4CSLL5
’Advanced Computational Linguistics’
Phrase Based Machine Trans

Martin Emms

October 31, 2018
The Phrase-Based Translation Model
The Phrase Based Translation Model
The Phrase Translation Model

- Simplest assumption is that all segmentations are equally likely, so there are no explicit probability terms for choice of segmentation.
The Phrase Translation Model

- Simplest assumption is that all segmentations are equally likely, so there are no explicit probability terms for choice of segmentation.
- For any particular segmentations of o and s into K segments, the model of $p(\bar{o}, \tau, \bar{s})$ is:

$$p(\bar{o}, \tau, \bar{s}) = p(\bar{o}, \tau|\bar{s}) \times p(\bar{s})$$

$$= \left[\prod_{k=1}^{K} tr(\bar{o}_{\tau(k)}|\bar{s}_k) d(\bar{o}_{\tau(k-1)}, \bar{o}_{\tau(k)}) \right] LM(s)$$
The Phrase Translation Model

- Simplest assumption is that all segmentations are equally likely, so there are no explicit probability terms for choice of segmentation.
- For any particular segmentations of o and s into K segments, the model of $p(\bar{o}, \tau, \bar{s})$ is:

$$p(\bar{o}, \tau, \bar{s}) = p(\bar{o}, \tau|\bar{s}) \times p(\bar{s})$$

$$= \left[\prod_{k=1}^{K} tr(\bar{o}_{\tau(k)}|\bar{s}_k) \ d(\bar{o}_{\tau(k-1)}, \bar{o}_{\tau(k)}) \right] \ LM(s)$$

- **Phrase translation**: there’s a term $tr(\bar{o}_{\tau(k)}|\bar{s}_k)$ for the phrase-translation probabilities for an observed phrase $\bar{o}_{\tau(k)}$ to be generated from source phrase \bar{s}_k
The Phrase Translation Model

- Simplest assumption is that all segmentations are equally likely, so there are no explicit probability terms for choice of segmentation.
- For any particular segmentations of \(o \) and \(s \) into \(K \) segments, the model of \(p(\bar{o}, \tau, \bar{s}) \) is:

\[
p(\bar{o}, \tau, \bar{s}) = p(\bar{o}, \tau|\bar{s}) \times p(\bar{s})
\]

\[
= \left[\prod_{k=1}^{K} tr(\bar{o}_{\tau(k)}|\bar{s}_k) \ d(\bar{o}_{\tau(k-1)}, \bar{o}_{\tau(k)}) \right] \ LM(s)
\]

- **Phrase translation**: there’s a term \(tr(\bar{o}_{\tau(k)}|\bar{s}_k) \) for the phrase-translation probabilities for an observed phrase \(\bar{o}_{\tau(k)} \) to be generated from source phrase \(\bar{s}_k \)
- **Reordering**: there is re-ordering term concerning how likely the destination for a \(\bar{s}_k \) phrase is given destination for previous \(\bar{s}_{k-1} \) phrase: \(d(\bar{o}_{\tau(k-1)}, \bar{o}_{\tau(k)}) \)
The Phrase Translation Model

- Simplest assumption is that all segmentations are equally likely, so there are no explicit probability terms for choice of segmentation.
- For any particular segmentations of o and s into K segments, the model of $p(\bar{o}, \tau, \bar{s})$ is:

\[
p(\bar{o}, \tau, \bar{s}) = p(\bar{o}, \tau|\bar{s}) \times p(\bar{s})
\]

\[
= \left[\prod_{k=1}^{K} tr(\bar{o}_{\tau(k)}|\bar{s}_k) \right] d(\bar{o}_{\tau(k-1)}, \bar{o}_{\tau(k)}) \quad LM(s)
\]

- **Phrase translation**: there’s a term $tr(\bar{o}_{\tau(k)}|\bar{s}_k)$ for the phrase-translation probabilities for an observed phrase $\bar{o}_{\tau(k)}$ to be generated from source phrase \bar{s}_k

- **Reordering**: there is re-ordering term concerning how likely the destination for a \bar{s}_k phrase is given destination for previous \bar{s}_{k-1} phrase: $d(\bar{o}_{\tau(k-1)}, \bar{o}_{\tau(k)})$

- **Language model**: the probability of the source phrases \bar{s} is equated to simply the probability of the source sequence s as given by an n-gram model $LM(s)$
using (2), preferred translation s_{best} is defined as the source part of

$$\langle \bar{s}, \tau \rangle_{\text{best}} = \arg \max_{\bar{s}, \tau} p(\bar{o}, \tau, \bar{s})$$
The Phrase Translation Model contd

- using (2), preferred translation s_{best} is defined as the source part of

$$\langle \bar{s}, \tau \rangle_{\text{best}} = \arg \max_{\bar{s}, \tau} p(\bar{0}, \tau, \bar{s})$$

- note you could seek to define s_{best} as

$$s_{\text{best}} = \arg \max_{\bar{s}} \sum_{\tau} p(\bar{0}, \tau, \bar{s})$$

but this is not standardly done; the above is regarded as a 'Viterbi' approximation of the sum
The distortion term

- The distortion term $d(\overline{o}_{\tau(k-1)}, \overline{o}_{\tau(k)})$ is not learned via EM
- instead just standardly defined as an exponentially decaying function of the 'distance' x between end of $\overline{o}_{\tau(k-1)}$ and start of $\overline{o}_{\tau(k)}$
- in particular where $x = |fst(\overline{o}_{\tau(k)}) - lst(\overline{o}_{\tau(k-1)}) - 1|$, the d term is α^x for some $\alpha < 1$.
illustration of Distance-Based Reordering

\[src \quad \boxed{1} \quad \boxed{2} \quad \boxed{3} \quad \boxed{4} \]

\[obs \quad \boxed{1 \ 2 \ 3} \quad \boxed{4 \ 5} \quad \boxed{6} \quad \boxed{7} \]

<table>
<thead>
<tr>
<th>phrase (\bar{s}_i)</th>
<th>translated to (\bar{o}_{\tau(i)})</th>
<th>change (\bar{o}{\tau(i-1)}) to (\bar{o}{\tau(i)})</th>
<th>'displacement' (\times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{s}_1)</td>
<td>(\bar{o}_{\tau(1)} = o_1 : o_3)</td>
<td>start at beginning</td>
<td>0</td>
</tr>
<tr>
<td>(\bar{s}_2)</td>
<td>(\bar{o}_{\tau(2)} = o_6 : o_6)</td>
<td>(o_3) to (o_6)</td>
<td>+2 ((=) (\text{fst}(o_6 : o_6) - \text{lst}(o_1 : o_3) - 1))</td>
</tr>
<tr>
<td>(\bar{s}_3)</td>
<td>(\bar{o}_{\tau(3)} = o_4 : o_5)</td>
<td>(o_6) to (o_4)</td>
<td>-3 ((=) (\text{fst}(o_4 : o_5) - \text{lst}(o_6 : o_6) - 1))</td>
</tr>
<tr>
<td>(\bar{s}_4)</td>
<td>(\bar{o}_{\tau(4)} = o_7 : o_7)</td>
<td>(o_5) to (o_7)</td>
<td>+1 ((=) (\text{fst}(\bar{o}_7 : \bar{o}_7) - \text{lst}(o_4, o_5) - 1))</td>
</tr>
</tbody>
</table>

Scoring function: \(\alpha |x| \) — exponential with distance