IBM Translation Models

Martin Emms

October 11, 2019
Parameter learning (efficient)

How to sum alignments efficiently
Efficient EM via $p((j, i) \in a | o, s)$
Avoiding Exponential Cost
Outline

Parameter learning (efficient)
How to sum alignments efficiently
Efficient EM via $p((j, i) \in a | o, s)$
but what about Exponential cost?
but what about Exponential cost?

- the learnability of translation probabilities in an unsupervised fashion from just a corpus of pairs is a remarkable thing
but what about Exponential cost?

- the learnability of translation probabilities in an unsupervised fashion from just a corpus of pairs is a remarkable thing.
- however, as we have formulated it, each possible alignment has to be considered in turn, and each contributes increments to expected counts.
but what about Exponential cost?

- the learnability of translation probabilities in an unsupervised fashion from just a corpus of pairs is a remarkable thing

- however, as we have formulated it, each possible alignment has to be considered in turn, and each contributes increments to expected counts

- it was already noted that the number of possible alignments is \((\ell_s + 1)\ell_o\) – ie. exponential in the length of \(\ell_o\). For \(\ell_s + 1 = \ell_o = 10\), this is \(10^{10}\), or 10,000 million
but what about Exponential cost?

- the learnability of translation probabilities in an unsupervised fashion from just a corpus of pairs is a remarkable thing
- however, as we have formulated it, each possible alignment has to be considered in turn, and each contributes increments to expected counts
- it was already noted that the number of possible alignments is $(\ell_s + 1)^{\ell_o}$ — i.e. exponential in the length of o. For $\ell_s + 1 = \ell_o = 10$, this is 10^{10}, or 10,000 million
- so unless a way can be found to make the EM process on this model much more efficient, its learnability in principle would just be an interesting curiosity
but what about Exponential cost?

- the learnability of translation probabilities in an unsupervised fashion from just a corpus of pairs is a remarkable thing
- however, as we have formulated it, each possible alignment has to be considered in turn, and each contributes increments to expected counts
- it was already noted that the number of possible alignments is \((\ell_s + 1)^{\ell_o}\) – ie. exponential in the length of \(o\). For \(\ell_s + 1 = \ell_o = 10\), this is \(10^{10}\), or 10,000 million
- so unless a way can be found to make the EM process on this model much more efficient, its learnability in principle would just be an interesting curiosity
- it turns out that by studying a little more closely the formula where alignments are summed over, and doing some conversions of 'sums-over-products' to 'products-over-sums', it is indeed possible to make the EM process on this model much more efficient.
Summing over alignments

2 in the formula for $p(o, a, \ell_o, s)$ everything except the translation probs is going to cancel out when you take ratios ...
Summing over alignments

Looking at the brute-force EM algorithm, need to calculate $p(a|o, s)$ – call this $\gamma_d(a)$.

\[^2\text{in the formula for } p(⟨o, a, ℓ_o, s⟩) \text{ everything except the translation probs is going to cancel out when you take ratios . . .}\]
Summing over alignments

Looking at the brute-force EM algorithm, need to calculate $p(a|o,s)$ – call this $\gamma_d(a)$. It's fairly easy to see that this is

$$\gamma_d(a) = \frac{\prod_j p(o_j|s_{a(j)})}{\sum_{a'} \prod_j p(o_j|s_{a'(j)})} \quad (11)$$

\[^2\text{In the formula for } p(\langle o, a, \ell_o, s \rangle) \text{ everything except the translation probs is going to cancel out when you take ratios} \ldots\]
Summing over alignments

Looking at the brute-force EM algorithm, need to calculate \(p(a|o,s) \) – call this \(\gamma_d(a) \). Its fairly easy to see that this is\(^2\)

\[
\gamma_d(a) = \frac{\prod_j p(o_j|s_{a(j)})}{\sum_{a'} \prod_j p(o_j|s_{a'(j)})} \tag{11}
\]

- The numerator is a product.

