
ties CΘ

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

A virtual count or expectation γS,T (op) contributed by S,T for an operaton op
can be defined by

γS,T (op) =
∑

σ:S 7→T

[
P(σ)

ΘA
s (S, T)

× freq(op ∈ σ)]

(Exp)A accumulates the γS,T (op) for all op’s, for all (S,T)

Brute force All-paths EM (infeasible)

Brute force All-paths EM (infeasible)

a

a b

b b

a

c

b

b

b

aa

σi)P(A =Σ σ 1

σ i

σ n

= occ. of (a,.)

(a,.)

b
b

b
a

aa

a b

b b

a

Θ

γS,T (op) =
∑

σ:S 7→T

[
P(σ)

ΘA
s (S,T)

× freq(op ∈ σ)]

Brute force All-paths EM (infeasible)

a

a b

b b

a

c

b

b

b

aa

σi)P(A =Σ σ 1

σ i

σ n

= occ. of (a,.)

(a,.)

b
b

b
a

aa

a b

b b

a

Θ

γS,T (op) =
∑

σ:S 7→T

[
P(σ)

ΘA
s (S,T)

× freq(op ∈ σ)]

◮ infeasible

try to split exp. γ(S,T)(op) into position specific versions γ(S,T)[i , j](op) and
then sum

γ(S,T)(op) =
∑

i,j

γ(S,T)[i][j](op)

try to split exp. γ(S,T)(op) into position specific versions γ(S,T)[i , j](op) and
then sum

γ(S,T)(op) =
∑

i,j

γ(S,T)[i][j](op)

1 2 3 5 6

32 5

4
m

1 4
m’

6 7

Define (mi ,m′

j) ∈ σ, occurrence of posn-specific subst (m,m′) in σ as

(mi ,m′

j) ∈ σ if σ = pre ◦ (m,m′) ◦ suff
{

some pre ∈ E(S1:i−1,T1:j−1)
some suff ∈ E(Si+1:I ,Tj+1:J)

try to split exp. γ(S,T)(op) into position specific versions γ(S,T)[i , j](op) and
then sum

γ(S,T)(op) =
∑

i,j

γ(S,T)[i][j](op)

1 2 3 5 6

32 5

4
m

1 4
m’

6 7

Define (mi ,m′

j) ∈ σ, occurrence of posn-specific subst (m,m′) in σ as

(mi ,m′

j) ∈ σ if σ = pre ◦ (m,m′) ◦ suff
{

some pre ∈ E(S1:i−1,T1:j−1)
some suff ∈ E(Si+1:I ,Tj+1:J)

then define γ(S,T)[4][4](m, m′), the expectation for a swap (m,m′) at (4,4) as

try to split exp. γ(S,T)(op) into position specific versions γ(S,T)[i , j](op) and
then sum

γ(S,T)(op) =
∑

i,j

γ(S,T)[i][j](op)

1 2 3 5 6

32 5

4
m

1 4
m’

6 7

Define (mi ,m′

j) ∈ σ, occurrence of posn-specific subst (m,m′) in σ as

(mi ,m′

j) ∈ σ if σ = pre ◦ (m,m′) ◦ suff
{

some pre ∈ E(S1:i−1,T1:j−1)
some suff ∈ E(Si+1:I ,Tj+1:J)

then define γ(S,T)[4][4](m, m′), the expectation for a swap (m,m′) at (4,4) as

try to split exp. γ(S,T)(op) into position specific versions γ(S,T)[i , j](op) and
then sum

γ(S,T)(op) =
∑

i,j

γ(S,T)[i][j](op)

1 2 3 5 6

32 5

4
m

1 4
m’

6 7

Define (mi ,m′

j) ∈ σ, occurrence of posn-specific subst (m,m′) in σ as

(mi ,m′

j) ∈ σ if σ = pre ◦ (m,m′) ◦ suff
{

some pre ∈ E(S1:i−1,T1:j−1)
some suff ∈ E(Si+1:I ,Tj+1:J)

then define γ(S,T)[4][4](m, m′), the expectation for a swap (m,m′) at (4,4) as
in words,

the sum over the conditional probabilities of any script σ containing
a m4,m′

4 substitution, given that it is a script between S and T

try to split exp. γ(S,T)(op) into position specific versions γ(S,T)[i , j](op) and
then sum

γ(S,T)(op) =
∑

i,j

γ(S,T)[i][j](op)

1 2 3 5 6

32 5

4
m

1 4
m’

6 7

Define (mi ,m′

j) ∈ σ, occurrence of posn-specific subst (m,m′) in σ as

(mi ,m′

j) ∈ σ if σ = pre ◦ (m,m′) ◦ suff
{

some pre ∈ E(S1:i−1,T1:j−1)
some suff ∈ E(Si+1:I ,Tj+1:J)

then define γ(S,T)[4][4](m, m′), the expectation for a swap (m,m′) at (4,4) as

γ(S,T)[4, 4](m,m′) =
∑

σ∈E(S,T),(m4,m′

4)∈σ

[
p(σ)

ΘA
s (S,T)

]

=
1

ΘA
s (S,T)

×
∑

σ∈E(S,T),(m4,m′

4)∈σ

[p(σ)]

