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Standard tree- and sequence-distances

Simple edit distance

Consider transforming a sequence S into T , S ⇒ T

At any given moment an initial portion of S has been transformed into an
initial portion of T , S[0..(i − 1)] ⇒ T [0..(j − 1)].

Suppose the process is allowed to continue in one of 4 ways

◮ delete the next symbol of S; denote this operation with (S[i], λ), where
S[i] is the next symbol of S

◮ insert the next ungenerated symbol of T ; denote this operation with
(λ,T [j]), where T [j] is the next symbol of T

◮ swap the next symbol of S for the next ungenerated symbol T , if these
are different; denote this operation with (S[i], T [j]), where S[i] is the next
symbol of S, and T [j] is the next symbol of T

◮ match just skip past the next symbol of S as it is the same as the next
ungenerated symbol of T ; denote this also with (S[i], T [j])

Call the sequence of ops edit-script between S and T .
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a cost table defines label-dependent costs

for example with
table

a

λ
λ

0

z 0

1

1

1 1
1

1

a z

total cost of script or mapping is 4
this is also a least cost mapping/script for this
table

Definition

(Sequence-distance) between S and T is the
cost of the least-costly mapping/scirpt
from S to T
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Standard tree- and sequence-distances

Tree edits

a trees S can be transformed into a tree T , by delete, insert, swap/match
operations

delete

x

dtrs of x made dtrs of x ’s parent m

insert

y

some dtrs of m made dtrs new
daughter y of m

swap/match

x y

node x turned to node y
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The script encodes a partial map-
ping σ : S 7→ T

b1 b3
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a6

a2

b1
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4a b5

c6

it is a mapping which respects left-
to-right order and ancestry – call
such mappings Tai mappings

costs can be assigned to scripts or
mappings

Definition

(Tree- or Tai-distance) between S
and T is the cost of the
least-costly Tai mapping (or
script) from S to T
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Stochastic string distances

◮ for the case of strings (linear trees), a stochastic variant was first
proposed by Ristad and Yianilos (98)

◮ where Σ is an alphabet, let edit operation identifiers, EdOp, be:

EdOp = ((Σ ∪ {λ}) × (Σ ∪ {λ}))\〈λ, λ〉

and represent a script with op1 . . . opn#, with each opi ∈ EdOp.
◮ assuming a prob distribution p on EdOp ∪ {#}, define a script probability

as

P(e1 . . . en) =
∏

i

p(ei)

◮ Can think of a script as yielding a pair of strings (s, t). If E(s, t) is all
scripts which yield (s, t), they defined

all-paths stochastic edit distance:
the sum of the probabilities of all scripts e ∈ E(s, t)

viterbi stochastic edit distance:
prob. of the most probable e ∈ E(s, t)
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this can be adapted to the case of trees (first proposed by Boyer et al 2007)

Definition (All-scripts stochastic Tai similarity/distance)

The all-scripts stochastic Tai similarity, ΘA
s (S, T ), is the sum of the

probabilities of all edit-scripts which represent a Tai-mapping from S to T .
The all-scripts stochastic Tai distance, ∆A

s (S,T ), is its negated logarithm, ie.

2−∆A
s (S,T ) = ΘA

s (S,T )

Definition (Viterbi-script stochastic Tai similarity/distance)

The Viterbi-script stochastic Tai similarity, ΘV
s (S,T ), is the probability of the

most probable edit-script which represents a Tai-mapping from S to T . The
Viterbi-script stochastic Tai distance, ∆V

s (S, T ), is its negated logarithm, ie.

2−∆V
s (S,T ) = ΘV

s (S,T )
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neighbourhood with
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adaptation
EM

of costs

nearest

same−category

neighbours

scripts between between same-
category neighbours should have
distinctive probs ⇒ perhaps can
use Expectation-Maximisation tech-
niques to adapt edit-probs from a
corpus of same-category nearest
neighbours
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All-scripts EM

Brute force All-paths EM (infeasible)

Given a corpus of trainings pairs T P = . . . (S,T ) . . ., let the brute-force
all-scripts EM algorithm, EMA

bf , be iterations of pair of steps

(Exp)A generate a virtual corpus of scripts by treating each
training pair (S,T ) as standing for all the edit-scripts
σ, which can relate S to T , weighting each by its condi-
tional probability P(σ/ΘA

s (S,T ), under current probali-
ties CΘ

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

A virtual count or expectation γS,T (op) contributed by S,T for an operaton op
can be defined by