\(^2\)In the formula for \(p(\langle o, a, \ell_o, s \rangle) \) everything except the translation probs is going to cancel out when you take ratios . . .
Summing over alignments

Looking at the brute-force EM algorithm, need to calculate $p(a|o,s)$ – call this $\gamma_d(a)$. Its fairly easy to see that this is

$$\gamma_d(a) = \frac{\prod_j p(o_j|s_{a(j)})}{\sum_{a'} \prod_j p(o_j|s_{a'(j)})}$$ \hspace{1cm} (11)

- The numerator is a product.
- It turns out the denominator can also be turned into product of sums

\(^2\text{in the formula for } p(o, a, \ell_o, s) \text{ everything except the translation probs is going to cancel out when you take ratios . . .} \)
Summing over alignments contd

each j can be aligned to any i between 0 and I, hence

$$
\sum_a \prod_j t(o_j | s_{a(j)}) = \sum_{a(1)=0}^I \cdots \sum_{a(J)=0}^I \prod_{j=1}^J t(o_j | s_{a(j)})
$$
Summing over alignments contd

each j can be aligned to any i between 0 and I, hence

$$
\sum_a \prod_j t(o_j|s_{a(j)}) = \sum_{a(1)=0}^I \cdots \sum_{a(J)=0}^I \prod_{j=1}^J t(o_j|s_{a(j)})
$$

$$
= \sum_{a(1)=0}^I \cdots \sum_{a(J)=0}^I [t(o_1|s_{a(1)}) \cdots t(o_J|s_{a(J)})]
$$

=

=

Summing over alignments contd

each j can be aligned to any i between 0 and I, hence

$$
\sum_{a} \prod_{j} t(o_j|s_{a(j)}) = \sum_{a(1)=0}^{I} \cdots \sum_{a(J)=0}^{I} \prod_{j=1}^{J} t(o_j|s_{a(j)})
$$

$$
= \sum_{a(1)=0}^{I} \cdots \sum_{a(J)=0}^{I} [t(o_1|s_{a(1)}) \cdots t(o_J|s_{a(J)})]
$$

each $\sum_{a(j)=0}^{I}()$ effects just one $t(o_j|s_{a(j)})$ term, and this means we can use a sum-of-products to product-of-sums conversion, hence

$$=$$

$$=$$
Summing over alignments contd

each j can be aligned to any i between 0 and I, hence

$$
\sum_{a} \prod_{j} t(o_{j}|s_{a(j)}) = \sum_{a(1)=0}^{I} \ldots \sum_{a(J)=0}^{I} \prod_{j=1}^{J} t(o_{j}|s_{a(j)})
$$

$$
= \sum_{a(1)=0}^{I} \ldots \sum_{a(J)=0}^{I} [t(o_{1}|s_{a(1)}) \ldots t(o_{J}|s_{a(J)})]
$$

each $\sum_{a(j)=0}^{I}()$ effects just one $t(o_{j}|s_{a(j)})$ term, and this means we can use a sum-of-products to product-of-sums conversion, hence

$$
= \prod_{j=1}^{J} [\sum_{a(j)=0}^{I} t(o_{j}|s_{a(j)})]
$$
Summing over alignments contd

Each j can be aligned to any i between 0 and I, hence

$$
\sum_a \prod_j t(o_j|s_{a(j)}) = \sum_{a(1)=0}^I \cdots \sum_{a(J)=0}^I \prod_{j=1}^J t(o_j|s_{a(j)})
$$

$$
= \sum_{a(1)=0}^I \cdots \sum_{a(J)=0}^I [t(o_1|s_{a(1)}) \cdots t(o_J|s_{a(J)})]
$$

Each $\sum_{a(j)=0}^I$ effects just one $t(o_j|s_{a(j)})$ term, and this means we can use a sum-of-products to product-of-sums conversion, hence

$$
= \prod_{j=1}^J \left[\sum_{a(j)=0}^I t(o_j|s_{a(j)}) \right]
$$

$$
= \prod_{j=1}^J \left[\sum_{i=0}^I t(o_j|s_i) \right]
$$
Pause: did you believe that?

the key step above was a conversion from a sum-of-products to a product-of-sums.
for the case of \(o s \) having length 2 can relatively easily verify by brute force
Pause: did you believe that?

the key step above was a conversion from a sum-of-products to a product-of-sums.
for the case of o_s having length 2 can relatively easily verify by brute force

$$\sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} \prod_{j=1}^{2} t(o_j | s_{a(j)}) =$$

$$= t(o_1 | s_0) t(o_2 | s_0) + t(o_1 | s_0) t(o_2 | s_1) + t(o_1 | s_0) t(o_2 | s_2) +$$

$$=$$

$$=$$
Pause: did you believe that?