1 2 3 5 6

32 5

4
m

1 4
m’

6 7

? ?Σ
γ(S,T)[4, 4](m,m′) =

1

ΘA
s (S, T)

×
∑

σ∈E(S,T),(m4,m
′

4)∈σ

[p(σ)]

1 2 3 5 6

32 5

4
m

1 4
m’

6 7

? ?Σ
γ(S,T)[4, 4](m,m′) =

1

ΘA
s (S, T)

×
∑

σ∈E(S,T),(m4,m
′

4)∈σ

[p(σ)]

Ristad observes the sum can be factorised into a product of 3 terms

ΣΣ
4

m

4
m’

1 2 3

321

5 6

5 6 7

γ(S,T)[4, 4](m,m′) =
1

ΘA
s (S, T)

×
∑

σ∈E(S,T),(m4,m
′

4)∈σ

[p(σ)]

Ristad observes the sum can be factorised into a product of 3 terms

γ(S,T)[4, 4](m,m′) =
1

ΘA
s (S, T)

×

∑

pre∈E(S1:3,T1:3)

[p(pre)] [i]

× p(m,m′) [ii]
×

∑

suff∈E(S4:6,T4:7)

[p(suff)] [iii]

[i] values of the sum over p(pre) can efficiently tabulated – this is the
all-scripts algorithm

ΣΣ
4

m

4
m’

1 2 3

321

5 6

5 6 7

γ(S,T)[4, 4](m,m′) =
1

ΘA
s (S, T)

×
∑

σ∈E(S,T),(m4,m
′

4)∈σ

[p(σ)]

Ristad observes the sum can be factorised into a product of 3 terms

γ(S,T)[4, 4](m,m′) =
1

ΘA
s (S, T)

×

∑

pre∈E(S1:3,T1:3)

[p(pre)] [i]

× p(m,m′) [ii]
×

∑

suff∈E(S4:6,T4:7)

[p(suff)] [iii]

[i] values of the sum over p(pre) can efficiently tabulated – this is the
all-scripts algorithm
[iii] values of sum over p(suff) can be efficiently tabulated by an easily
formulated ’backwards’ variant.

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

All-paths EM for linear trees

procedure for determining expectations γS,T (m,m′) is then:

◮ compute table of ’forward’ probs: α[i][j] =
∑

pre∈E(S1:1−1,T1:j−1)

[p(pre)]

◮ compute table of ’backward’ probs: β[i][j] =
∑

suff∈E(Si+1:I,Tj+1:J)

[p(suff)]

◮ use to calculate pos.-dept exp:
γS,T (mi ,m′

j) = α[i − 1][j − 1]× p(mi ,m′, j)× β[i + 1, j + 1]

◮ use to calculate pos-indpt exp: γS,T (m,m′) =
∑

i,j

[γS,T [i][j](m, m′)]

first is essentially the algorithm proposed by Ristad and Yianilos (98)

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

All-paths EM for linear trees

procedure for determining expectations γS,T (m,m′) is then:

◮ compute table of ’forward’ probs: α[i][j] =
∑

pre∈E(S1:1−1,T1:j−1)

[p(pre)]

◮ compute table of ’backward’ probs: β[i][j] =
∑

suff∈E(Si+1:I,Tj+1:J)

[p(suff)]

◮ use to calculate pos.-dept exp:
γS,T (mi ,m′

j) = α[i − 1][j − 1]× p(mi ,m′, j)× β[i + 1, j + 1]

◮ use to calculate pos-indpt exp: γS,T (m,m′) =
∑

i,j

[γS,T [i][j](m, m′)]

first is essentially the algorithm proposed by Ristad and Yianilos (98)

this has seen widely used to train a string distance measure (ie. linear trees)
from a corpus of pairs

Position dept exp. for trees

lets try to apply similar reasoning to stochastic tree distance

Position dept exp. for trees

lets try to apply similar reasoning to stochastic tree distance

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

again define (mi ,m′

j) ∈ σ, occurrence of posn-specific subst (m,m′) in σ as

(mi ,m′

j) ∈ σ if σ = pre ◦ (m,m′) ◦ suff
{

some pre ∈ E(S1:i−1,T1:j−1)
some suff ∈ E(Si+1:I ,Tj+1:J)

Position dept exp. for trees

lets try to apply similar reasoning to stochastic tree distance

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

again define (mi ,m′

j) ∈ σ, occurrence of posn-specific subst (m,m′) in σ as

(mi ,m′

j) ∈ σ if σ = pre ◦ (m,m′) ◦ suff
{

some pre ∈ E(S1:i−1,T1:j−1)
some suff ∈ E(Si+1:I ,Tj+1:J)

and define γ(S,T)[4][4](m,m′), the expectation for a swap (m,m′) at (4,4) as

Position dept exp. for trees

lets try to apply similar reasoning to stochastic tree distance

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

again define (mi ,m′

j) ∈ σ, occurrence of posn-specific subst (m,m′) in σ as

(mi ,m′

j) ∈ σ if σ = pre ◦ (m,m′) ◦ suff
{

some pre ∈ E(S1:i−1,T1:j−1)
some suff ∈ E(Si+1:I ,Tj+1:J)