γS,T (op) =
∑

σ:S 7→T

[
P(σ)

ΘA
s (S, T )

× freq(op ∈ σ)]

(Exp)A accumulates the γS,T (op) for all op’s, for all (S,T )
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[i] values of the sum over p(pre) can efficiently tabulated – this is the
all-scripts algorithm
[iii] values of sum over p(suff ) can be efficiently tabulated by an easily
formulated ’backwards’ variant.
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first is essentially the algorithm proposed by Ristad and Yianilos (98)
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j ) = α[i − 1][j − 1]× p(mi ,m′, j)× β[i + 1, j + 1]

◮ use to calculate pos-indpt exp: γS,T (m,m′) =
∑

i,j

[γS,T [i][j](m, m′)]

first is essentially the algorithm proposed by Ristad and Yianilos (98)

this has seen widely used to train a string distance measure (ie. linear trees)
from a corpus of pairs
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Boyer et al (2007) suggest the fectorisation

∑

e1∈E([·1],[·2(·1)])

[p(e1)]×
∑

e2∈E([·2·3 ],[·3])

[p(e2)]×p(m,m′)×
∑

e3∈E([·6(·5)],[·7(·6(·5))])

[p(e3)]

but we can show that this is not a sound factorisation
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For general trees, a feasible equivalent to the brute-force EMbf
A remains an

unsolved problem.
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Let the Viterbi EM algorithm EMV , be iterations of pair of steps

(Exp)V generate a virtual corpus of scripts by treating each
training pair (S,T ) as standing for the best edit-script
σ, which can relate S to T , weighting it by its conditional
probability P(σ)/ΘA

s (S,T ), under current costs C

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

Where V is the best-script, the virtual count or expectation γS,T (op)
contributed by S, T for the operation op is defined by

γ(S,T )(op) =
ΘV

s (S,T )

ΘA
s (S,T )

× freq(op ∈ V)

(Exp)V accumulates the γS,T (op) for all op’s, for all (S, T )
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On stochastic tree distances and their training via expectation-maximisation

Experiments

Synthetic Data

The methodology in outline is

1. choose a set of parameters C ie. probs for all ops

2. derive a corpus of edit scripts in accordance with CΘ

3. generate a corpus T P of tree pairs consistent with these edit scripts

4. apply learning algorithm to tree-pair corpus T P to learn parameters C′

and compare to see if C′ is close to original C.
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Experiments

Synthetic Data

Choosing a set of (target) parameters

◮ label alphabet Σ = {A,B,C,D,E}

◮ define subst. prob to be:
max for letters one apart in ASCII code (eg A/B
falling as you get further from this (eg A/C < A/B)

p(x , y) α (|(|ASCII(x)− ASCII(y)| − 1)|)2

◮ del and ins uniform, and such that ins+del ist just more than the worst
swap

table (as neg. logs):

λ A B C D E
λ 6.907 6.907 6.907 6.907 6.907
A 6.907 4.907 3.907 4.907 7.907 12.91
B 6.907 3.907 4.907 3.907 4.907 7.907
C 6.907 4.907 3.907 4.907 3.907 4.907
D 6.907 7.907 4.907 3.907 4.907 3.907
E 6.907 12.91 7.907 4.907 3.907 4.907



The target parameters

plot of assumed subsitution probs (neg. logs)

letter substituted
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Deriving a set of edit-scripts

generated 5k scripts in accordance with these parameters

it starts like this:

0 [(A,D), (E,D), (D, λ), (C,D), (D,C), (A,B), (E, C), (D,C), (C,B), (C,D), (A,B), (C,A), (

1 [(B,D)]

2 [(C,C), (D,B), (E, D), (B,D)]

3 [(D,B), (C,E), (A,A), (D,B), (C,B), (E,E), (C,D), (D,B), (λ,A), (E, C), (E,D)]
:
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Synthetic Data

Generating tree pairs

◮ from these scripts a corpus T P of consistent tree-pairs is generated
◮ for each script, a random 5 are chosen from all pairs consistent
◮ following pages for the script:

[(E ,D)(D,C)(A,B)(B,B)(A,C)(C,C)([],A)(E ,D)(E ,C)(A,A)]

show the consistent tree pairs
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Applying training algorithm
Viterbi EM applied to corpus of tree pairs T P
starting from initial uniform costs:
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Applying training algorithm
Viterbi EM applied to corpus of tree pairs T P
learns costs:

letter substituted

−
lo

g(
P

 o
f s

ub
st

)

A B C D E

2
3

4
5

6
7

8
9

11
13

15

A
A

A

A

A

B

B

B

B

B

C

C

C

C

C

D

D

D

D

D

E

E

E

E

E

A subst costs  A /x
B subst costs  B /x
C subst costs  C /x
D subst costs  D /x
E subst costs  E /x



On stochastic tree distances and their training via expectation-maximisation

Experiments

Real Data

Outline
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Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM

Experiments
Synthetic Data
Real Data
Further details: Experiment One
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Conclusions
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Adapting a k-NN classifier

◮ a possible use of a distance is k-NN classifier:

cat(S) = VOTE({categories of k nearest neighbours of S })

◮ change cost table ⇒ change nearest neighbours ⇒ change
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neighbourhood with

another cost table

neighbourhood with

one cost table

adaptation
EM

of costs

nearest

same−category

neighbours

scripts between between same-
category neighbours should have
distinctive probs ⇒ perhaps can
use Expectation-Maximisation tech-
niques to adapt edit-probs from a
corpus of same-category nearest
neighbours
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Experiments

Real Data

Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions
ENTY NUM LOCHUM 2755

Cat Example
NUM When was London ’s Docklands Light Railway constructed ?

(SBARQ (WHADVP (WRB When))(SQ (VBD was)(NP (NP (NNP London)(POS ’s))(NNPS Docklands)

(JJ Light)(NN Railway))(VP (VBN constructed)))(. ?))

LOC What country is the biggest producer of tungsten ?
(SBARQ (WHNP (WDT What)(NN country))(SQ (VBZ is)(NP (NP (DT the)(JJS biggest)(NN producer))

(PP (IN of)(NP (NN tungsten)))))(. ?))

HUM What is the name of the managing director of Apricot Computer ?
(WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN name))(PP (IN of)(NP (NP (DT the)(JJ managing)(NN director))
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Experiments

Real Data

Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions
ENTY NUM LOCHUM 2755

Cat Example
NUM When was London ’s Docklands Light Railway constructed ?

(SBARQ (WHADVP (WRB When))(SQ (VBD was)(NP (NP (NNP London)(POS ’s))(NNPS Docklands)

(JJ Light)(NN Railway))(VP (VBN constructed)))(. ?))

LOC What country is the biggest producer of tungsten ?
(SBARQ (WHNP (WDT What)(NN country))(SQ (VBZ is)(NP (NP (DT the)(JJS biggest)(NN producer))

(PP (IN of)(NP (NN tungsten)))))(. ?))

HUM What is the name of the managing director of Apricot Computer ?
(WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN name))(PP (IN of)(NP (NP (DT the)(JJ managing)(NN director))

Intuitiion: in scripts between between same-category neighbours should have
distinctive probs eg. . P(who/when) << P(state/country).
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Experiments

Real Data

k-NN categorisation

◮ experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

cat(T ) = VOTE({categories of k nearest neighbours of T })

◮ compare

tree-distance with standard unit costs

stochastic tree-distance with untrained costs

stochastic tree distance with trained costs
training by EMV on same-category neighbours from the Example set
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Experimental outcome (brief)

◮ standard unit-costs
▽, max. 67.7%

◮ initial stochastic costs
▽ max. 63.8%
worse than unit costs

◮ best EMV -adapted costs
◦, max. 72.5%
about 5% better than unit-costs
(▽, max. 67.7%)
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Experiments

Further details: Experiment One

Stochastic cost initialisation

EMV needs an initialisation of its parameters.

we used a basically uniform initialisation except

diagonal entries are d times more probable than non-diagonal.

examples for d = 3, 10, 100, and 1000 are:

3 λ a b
λ 3.7 3.7 3.7
a 3.7 2.115 3.7
b 3.7 3.7 2.115

10 λ a b
λ 4.755 4.755 4.755
a 4.755 1.433 4.755
b 4.755 4.755 1.433

100 λ a b
λ 7.693 7.693 7.693
a 7.693 1.05 7.693
b 7.693 7.693 1.05

1000 λ a b
λ 10.97 10.97 10.97
a 10.97 1.005 10.97
b 10.97 10.97 1.005

NOTE: diagonal entries are not insignificant
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with the stochastic initialisation C∆
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Experiments