the key step above was a conversion from a sum-of-products to a product-of-sums.
for the case of $o s$ having length 2 can relatively easily verify by brute force

$$\sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} \prod_{j=1}^{2} t(o_j|s_{a(j)}) =$$

$$= t(o_1|s_0) t(o_2|s_0) + t(o_1|s_0) t(o_2|s_1) + t(o_1|s_0) t(o_2|s_2) +$$

$$t(o_1|s_1) t(o_2|s_0) + t(o_1|s_1) t(o_2|s_1) + t(o_1|s_1) t(o_2|s_2) +$$

$$= \text{...}$$
Pause: did you believe that?

the key step above was a conversion from a sum-of-products to a
product-of-sums.
for the case of oS having length 2 can relatively easily verify by brute force

$$
\sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} \prod_{j=1}^{2} t(o_j|s_{a(j)}) =
$$

$$
= t(o_1|s_0) t(o_2|s_0) + t(o_1|s_0) t(o_2|s_1) + t(o_1|s_0) t(o_2|s_2) + t(o_1|s_1) t(o_2|s_0) + t(o_1|s_1) t(o_2|s_1) + t(o_1|s_1) t(o_2|s_2) + t(o_1|s_2) t(o_2|s_0) + t(o_1|s_2) t(o_2|s_1) + t(o_1|s_2) t(o_2|s_2) =
$$

$$
=
$$

$$
=
$$
Pause: did you believe that?

the key step above was a conversion from a sum-of-products to a product-of-sums. for the case of $o_1 s_0$ having length 2 can relatively easily verify by brute force

$$
\sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} \prod_{j=1}^{2} t(o_j | s_{a(j)}) =
$$

$$
= t(o_1 | s_0) t(o_2 | s_0) + t(o_1 | s_0) t(o_2 | s_1) + t(o_1 | s_0) t(o_2 | s_2) +
$$

$$
+ t(o_1 | s_1) t(o_2 | s_0) + t(o_1 | s_1) t(o_2 | s_1) + t(o_1 | s_1) t(o_2 | s_2) +
$$

$$
+ t(o_1 | s_2) t(o_2 | s_0) + t(o_1 | s_2) t(o_2 | s_1) + t(o_1 | s_2) t(o_2 | s_2) =
$$

$$
= t(o_1 | s_0) [t(o_2 | s_0) + t(o_2 | s_1) + t(o_2 | s_2)] +
$$

$$
= \vdots
$$
Pause: did you believe that?

the key step above was a conversion from a sum-of-products to a product-of-sums.
for the case of \(o s \) having length 2 can relatively easily verify by brute force

\[
\sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} \prod_{j=1}^{2} t(o_j \mid s_{a(j)}) =
\]

\[
= t(o_1 \mid s_0) t(o_2 \mid s_0) + t(o_1 \mid s_0) t(o_2 \mid s_1) + t(o_1 \mid s_0) t(o_2 \mid s_2) +
\]

\[
+ t(o_1 \mid s_1) t(o_2 \mid s_0) + t(o_1 \mid s_1) t(o_2 \mid s_1) + t(o_1 \mid s_1) t(o_2 \mid s_2) +
\]

\[
+ t(o_1 \mid s_2) t(o_2 \mid s_0) + t(o_1 \mid s_2) t(o_2 \mid s_1) + t(o_1 \mid s_2) t(o_2 \mid s_2) =
\]

\[
= t(o_1 \mid s_0) [t(o_2 \mid s_0) + t(o_2 \mid s_1) + t(o_2 \mid s_2)] +
\]

\[
+ t(o_1 \mid s_1) [t(o_2 \mid s_0) + t(o_2 \mid s_1) + t(o_2 \mid s_2)] +
\]

\[
=
\]
Pause: did you believe that?

the key step above was a conversion from a sum-of-products to a product-of-sums.