and define γ(S,T)[4][4](m,m′), the expectation for a swap (m,m′) at (4,4) as

Position dept exp. for trees

lets try to apply similar reasoning to stochastic tree distance

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

again define (mi ,m′

j) ∈ σ, occurrence of posn-specific subst (m,m′) in σ as

(mi ,m′

j) ∈ σ if σ = pre ◦ (m,m′) ◦ suff
{

some pre ∈ E(S1:i−1,T1:j−1)
some suff ∈ E(Si+1:I ,Tj+1:J)

and define γ(S,T)[4][4](m,m′), the expectation for a swap (m,m′) at (4,4) as
in words,

the sum over the conditional probabilities of any script σ containing
a m4,m′

4 substitution, given that it is a script between S and T

Position dept exp. for trees

lets try to apply similar reasoning to stochastic tree distance

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

again define (mi ,m′

j) ∈ σ, occurrence of posn-specific subst (m,m′) in σ as

(mi ,m′

j) ∈ σ if σ = pre ◦ (m,m′) ◦ suff
{

some pre ∈ E(S1:i−1,T1:j−1)
some suff ∈ E(Si+1:I ,Tj+1:J)

and define γ(S,T)[4][4](m,m′), the expectation for a swap (m,m′) at (4,4) as

γ(S,T)[4, 4](m,m′) =
∑

σ∈E(S,T),(m4,m
′

4)∈σ

[
p(σ)

ΘA
s (S,T)

]

=
1

ΘA
s (S, T)

×
∑

σ∈E(S,T),(m4,m
′

4)∈σ

[p(σ)]

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Efficient calculation of γ(S,T)[i][j](op) ?

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

So how to efficiently calculate:

1

ΘA
s (S,T)

×
∑

σ∈E(S,T),(m4,m
′

4)∈σ

[p(σ)]

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Efficient calculation of γ(S,T)[i][j](op) ?

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

(i)

(ii)

(iii)

Boyer et al (2007) suggest the fectorisation

∑

e1∈E([·1],[·2(·1)])

[p(e1)]×
∑

e2∈E([·2·3],[·3])

[p(e2)]×p(m,m′)×
∑

e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)]

but we can show that this is not a sound factorisation

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Unsoundness

∑

σ∈E(S,T),(m4,m
′

4)∈σ

p(σ)

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Unsoundness

∑

σ∈E(S,T),(m4,m
′

4)∈σ

p(σ) means sum p(σ) for scripts which represent a
mapping containing (m4,m′

4)

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Unsoundness

∑

σ∈E(S,T),(m4,m
′

4)∈σ

p(σ) means sum p(σ) for scripts which represent a
mapping containing (m4,m′

4)

⇒ if an ancestor of m4 is in the mapping (ie. not deleted)
then its image under the mapping must be an ancestor of m′

4 also

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Unsoundness

∑

σ∈E(S,T),(m4,m
′

4)∈σ

p(σ) means sum p(σ) for scripts which represent a
mapping containing (m4,m′

4)

⇒ if an ancestor of m4 is in the mapping (ie. not deleted)
then its image under the mapping must be an ancestor of m′

4 also

so ·6 of S being mapped to ·7 of T is consistent with (m4,m′

4)

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

Unsoundness

∑

σ∈E(S,T),(m4,m
′

4)∈σ

p(σ) means sum p(σ) for scripts which represent a
mapping containing (m4,m′

4)

⇒ if an ancestor of m4 is in the mapping (ie. not deleted)
then its image under the mapping must be an ancestor of m′

4 also

but ·6 of S being mapped to ·6 of T is not consistent with (m4,m′

4)

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

(i)

(ii)

(iii)

so the problem with the factorisation
∑

e1∈E([·1],[·2(·1)])

[p(e1)]×
∑

e2∈E([·2·3],[·3])

[p(e2)]× p(m,m′)×
∑

e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)]

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

(i)

(ii)

(iii)

so the problem with the factorisation
∑

e1∈E([·1],[·2(·1)])

[p(e1)]×
∑

e2∈E([·2·3],[·3])

[p(e2)]× p(m,m′)×
∑

e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)]

is the third term sums both things consistent and inconsistent with (m4,m′

4)

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

(i)

(ii)

(iii)

so the problem with the factorisation
∑

e1∈E([·1],[·2(·1)])

[p(e1)]×
∑

e2∈E([·2·3],[·3])

[p(e2)]× p(m,m′)×
∑

e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)]

is the third term sums both things consistent and inconsistent with (m4,m′

4)

∑

e3∈E([·6(·5)],[·7(·6(·5))])
[p(e3)] =

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

(i)

(ii)

(iii)

so the problem with the factorisation
∑

e1∈E([·1],[·2(·1)])

[p(e1)]×
∑

e2∈E([·2·3],[·3])

[p(e2)]× p(m,m′)×
∑

e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)]

is the third term sums both things consistent and inconsistent with (m4,m′

4)

∑

e3∈E([·6(·5)],[·7(·6(·5))])
[p(e3)] =

7

6

5

6

5 +

1

7

2 6

3 5

6

1 4 5

2 3

4
m m’

(i)

(ii)

(iii)

so the problem with the factorisation
∑

e1∈E([·1],[·2(·1)])

[p(e1)]×
∑

e2∈E([·2·3],[·3])

[p(e2)]× p(m,m′)×
∑

e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)]

is the third term sums both things consistent and inconsistent with (m4,m′

4)

∑

e3∈E([·6(·5)],[·7(·6(·5))])
[p(e3)] =

7

6

5

6

5 +

6

5

7

6

5

+ . . .