Further details: Experiment One

Smoothing

We used a smoothing option on a table C∆ derived by EMV , interpolating it
with the stochastic initialisation C∆

u(d) as follows:

2−C∆
λ[x ][y ] = λ(2−C∆

[x ][y ]) + (1 − λ)(2−C∆
u(d)[x ][y ])

with 0 ≤ λ ≤ 1

λ = 1 gives all the weight to the derived table

λ = 0 gives all the weight to the initial table
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Experiments

Further details: Experiment One

Experiment One

◮ unit-costs (▽, max. 67.7%)
exceeds non-adapted C∆

u(3)
costs (◦, max. 63.8%)

◮ unsmoothed EMV -adapted costs
(△,max. 53.2%) worse than
initial, stochastic costs (◦, max.
63.8%)

◮ EMV -adapted costs on training
set gives 95% accuracy: ⇒ EMV

makes training pairs too probable,
and over-fits.

◮ smoothing adapted costs (+,max.
64.8%) improves over initial costs
(◦) but is still below unit costs (▽). k values
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Further details: Experiment One

Despite poor performace of the EMV -adapted costs, some of the adapted
costs seem intuitive. Here is a sample from top 1% of adapted swap costs,
which are plausibly discounted relative to others:

8.50 ? .
8.93 NNP NN
9.47 VBD VBZ
9.51 NNS NN
9.78 a the
11.03 was is
11.03 ’s is

12.31 The the
12.65 you I
13.60 can do
13.83 many much
13.92 city state
13.93 city country



On stochastic tree distances and their training via expectation-maximisation

Experiments

Further details: Experiment Two

Outline

Standard tree- and sequence-distances

Stochastic tree- and sequence-distances

EM for cost adaptation
All-scripts EM
Viterbi EM
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Experiments

Further details: Experiment Two

◮ Recall: For the stochastic distance ∆V
s cost-table entries represent

probabilities via

2−C∆
(x,y) = p(x , y)

◮ a single 0 entry in C∆implies infinite cost entries everywhere else.
⇒ a stochastically valid cost table cannot have zero costs on the
diagonal

◮ perhaps this impedes good categorisation; note also the unit-cost
setting, which is clearly ’uniform’ in a sense, out-performs the ’uniform’
stochastic initialisations

◮ suggests final step in which all the entries on the cost-table’s diagonal
are zeroed.

◮ Bilenko et al 2003 does essentially this in work on stochastic string
distance
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◮ now with smoothing at varius
levels of interpolation
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EMV -adapted costs clearly
out-perform the unit-costs case
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Further details: Experiment Two

Experiment Two

◮ now with smoothing at varius
levels of interpolation
(λ ∈ {0.99, 0.9, 0.5, 0.1}) and
with the diagonal zeroed, the
EMV -adapted costs clearly
out-perform the unit-costs case
(▽).

◮ the best result being 72.5%
(k = 20, λ = 0.99), as compared
to 67.5% for unit-costs (k = 20)
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Conclusions

◮ evidence to show that Viterbi EM cost-adaptation can increase the
performance of a tree-distance based classifier, and improve it to above
that attained in the unit-cost setting,

◮ experiments on further data-sets is required: one possibility is the
NLP-related tasks of question-answering, where the need is to assess
pairs of sentences for their likelihood to be a question-answer pairs. A
training set of such pairs could also serve as potential input to the cost
adaptation algorithm.
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Literature

◮ The paper this talks is mainly based on is Emms (2011)
◮ Background on string-distance and tree-distance: Tai (1979) Zhang and

Shasha (1989) Ristad and Yianilos (1998) Bilenko and Mooney (2003)
Boyer et al. (2007)

◮ Background on EM: Prescher (2004)
◮ Some work using similar approximation to all-paths EM: Benedí and

Sánchez (2005)
◮ Question-bank: Judge et al. (2006); Judge (2006a), Judge (2006b)
◮ Some work using related models of stochastic tree-distance: Takasu

et al. (2007), Dalvi et al. (2009) Wang and Manning (2010)
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