for the case of \(o \ s \) having length 2 can relatively easily verify by brute force

\[
\sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} \prod_{j=1}^{2} t(o_j|s_{a(j)}) =
\]

\[
= t(o_1|s_0) t(o_2|s_0) + t(o_1|s_0) t(o_2|s_1) + t(o_1|s_0) t(o_2|s_2) +
\]

\[
+ t(o_1|s_1) t(o_2|s_0) + t(o_1|s_1) t(o_2|s_1) + t(o_1|s_1) t(o_2|s_2) +
\]

\[
+ t(o_1|s_2) t(o_2|s_0) + t(o_1|s_2) t(o_2|s_1) + t(o_1|s_2) t(o_2|s_2) =
\]

\[
= t(o_1|s_0)[t(o_2|s_0) + t(o_2|s_1) + t(o_2|s_2)] +
\]

\[
+ t(o_1|s_1)[t(o_2|s_0) + t(o_2|s_1) + t(o_2|s_2)] +
\]

\[
+ t(o_1|s_2)[t(o_2|s_0) + t(o_2|s_1) + t(o_2|s_2)] =
\]

=
Pause: did you believe that?

the key step above was a conversion from a sum-of-products to a product-of-sums.
for the case of $o s$ having length 2 can relatively easily verify by brute force

$$\sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} \prod_{j=1}^{2} t(o_j \mid s_{a(j)}) =$$

$$= t(o_1 \mid s_0) t(o_2 \mid s_0) + t(o_1 \mid s_0) t(o_2 \mid s_1) + t(o_1 \mid s_0) t(o_2 \mid s_2) +$$

$$t(o_1 \mid s_1) t(o_2 \mid s_0) + t(o_1 \mid s_1) t(o_2 \mid s_1) + t(o_1 \mid s_1) t(o_2 \mid s_2) +$$

$$t(o_1 \mid s_2) t(o_2 \mid s_0) + t(o_1 \mid s_2) t(o_2 \mid s_1) + t(o_1 \mid s_2) t(o_2 \mid s_2) =$$

$$= t(o_1 \mid s_0) [t(o_2 \mid s_0) + t(o_2 \mid s_1) + t(o_2 \mid s_2)] +$$

$$t(o_1 \mid s_1) [t(o_2 \mid s_0) + t(o_2 \mid s_1) + t(o_2 \mid s_2)] +$$

$$t(o_1 \mid s_2) [t(o_2 \mid s_0) + t(o_2 \mid s_1) + t(o_2 \mid s_2)] =$$

$$= [t(o_1 \mid s_0) + t(o_1 \mid s_1) + t(o_1 \mid s_2)] [t(o_2 \mid s_0) + t(o_2 \mid s_1) + t(o_2 \mid s_2)]$$
Making $p(a|o,s)$ into a product

Armed with this, we can rewrite (11) the formula for $\gamma_d(a)$ as
Making $p(a \mid o, s)$ into a product

Armed with this, we can rewrite (11) the formula for $\gamma_d(a)$ as

$$
\gamma_d(a) = \frac{\prod_{j=1}^{J} t(o_j \mid s_{a(j)})}{\prod_{j=1}^{J} \sum_{i=0}^{l} t(o_j \mid s_i)}
$$
Making $p(a|o,s)$ into a product

Armed with this, we can rewrite (11) the formula for $\gamma_d(a)$ as

$$\gamma_d(a) = \frac{\prod_{j=1}^{J} [t(o_j|s_{a(j)})]}{\prod_{j=1}^{J} [\sum_{i=0}^{I} t(o_j|s_i)]}$$

and this is just one big product
Making $p(a|o,s)$ into a product

Armed with this, we can rewrite (11) the formula for $\gamma_d(a)$ as

$$
\gamma_d(a) = \frac{\prod_{j=1}^{J} [t(o_j|s_{a(j)})]}{\prod_{j=1}^{J} [\sum_{i=0}^{l'} t(o_j|s_i)]}
$$

and this is just one big product

$$
= \prod_{j=1}^{J} \left[\frac{t(o_j|s_{a(j)})}{\sum_{i=0}^{l'} t(o_j|s_i)} \right]
$$
Making \(p(a|o,s) \) into a product

Armed with this, we can rewrite (11) the formula for \(\gamma_d(a) \) as

\[
\gamma_d(a) = \frac{\prod_{j=1}^{J}[t(o_j|s_{a(j)})]}{\prod_{j=1}^{J}[\sum_{i=0}^{I} t(o_j|s_i)]}
\]

and this is just one big product

\[
= \prod_{j=1}^{J} \left[\frac{t(o_j|s_{a(j)})}{\sum_{i=0}^{I} t(o_j|s_i)} \right]
\]

each term in this product can be seen as the probability of a particular alignment step \((j, i)\), given \(o, s\), and it makes sense for the overall alignment probability to be a product of the individual steps. If we use the notation \(\gamma_d(j, i) \) for this probability of a single alignment step, we get
Making $p(a|o, s)$ into a product