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

All-scripts EM

For general trees, a feasible equivalent to the brute-force EMbf
A remains an

unsolved problem.

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

Viterbi EM

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM

Experiments
Synthetic Data
Real Data
Further details: Experiment One
Further details: Experiment Two

Conclusions

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

Viterbi EM

Let the Viterbi EM algorithm EMV , be iterations of pair of steps

(Exp)V generate a virtual corpus of scripts by treating each
training pair (S,T) as standing for the best edit-script
σ, which can relate S to T , weighting it by its conditional
probability P(σ)/ΘA

s (S,T), under current costs C

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

Viterbi EM

Let the Viterbi EM algorithm EMV , be iterations of pair of steps

(Exp)V generate a virtual corpus of scripts by treating each
training pair (S,T) as standing for the best edit-script
σ, which can relate S to T , weighting it by its conditional
probability P(σ)/ΘA

s (S,T), under current costs C

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

Where V is the best-script, the virtual count or expectation γS,T (op)
contributed by S, T for the operation op is defined by

γ(S,T)(op) =
ΘV

s (S,T)

ΘA
s (S,T)

× freq(op ∈ V)

On stochastic tree distances and their training via expectation-maximisation

EM for cost adaptation

Viterbi EM

Let the Viterbi EM algorithm EMV , be iterations of pair of steps

(Exp)V generate a virtual corpus of scripts by treating each
training pair (S,T) as standing for the best edit-script
σ, which can relate S to T , weighting it by its conditional
probability P(σ)/ΘA

s (S,T), under current costs C

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

Where V is the best-script, the virtual count or expectation γS,T (op)
contributed by S, T for the operation op is defined by

γ(S,T)(op) =
ΘV

s (S,T)

ΘA
s (S,T)

× freq(op ∈ V)

(Exp)V accumulates the γS,T (op) for all op’s, for all (S, T)

Viterbi approximation EMV (feasible)

All paths

a

a b

b b

a

c

b

b

b

aa

σi)P(A =Σ σ 1

σ i

σ n

= occ. of (a,.)

(a,.)

b
b

b
a

aa

a b

b b

a

Θ

γS,T (op) =
∑

σ:S 7→T

[
P(σ)

ΘA
s (S,T)

× freq(op ∈ σ)]

Viterbi approximation EMV (feasible)

Viterbi

a

a b

b b

a

c

b

b

b

aa

V)P(

i(a,.)

b
b

b
a

aa

a b

b b

a
V

V = = occ. of (a,.)

on best−path V

σi)P(A =ΣΘ Θ

γ(S,T)(op) =
ΘV

s (S,T)

ΘA
s (S,T)

× freq(op ∈ V)

On stochastic tree distances and their training via expectation-maximisation

Experiments

Synthetic Data

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM

Experiments
Synthetic Data
Real Data
Further details: Experiment One
Further details: Experiment Two

Conclusions

On stochastic tree distances and their training via expectation-maximisation

Experiments

Synthetic Data

The methodology in outline is

1. choose a set of parameters C ie. probs for all ops

On stochastic tree distances and their training via expectation-maximisation

Experiments

Synthetic Data

The methodology in outline is

1. choose a set of parameters C ie. probs for all ops

2. derive a corpus of edit scripts in accordance with CΘ

On stochastic tree distances and their training via expectation-maximisation

Experiments

Synthetic Data

The methodology in outline is

1. choose a set of parameters C ie. probs for all ops

2. derive a corpus of edit scripts in accordance with CΘ

3. generate a corpus T P of tree pairs consistent with these edit scripts

4. apply learning algorithm to tree-pair corpus T P to learn parameters C′

and compare to see if C′ is close to original C.

On stochastic tree distances and their training via expectation-maximisation

Experiments

Synthetic Data

Choosing a set of (target) parameters

◮ label alphabet Σ = {A,B,C,D,E}

◮ define subst. prob to be:
max for letters one apart in ASCII code (eg A/B
falling as you get further from this (eg A/C < A/B)

p(x , y) α (|(|ASCII(x)− ASCII(y)| − 1)|)2

◮ del and ins uniform, and such that ins+del ist just more than the worst
swap

table (as neg. logs):

λ A B C D E
λ 6.907 6.907 6.907 6.907 6.907
A 6.907 4.907 3.907 4.907 7.907 12.91
B 6.907 3.907 4.907 3.907 4.907 7.907
C 6.907 4.907 3.907 4.907 3.907 4.907
D 6.907 7.907 4.907 3.907 4.907 3.907
E 6.907 12.91 7.907 4.907 3.907 4.907

The target parameters

plot of assumed subsitution probs (neg. logs)

letter substituted

−
lo

g(
P

 o
f s

ub
st

)

A B C D E

2
3

4
5

6
7

8
9

11
13

15

A

A

A

A

A

B

B

B

B

B

C

C

C

C

C

D

D

D

D

D

E

E

E

E

E

A subst costs A /x
B subst costs B /x
C subst costs C /x
D subst costs D /x
E subst costs E /x

On stochastic tree distances and their training via expectation-maximisation

Experiments

Synthetic Data

Deriving a set of edit-scripts

generated 5k scripts in accordance with these parameters

it starts like this:

0 [(A,D), (E,D), (D, λ), (C,D), (D,C), (A,B), (E, C), (D,C), (C,B), (C,D), (A,B), (C,A), (

1 [(B,D)]

2 [(C,C), (D,B), (E, D), (B,D)]

3 [(D,B), (C,E), (A,A), (D,B), (C,B), (E,E), (C,D), (D,B), (λ,A), (E, C), (E,D)]
:

On stochastic tree distances and their training via expectation-maximisation

Experiments

Synthetic Data

Generating tree pairs

◮ from these scripts a corpus T P of consistent tree-pairs is generated
◮ for each script, a random 5 are chosen from all pairs consistent
◮ following pages for the script:

[(E ,D)(D,C)(A,B)(B,B)(A,C)(C,C)([],A)(E ,D)(E ,C)(A,A)]

show the consistent tree pairs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Synthetic Data

E D

A

E

D C

C

A A B

B

C

E

C

D

A

C

B

A

On stochastic tree distances and their training via expectation-maximisation

Experiments

Synthetic Data

E D

A

D E C

A BE

C

B

C

D

A C

A

B A

C

On stochastic tree distances and their training via expectation-maximisation

Experiments

Synthetic Data

E D

E

D A E

C

C B

B B

A C

C C

D

A

A

A

On stochastic tree distances and their training via expectation-maximisation

Experiments

Synthetic Data

E D

E

B

A C

E

C

D CA B C

D

A

B A

C

A

On stochastic tree distances and their training via expectation-maximisation

Experiments

Synthetic Data

E D

A

D A B

C

C B

A

E

C

E D

C

B

A

C

A

Applying training algorithm
Viterbi EM applied to corpus of tree pairs T P
starting from initial uniform costs:

letter substituted

−
lo

g(
P

 o
f s

ub
st

)

A B C D E

2
3

4
5

6
7

8
9

11
13

15

A A A A A

A subst costs A /x
B identical plotC identical plotD identical plotE identical plot

Applying training algorithm
Viterbi EM applied to corpus of tree pairs T P
learns costs:

letter substituted

−
lo

g(
P

 o
f s

ub
st

)

A B C D E

2
3

4
5

6
7

8
9

11
13

15

A
A

A

A

A

B

B

B

B

B

C

C

C

C

C

D

D

D

D

D

E

E

E

E

E

A subst costs A /x
B subst costs B /x
C subst costs C /x
D subst costs D /x
E subst costs E /x

On stochastic tree distances and their training via expectation-maximisation

Experiments

Real Data

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM

Experiments
Synthetic Data
Real Data
Further details: Experiment One
Further details: Experiment Two

Conclusions

Adapting a k-NN classifier

Adapting a k-NN classifier

◮ a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

Adapting a k-NN classifier

◮ a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

◮ change cost table ⇒ change nearest neighbours ⇒ change
categorisation:

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

���
���
���
���

���
���
���
���

���
���
���

���
���
���infer infer

neighbourhood with

another cost table

neighbourhood with

one cost table

Adapting a k-NN classifier

◮ a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

◮ change cost table ⇒ change nearest neighbours ⇒ change
categorisation:

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

���
���
���
���

���
���
���
���

���
���
���

���
���
���infer infer

neighbourhood with

another cost table

neighbourhood with

one cost table

adaptation
EM

of costs

nearest

same−category

neighbours

scripts between between same-
category neighbours should have
distinctive probs

Adapting a k-NN classifier

◮ a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

◮ change cost table ⇒ change nearest neighbours ⇒ change
categorisation:

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

���
���
���
���

���
���
���
���

���
���
���

���
���
���infer infer

neighbourhood with

another cost table

neighbourhood with

one cost table

adaptation
EM

of costs

nearest

same−category

neighbours

scripts between between same-
category neighbours should have
distinctive probs ⇒ perhaps can
use Expectation-Maximisation tech-
niques to adapt edit-probs from a
corpus of same-category nearest
neighbours

On stochastic tree distances and their training via expectation-maximisation

Experiments

Real Data

Data set: QuestionBank

On stochastic tree distances and their training via expectation-maximisation

Experiments

Real Data

Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions
ENTY NUM LOCHUM 2755

On stochastic tree distances and their training via expectation-maximisation

Experiments

Real Data

Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions
ENTY NUM LOCHUM 2755

Cat Example
NUM When was London ’s Docklands Light Railway constructed ?

(SBARQ (WHADVP (WRB When))(SQ (VBD was)(NP (NP (NNP London)(POS ’s))(NNPS Docklands)

(JJ Light)(NN Railway))(VP (VBN constructed)))(. ?))

LOC What country is the biggest producer of tungsten ?
(SBARQ (WHNP (WDT What)(NN country))(SQ (VBZ is)(NP (NP (DT the)(JJS biggest)(NN producer))

(PP (IN of)(NP (NN tungsten)))))(. ?))