Armed with this, we can rewrite (11) the formula for $\gamma_d(a)$ as

$$\gamma_d(a) = \frac{\prod_{j=1}^{J} t(o_j|s_{a(j)})}{\prod_{j=1}^{J} [\sum_{i=0}^{t} t(o_j|s_i)]}$$

and this is just one big product

$$= \prod_{j=1}^{J} \left[\frac{t(o_j|s_{a(j)})}{\sum_{i=0}^{t} t(o_j|s_i)} \right]$$

each term in this product can be seen as the probability of a particular alignment step (j, i), given o, s, and it makes sense for the overall alignment probability to be a product of the individual steps. If we use the notation $\gamma_d(j, i)$ for this probability of a single alignment step, we get

$$\gamma_d(a) = \prod_{j=1}^{J} [\gamma_d(j, a(j))]$$
We have for $\gamma_d(j, i)$

$$\gamma_d(j, i) = \frac{t(o_j | s_i)}{\sum_{i' = 0}^{i'} t(o_j | s_{i'})}$$ \hspace{1cm} (12)$$
We have for $\gamma_d(j, i)$

$$
\gamma_d(j, i) = \frac{t(o_j|s_i)}{\sum_{i'=0}^I t(o_j|s_{i'})}
$$

- crucially the cost of calculating $\gamma_d(j, i)$ is trivial – its linear in length of s
We have for $\gamma_d(j, i)$

$$\gamma_d(j, i) = \frac{t(o_j | s_i)}{\sum_{i' = 0}^{l} t(o_j | s_{i'})}$$

- crucially the cost of calculating $\gamma_d(j, i)$ is trivial – its linear in length of s
- The efficient version of EM rests on seeing that once $p(j, i | o, s)$ is worked out for each j, i, the desired expected (o, s) counts can be worked out from them
Outline

Parameter learning (efficient)
How to sum alignments efficiently
Efficient EM via $p((j, i) \in a|o, s)$
recall the \([E]\) step of the brute-force algorithm (if \(o, s\) are the \(d^{th}\) pair):

\[
\begin{align*}
\text{for each pair } (o, s) \\
\quad \text{for each } a \text{ calculate } p(a|o, s) & \quad \text{ // pseudo counts of } (o,s) \text{ word pairs} \\
\quad \text{for each } j \in 1 : \ell_o & \quad \text{ // in virtual data} \\
\quad \#(o_j, s_{a(j)}) & += p(a|o, s)
\end{align*}
\]
recall the $[E]$ step of the brute-force algorithm (if o, s are the d^{th} pair):

$$
\text{for each pair } (o, s) \\
\text{for each } a \text{ calculate } p(a|o, s) \quad \text{// pseudo counts of } (o, s) \text{ word pairs} \\
\text{for each } j \in 1 : \ell_o \quad \text{// in virtual data} \\
\#(o_j, s_{a(j)}) += p(a|o, s)
$$

- consider a particular (j, i). As you go through all possible a for o, s, each time the alignment a contains this pairing you make the increment $\gamma_d(a)$.

3 The notation $\sum_{a| (j, i) \in a}$ means 'sum over only those a that have $(j, i) \in a$. '

recall the \([E]\) step of the brute-force algorithm (if \(o, s\) are the \(d^{th}\) pair):

\[
\text{for each pair } (o, s) \\
\quad \text{for each } a \text{ calculate } p(a|o, s) \quad \text{// pseudo counts of } (o,s) \text{ word pairs} \\
\quad \quad \text{for each } j \in 1: \ell_o \quad \text{// in virtual data} \\
\quad \quad \quad \#(o_j, s_{a(j)}) += p(a|o, s)
\]

\[\text{consider a particular } (j, i). \text{ As you go through all possible } a \text{ for } o, s, \text{ each time the alignment } a \text{ contains this pairing you make the increment } \gamma_d(a). \]

\[
\ldots \text{aim for an algorithm which works out quickly for each } j, i \\
\text{what the sum of these increments will be, ie.}^3
\]

\[
\sum_{a|(j,i) \in a} \gamma_d(a)
\]

\[\text{\hspace{1cm}(13)} \]

\(^3\text{The notation } \sum_{a|(j,i) \in a}(\text{)} \text{ means 'sum over only those } a \text{ that have } (j, i) \in a \text{'}.\]
Summing over the alignments gives just $\gamma_d(j, i)$

for o position j, s position i is fixed. For every other o position j', j' can be aligned to any i between 0 and l, hence

$$\sum_{a | (i, j) \in a} \gamma_d(a) = \gamma_d(j, i)$$
Summing over the alignments gives just $\gamma_d(j, i)$

for o position j, s position i is fixed. For every other o position j', j' can be aligned to any i between 0 and I, hence

$$\sum_{a | (i, j) \in a} \gamma_d(a) = \sum_{a(1) = 0}^I \ldots \sum_{a(j-1) = 0}^I \sum_{a(j+1) = 0}^I \ldots \sum_{a(J) = 0}^I \left[\gamma_d(j, i) \prod_{j' \neq j} \gamma_d(j', a(j')) \right]$$

$$= \gamma_d(j, i)$$
Summing over the alignments gives just $\gamma_d(j, i)$

for o position j, s position i is fixed. For every other o position j', j' can be aligned to any i between 0 and I, hence

$$\sum_{a|(i,j)\in a} \gamma_d(a) = \sum_{a(1)=0}^I \ldots \sum_{a(j-1)=0 \ a(j+1)=0}^I \sum_{a(J)=0}^I \left[\gamma_d(j, i) \prod_{j' \neq j} \gamma_d(j', a(j')) \right]$$

we can pull out $\gamma_d(j, i)$ and again do a sum-of-products to product-of-sums conversion with the rest, hence

$$= \gamma_d(j, i)$$
Summing over the alignments gives just $\gamma_d(j, i)$ for o position j, s position i is fixed. For every other o position j', j' can be aligned to any i between 0 and I, hence

$$
\sum_{a| (i, j) \in a} \gamma_d(a) = \sum_{a(1) = 0}^I \cdots \sum_{a(j-1) = 0}^I \sum_{a(j+1) = 0}^I \cdots \sum_{a(J) = 0}^I \left[\gamma_d(j, i) \prod_{j' \neq j} \gamma_d(j', a(j')) \right]
$$

we can pull out $\gamma_d(j, i)$ and again do a sum-of-products to product-of-sums conversion with the rest, hence

$$
= \gamma_d(j, i) \prod_{j' \neq j} \left[\sum_{a(j') = 0}^I \gamma_d(j', a(j')) \right]
$$

$$
= \gamma_d(j, i)
$$
Summing over the alignments gives just $\gamma_d(j, i)$

for o position j, s position i is fixed. For every other o position j', j' can be aligned to any i between 0 and I, hence

$$
\sum_{a \mid (i, j) \in a} \gamma_d(a) = \sum_{a(1) = 0}^I \ldots \sum_{a(j-1) = 0, a(j+1) = 0}^I \sum_{a(j) = 0}^I \left[\gamma_d(j, i) \prod_{j' \neq j} \gamma_d(j', a(j')) \right]
$$

we can pull out $\gamma_d(j, i)$ and again do a sum-of-products to product-of-sums conversion with the rest, hence

$$
= \gamma_d(j, i) \prod_{j' \neq j} \left[\sum_{a(j') = 0}^I \gamma_d(j', a(j')) \right]
$$

each sum runs over every possible alignment destination for j' and so each one sums to one, so you get just

$$
= \gamma_d(j, i)
$$
Efficient EM algorithm for IBM Model 1 training

initialize \(tr(o|s) \) uniformly

repeat \([E]\) followed by \([M]\) till convergence

\([E]\)
for each \(o \in \mathcal{V}_o \)
 for each \(s \in \mathcal{V}_s \cup \{\text{NULL}\} \)
 \(#(o, s) = 0 \)

for each pair \(o, s \)
 for each \(j \in 1 : \ell_o \)
 for each \(i \in 0 : \ell_s \)
 \(#(o_j, s_i) += p((j, i)|o, s) \) (using (12))