HUM What is the name of the managing director of Apricot Computer ?
(WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN name))(PP (IN of)(NP (NP (DT the)(JJ managing)(NN director))

On stochastic tree distances and their training via expectation-maximisation

Experiments

Real Data

Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions
ENTY NUM LOCHUM 2755

Cat Example
NUM When was London ’s Docklands Light Railway constructed ?

(SBARQ (WHADVP (WRB When))(SQ (VBD was)(NP (NP (NNP London)(POS ’s))(NNPS Docklands)

(JJ Light)(NN Railway))(VP (VBN constructed)))(. ?))

LOC What country is the biggest producer of tungsten ?
(SBARQ (WHNP (WDT What)(NN country))(SQ (VBZ is)(NP (NP (DT the)(JJS biggest)(NN producer))

(PP (IN of)(NP (NN tungsten)))))(. ?))

HUM What is the name of the managing director of Apricot Computer ?
(WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN name))(PP (IN of)(NP (NP (DT the)(JJ managing)(NN director))

Intuitiion: in scripts between between same-category neighbours should have
distinctive probs eg. . P(who/when) << P(state/country).

On stochastic tree distances and their training via expectation-maximisation

Experiments

Real Data

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

On stochastic tree distances and their training via expectation-maximisation

Experiments

Real Data

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

On stochastic tree distances and their training via expectation-maximisation

Experiments

Real Data

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

cat(T) = VOTE({categories of k nearest neighbours of T })

◮ compare

On stochastic tree distances and their training via expectation-maximisation

Experiments

Real Data

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

cat(T) = VOTE({categories of k nearest neighbours of T })

◮ compare

tree-distance with standard unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Real Data

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

cat(T) = VOTE({categories of k nearest neighbours of T })

◮ compare

tree-distance with standard unit costs

stochastic tree-distance with untrained costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Real Data

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

cat(T) = VOTE({categories of k nearest neighbours of T })

◮ compare

tree-distance with standard unit costs

stochastic tree-distance with untrained costs

stochastic tree distance with trained costs
training by EMV on same-category neighbours from the Example set

Experimental outcome (brief)

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs
untrained

Experimental outcome (brief)

◮ standard unit-costs
▽, max. 67.7%

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs
untrained

Experimental outcome (brief)

◮ standard unit-costs
▽, max. 67.7%

◮ initial stochastic costs
▽ max. 63.8%
worse than unit costs

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs
untrained

Experimental outcome (brief)

◮ standard unit-costs
▽, max. 67.7%

◮ initial stochastic costs
▽ max. 63.8%
worse than unit costs

◮ best EMV -adapted costs
◦, max. 72.5%
about 5% better than unit-costs
(▽, max. 67.7%)

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs
untrained

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment One

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM

Experiments
Synthetic Data
Real Data
Further details: Experiment One
Further details: Experiment Two

Conclusions

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment One

Stochastic cost initialisation

EMV needs an initialisation of its parameters.

we used a basically uniform initialisation except

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment One

Stochastic cost initialisation

EMV needs an initialisation of its parameters.

we used a basically uniform initialisation except

diagonal entries are d times more probable than non-diagonal.

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment One

Stochastic cost initialisation

EMV needs an initialisation of its parameters.

we used a basically uniform initialisation except

diagonal entries are d times more probable than non-diagonal.

examples for d = 3, 10, 100, and 1000 are:

3 λ a b
λ 3.7 3.7 3.7
a 3.7 2.115 3.7
b 3.7 3.7 2.115

10 λ a b
λ 4.755 4.755 4.755
a 4.755 1.433 4.755
b 4.755 4.755 1.433

100 λ a b
λ 7.693 7.693 7.693
a 7.693 1.05 7.693
b 7.693 7.693 1.05

1000 λ a b
λ 10.97 10.97 10.97
a 10.97 1.005 10.97
b 10.97 10.97 1.005

NOTE: diagonal entries are not insignificant

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment One

Smoothing

We used a smoothing option on a table C∆ derived by EMV , interpolating it
with the stochastic initialisation C∆

u(d) as follows:

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment One

Smoothing

We used a smoothing option on a table C∆ derived by EMV , interpolating it
with the stochastic initialisation C∆

u(d) as follows:

2−C∆
λ[x][y] = λ(2−C∆

[x][y]) + (1 − λ)(2−C∆
u(d)[x][y])

with 0 ≤ λ ≤ 1

λ = 1 gives all the weight to the derived table

λ = 0 gives all the weight to the initial table

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment One

Experiment One

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

40
43

46
49

52
55

58
61

64
67

untrained stochasticuntrained stochastic
trained stochastic unsmoothed
trained stochastic smoothed
unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment One

Experiment One

◮ unit-costs (▽, max. 67.7%)
exceeds non-adapted C∆

u(3)
costs (◦, max. 63.8%)

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

40
43

46
49

52
55

58
61

64
67

untrained stochasticuntrained stochastic
trained stochastic unsmoothed
trained stochastic smoothed
unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment One

Experiment One

◮ unit-costs (▽, max. 67.7%)
exceeds non-adapted C∆

u(3)
costs (◦, max. 63.8%)