\([M]\)
for each \(s \in \mathcal{V}_s \cup \{\text{NULL}\} \)
 for each \(o \in \mathcal{V}_o \)
 \(tr(o|s) = \frac{#(o, s)}{\sum_o #(o, s)} \)
Further details

from the above outline to real code is a fairly short distance
Further details

from the above outline to real code is a fairly short distance

1. the formula for \(p((j, i)|o, s) \) is \(\frac{t(o_j|s_i)}{\sum_{i'=0}^{I} t(o_j|s_{i'})} \), and the denominator stays the same as \(i \) is varied in \(p((i, j)|o, s) \), so this denominator should be calculated once for each \(j \)
Further details

from the above outline to real code is a fairly short distance

1. the formula for \(p((j, i)|o, s) \) is
 \[
 \frac{t(o_j|s_i)}{\sum_{i' = 0}^{l} t(o_j|s_{i'})},
 \]
 and the denominator stays the same as \(i \) is varied in \(p((i, j)|o, s) \), so this denominator should be calculated once for each \(j \)

2. likewise in the M step, in
 \[
 \frac{\#(o, s)}{\sum_{o'} \#(o', s)},
 \]
 the denominator stays the same as \(o \) is varied, so this denominator should be calculated once for each \(s \)
Example One

Assuming a corpus of 2 pairs:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>. . .</th>
<th>final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the</td>
<td>0.33</td>
<td>0.5</td>
<td>0.6</td>
<td>0.69</td>
<td>0.77</td>
<td>0.84</td>
<td>1.00</td>
</tr>
<tr>
<td>house</td>
<td>0.33</td>
<td>0.25</td>
<td>0.2</td>
<td>0.15</td>
<td>0.11</td>
<td>0.081</td>
<td>0.00</td>
</tr>
<tr>
<td>flower</td>
<td>0.33</td>
<td>0.25</td>
<td>0.2</td>
<td>0.15</td>
<td>0.11</td>
<td>0.081</td>
<td>0.00</td>
</tr>
<tr>
<td>the</td>
<td>0.33</td>
<td>0.5</td>
<td>0.43</td>
<td>0.36</td>
<td>0.3</td>
<td>0.24</td>
<td>0.00</td>
</tr>
<tr>
<td>house</td>
<td>0.33</td>
<td>0.5</td>
<td>0.57</td>
<td>0.64</td>
<td>0.7</td>
<td>0.76</td>
<td>1.00</td>
</tr>
<tr>
<td>flower</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>the</td>
<td>0.33</td>
<td>0.5</td>
<td>0.43</td>
<td>0.36</td>
<td>0.3</td>
<td>0.24</td>
<td>0.00</td>
</tr>
<tr>
<td>house</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>flower</td>
<td>0.33</td>
<td>0.5</td>
<td>0.57</td>
<td>0.64</td>
<td>0.7</td>
<td>0.76</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Example Two (Koehn p92)

assuming a corpus of 3 pairs

<table>
<thead>
<tr>
<th>s^1 das Haus</th>
<th>s^2 das Buch</th>
<th>s^3 ein Buch</th>
</tr>
</thead>
<tbody>
<tr>
<td>o^1 the house</td>
<td>o^2 the book</td>
<td>o^3 a book</td>
</tr>
</tbody>
</table>

initialising all $t(o|s)$ uniformly to 0.25, evolution of $t(o|s)$ is

<table>
<thead>
<tr>
<th>Obs</th>
<th>Src</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>final</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>das</td>
<td>0.25</td>
<td>0.5</td>
<td>0.6364</td>
<td>0.7479</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>book</td>
<td>das</td>
<td>0.25</td>
<td>0.25</td>
<td>0.1818</td>
<td>0.1208</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>house</td>
<td>das</td>
<td>0.25</td>
<td>0.25</td>
<td>0.1818</td>
<td>0.1313</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>the</td>
<td>buch</td>
<td>0.25</td>
<td>0.25</td>
<td>0.1818</td>
<td>0.1208</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>book</td>
<td>buch</td>
<td>0.25</td>
<td>0.5</td>
<td>0.6364</td>
<td>0.7479</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>buch</td>
<td>0.25</td>
<td>0.25</td>
<td>0.1818</td>
<td>0.1313</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>book</td>
<td>ein</td>
<td>0.25</td>
<td>0.5</td>
<td>0.4286</td>
<td>0.3466</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>ein</td>
<td>0.25</td>
<td>0.5</td>
<td>0.5714</td>
<td>0.6534</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>haus</td>
<td>0.25</td>
<td>0.5</td>
<td>0.4286</td>
<td>0.3466</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>house</td>
<td>haus</td>
<td>0.25</td>
<td>0.5</td>
<td>0.5714</td>
<td>0.6534</td>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>