◮ unsmoothed EMV -adapted costs
(△,max. 53.2%) worse than
initial, stochastic costs (◦, max.
63.8%)

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

40
43

46
49

52
55

58
61

64
67

untrained stochasticuntrained stochastic
trained stochastic unsmoothed
trained stochastic smoothed
unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment One

Experiment One

◮ unit-costs (▽, max. 67.7%)
exceeds non-adapted C∆

u(3)
costs (◦, max. 63.8%)

◮ unsmoothed EMV -adapted costs
(△,max. 53.2%) worse than
initial, stochastic costs (◦, max.
63.8%)

◮ EMV -adapted costs on training
set gives 95% accuracy: ⇒ EMV

makes training pairs too probable,
and over-fits.

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

40
43

46
49

52
55

58
61

64
67

untrained stochasticuntrained stochastic
trained stochastic unsmoothed
trained stochastic smoothed
unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment One

Experiment One

◮ unit-costs (▽, max. 67.7%)
exceeds non-adapted C∆

u(3)
costs (◦, max. 63.8%)

◮ unsmoothed EMV -adapted costs
(△,max. 53.2%) worse than
initial, stochastic costs (◦, max.
63.8%)

◮ EMV -adapted costs on training
set gives 95% accuracy: ⇒ EMV

makes training pairs too probable,
and over-fits.

◮ smoothing adapted costs (+,max.
64.8%) improves over initial costs
(◦) but is still below unit costs (▽). k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

40
43

46
49

52
55

58
61

64
67

untrained stochasticuntrained stochastic
trained stochastic unsmoothed
trained stochastic smoothed
unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment One

Despite poor performace of the EMV -adapted costs, some of the adapted
costs seem intuitive. Here is a sample from top 1% of adapted swap costs,
which are plausibly discounted relative to others:

8.50 ? .
8.93 NNP NN
9.47 VBD VBZ
9.51 NNS NN
9.78 a the
11.03 was is
11.03 ’s is

12.31 The the
12.65 you I
13.60 can do
13.83 many much
13.92 city state
13.93 city country

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment Two

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM

Experiments
Synthetic Data
Real Data
Further details: Experiment One
Further details: Experiment Two

Conclusions

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment Two

◮ Recall: For the stochastic distance ∆V
s cost-table entries represent

probabilities via

2−C∆
(x,y) = p(x , y)

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment Two

◮ Recall: For the stochastic distance ∆V
s cost-table entries represent

probabilities via

2−C∆
(x,y) = p(x , y)

◮ a single 0 entry in C∆implies infinite cost entries everywhere else.

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment Two

◮ Recall: For the stochastic distance ∆V
s cost-table entries represent

probabilities via

2−C∆
(x,y) = p(x , y)

◮ a single 0 entry in C∆implies infinite cost entries everywhere else.
⇒ a stochastically valid cost table cannot have zero costs on the
diagonal

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment Two

◮ Recall: For the stochastic distance ∆V
s cost-table entries represent

probabilities via

2−C∆
(x,y) = p(x , y)

◮ a single 0 entry in C∆implies infinite cost entries everywhere else.
⇒ a stochastically valid cost table cannot have zero costs on the
diagonal

◮ perhaps this impedes good categorisation; note also the unit-cost
setting, which is clearly ’uniform’ in a sense, out-performs the ’uniform’
stochastic initialisations

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment Two

◮ Recall: For the stochastic distance ∆V
s cost-table entries represent

probabilities via

2−C∆
(x,y) = p(x , y)

◮ a single 0 entry in C∆implies infinite cost entries everywhere else.
⇒ a stochastically valid cost table cannot have zero costs on the
diagonal

◮ perhaps this impedes good categorisation; note also the unit-cost
setting, which is clearly ’uniform’ in a sense, out-performs the ’uniform’
stochastic initialisations

◮ suggests final step in which all the entries on the cost-table’s diagonal
are zeroed.

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment Two

◮ Recall: For the stochastic distance ∆V
s cost-table entries represent

probabilities via

2−C∆
(x,y) = p(x , y)

◮ a single 0 entry in C∆implies infinite cost entries everywhere else.
⇒ a stochastically valid cost table cannot have zero costs on the
diagonal

◮ perhaps this impedes good categorisation; note also the unit-cost
setting, which is clearly ’uniform’ in a sense, out-performs the ’uniform’
stochastic initialisations

◮ suggests final step in which all the entries on the cost-table’s diagonal
are zeroed.

◮ Bilenko et al 2003 does essentially this in work on stochastic string
distance

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment Two

Experiment Two

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment Two

Experiment Two

◮ now with smoothing at varius
levels of interpolation
(λ ∈ {0.99, 0.9, 0.5, 0.1}) and
with the diagonal zeroed, the
EMV -adapted costs clearly
out-perform the unit-costs case
(▽).

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs

On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment Two

Experiment Two

◮ now with smoothing at varius
levels of interpolation
(λ ∈ {0.99, 0.9, 0.5, 0.1}) and
with the diagonal zeroed, the
EMV -adapted costs clearly
out-perform the unit-costs case
(▽).

◮ the best result being 72.5%
(k = 20, λ = 0.99), as compared
to 67.5% for unit-costs (k = 20)

k values

%
 a

cc
ur

ac
y

1 5 10 20 30 50 100 200

60
62

64
66

68
70

72

lam 0.99lam 0.99
lam 0.9
lam 0.5
lam 0.1
unit costs

On stochastic tree distances and their training via expectation-maximisation

Conclusions

Conclusions

On stochastic tree distances and their training via expectation-maximisation

Conclusions

Conclusions

◮ evidence to show that Viterbi EM cost-adaptation can increase the
performance of a tree-distance based classifier, and improve it to above
that attained in the unit-cost setting,

On stochastic tree distances and their training via expectation-maximisation

Conclusions

Conclusions

◮ evidence to show that Viterbi EM cost-adaptation can increase the
performance of a tree-distance based classifier, and improve it to above
that attained in the unit-cost setting,

◮ experiments on further data-sets is required: one possibility is the
NLP-related tasks of question-answering, where the need is to assess
pairs of sentences for their likelihood to be a question-answer pairs. A
training set of such pairs could also serve as potential input to the cost
adaptation algorithm.

On stochastic tree distances and their training via expectation-maximisation

Conclusions

Literature

◮ The paper this talks is mainly based on is Emms (2011)
◮ Background on string-distance and tree-distance: Tai (1979) Zhang and

Shasha (1989) Ristad and Yianilos (1998) Bilenko and Mooney (2003)
Boyer et al. (2007)

◮ Background on EM: Prescher (2004)
◮ Some work using similar approximation to all-paths EM: Benedí and

Sánchez (2005)
◮ Question-bank: Judge et al. (2006); Judge (2006a), Judge (2006b)
◮ Some work using related models of stochastic tree-distance: Takasu

et al. (2007), Dalvi et al. (2009) Wang and Manning (2010)

On stochastic tree distances and their training via expectation-maximisation

References

J.-M. Benedí and J.-A. Sánchez. Estimation of stochastic context-free
grammars and their use as language models. Computer Speech and
Language, 19(3):249–274, July 2005.

M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable
string similarity measures. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD-2003), pages 39–48, 2003.

L. Boyer, A. Habrard, and M. Sebban. Learning metrics between tree
structured data: Application to image recognition. In Proceedings of the
18th European Conference on Machine Learning (ECML 2007), pages
54–66, 2007.

N. Dalvi, P. Bohannon, and F. Sha. Robust web extraction: an approach
based on a probabilistic tree-edit model. In SIGMOD ’09: Proceedings of
the 35th SIGMOD international conference on Management of data, pages
335–348, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-551-2. doi:
http://doi.acm.org/10.1145/1559845.1559882.

M. Emms. On stochastic tree distances and their training via
expectation-maximisation. In Proceedings of ICPRAM 2012 International
Conference on Pattern Recognition Application and Methods, 2011.

J. Judge. Adapting and Developing Linguistic Resources for Question
Answering. PhD thesis, Dublin City University, 2006a.

On stochastic tree distances and their training via expectation-maximisation

References

J. Judge, 2006b. Corpus of syntactically annotated questions
http://www.computing.dcu.ie/ jjudge/qtreebank/.

J. Judge, A. Cahill, and J. van Genabith. Questionbank: creating a corpus of
parse-annotated questions. In ACL ’06: Proceedings of the 21st
International Conference on Computational Linguistics and the 44th annual
meeting of the ACL, pages 497–504, Morristown, NJ, USA, 2006.
Association for Computational Linguistics.

D. Prescher. A tutorial on the expectation-maximization algorithm including
maximum-likelihood estimation and em training of probabilistic context-free
grammars. Computing Research Repository, 2004.

E. S. Ristad and P. N. Yianilos. Learning string edit distance. IEEE
Transactions on Pattern Recognition and Machine Intelligence, 20(5):
522–532, May 1998.

K.-C. Tai. The tree-to-tree correction problem. Journal of the ACM (JACM),
26(3):433, 1979.

A. Takasu, D. Fukagawa, and T. Akutsu. Statistical learning algorithm for tree
similarity. In ICDM ’07: Proceedings of the 2007 Seventh IEEE
International Conference on Data Mining, pages 667–672, Washington,
DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-3018-4. doi:
http://dx.doi.org/10.1109/ICDM.2007.38.

On stochastic tree distances and their training via expectation-maximisation

Conclusions

M. Wang and C. D. Manning. Probabilistic tree-edit models with structured
latent variables for textual entailment and question answering. In
Proceedings of the 23rd International Conference on Computational
Linguistics, COLING ’10, pages 1164–1172, Stroudsburg, PA, USA, 2010.
Association for Computational Linguistics.

K. Zhang and D. Shasha. Simple fast algorithms for the editing distance
between trees and related problems. SIAM Journal of Computing, 18:
1245–1262, 1989.

	Outline
	Standard tree- and sequence-distances
	Stochastic tree- and sequence-distances
	EM for cost adaptation
	All-scripts EM
	Viterbi EM

	Experiments
	Synthetic Data
	Real Data
	Further details: Experiment One
	Further details: Experiment Two

	Conclusions
	References

