Further details of the Baum-Welch algorithm

Martin Emms

November 15, 2018
Brute-force EM would for each o^d calculate 'responsibility' $\gamma^d(s) = p(s|o^d)$ for all s and from these calculate various expectations (eg. $E^d(i), E^d(ij)$).

Baum-Welch instead first runs α and β for o^d. By various terms involving α and β can derive various per t 'clock tick' mini responsibilities.
real Baum-Welch: summing the 'clock-tick' probs

- brute-force EM would for each o^d calculate 'responsibility' $\gamma^d(s) = p(s|o^d)$ for all s and from these calculate various expectations (eg. $E^d(i)$, $E^d(ij)$)

- Baum-Welch instead first runs α and β for o^d. By various terms involving α and β can derive various per t 'clock tick' mini responsibilities and then summations over these give various expectations ($E^d(i)$, $E^d(ij)$ etc). These are
real Baum-Welch: summing the 'clock-tick' probs

- brute-force EM would for each o^d calculate 'responsibility' $\gamma^d(s) = p(s|o^d)$ for all s and from these calculate various expectations (eg. $E^d(i)$, $E^d(ij)$)

- Baum-Welch instead first runs α and β for o^d. By various terms involving α and β can derive various per t 'clock tick' mini responsibilities and then summations over these give various expectations ($E^d(i)$, $E^d(ij)$ etc).

These are

'occupation' $\gamma^d_t(i) = \text{the cond. prob. of state } i \text{ at } t \text{ given } o^d$

$= \alpha_t(i)\beta_t(i)/P(o^d)$
real Baum-Welch: summing the 'clock-tick' probs

- brute-force EM would for each o^d calculate 'responsibility' $\gamma^d(s) = p(s|o^d)$ for all s and from these calculate various expectations (eg. $E^d(i), E^d(ij)$)

- Baum-Welch instead first runs α and β for o^d. By various terms involving α and β can derive various per t 'clock tick' mini responsibilities and then summations over these give various expectations ($E^d(i), E^d(ij)$ etc).

These are

'occupation' $\gamma^d_t(i) =$ the cond. prob. of state i at t given o^d

$$= \frac{\alpha_t(i) \beta_t(i)}{P(o^d)}$$

'transition' $\xi^d_t(i,j) =$ the cond. prob. of transition ij at t given o^d

$$= \frac{\alpha_t(i) \times a_{ij} b_j(o_{t+1}^d) \times \beta_{t+1}(j)}{P(o^d)}$$
Further details of the Baum-Welch algorithm

'occupation' $\gamma_t(i)$

$\alpha(t, i)$ $\beta(t, i)$

$\gamma^d_t(i) = \frac{\alpha_t(i) \beta_t(i)}{P(o^d)}$
'transition' $\xi_t(i,j)$

\[\alpha(t, i) \]

\[\beta(t+1, j) \]

\[\begin{align*}
\xi_t(i,j) &= \text{the probability of transition } ij \text{ at } t \text{ given } o^d \\
&= \frac{[\alpha_t(i) \times a_{ij} b_j(o_{t+1}) \times \beta_{t+1}(j)]}{P(o)}
\end{align*} \]
Further details of the Baum-Welch algorithm

re-estimation of transition probs A

the re-estimation for the transition probs a_{ij} involves getting the expected count of transition ij and comparing to the expected count of i

$$\hat{a}_{ij} = \frac{\sum_d \sum_{t=1}^{T-1} \xi_t^d(i,j)}{\sum_d \sum_{t=1}^{T-1} \gamma_t^d(i)}$$

Note the limit $T - 1$: at the last time tick there is no defined ij transition, nor should any expected state value at T be relevant.
Further details of the Baum-Welch algorithm

picturing the numerator summation for transition probs

\[\sum_{t=1}^{T-1} \xi_t(i,j) \]

sum over \(t \) = expectation of \(i \) to \(j \) given obs

\(\xi(t' i j) \)
\(\xi(t'' i j) \)
\(\xi(t''' i j) \)
the re-estimation for the obs probs $b_j(k)$ involves getting the expected count being in state j and producing observation symbol k and comparing this to the expected count of being in state j

$$\hat{b}(k) = \frac{\sum_{d} \sum_{t=1}^{T} \mathbf{1}_{o_t = k} \gamma_t(j)}{\sum_{d} \sum_{t=1}^{T} \gamma_t(j)}$$

in the numerator just the time ticks where $o_t = k$ are taken, and in the denominator every time tick is taken
Further details of the Baum-Welch algorithm

picturing the numerator summation for the observation probs

\[\sum_{t=1}^{T} \sum_{o_t=k} \gamma_t(j) \]

sum over t where obs is k = expectation of ob k with state j given obs

\[\gamma(t', j, k) \quad \gamma(t'', j, k) \quad \gamma(t''', j, k) \]

\[\cdots \quad o \text{ at } t' = k \quad \cdots \quad o \text{ at } t'' = k \quad \cdots \quad o \text{ at } t''' = k \]
Further details of the Baum-Welch algorithm

picturing the numerator summation for the observation probs

\[\sum_{t=1}^{T} \gamma_t(j) \mid o_t = k \text{ only where } o_t \text{ is obs } k \]
the re-estimation for start prob $\pi[i]$ involves getting the expected count of being in state i at $t = 1$ and comparing to number of observations D

\[\hat{\pi}[i] = \frac{\sum_d \gamma_1^d(i)}{D} \]
The backward algorithm

recall

'forward probability' $\alpha_t(i) = P(o_1 \ldots o_t, s_t = i)$
Recursion for α
base $\alpha_1(i) = \pi(i)b_i(o_1)$
recursive $\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i)a_{ij}b_j(o_t)$, for $t = 2, \ldots, T$

corresponding for β

'backward probability' $\beta_t(i) = P(o_{t+1} \ldots o_T|s_t = i)$
Recursion for β
base $\beta_T(i) = 1$
recursive $\beta_t(i) = \sum_{j=1}^{N} a_{ij}b_j(o_{t+1})\beta_{t+1}(j)$, for $t = T - 1, \ldots, 1$
Further details of the Baum-Welch algorithm

deriving β

for $\beta_t(i)$ need $P(o_{t+1} \ldots o_T|s_t = i)$. Let j be some arbitrary state at $t+1$. If had $P(s_{t+1} = j, o_{t+1} \ldots o_T|s_t = i)$, could sum over the j to get desired quantity.

\[
P(s_{t+1} = j, o_{t+1} \ldots o_T|s_t = i) = \frac{P(s_t = i, s_{t+1} = j, o_{t+1} \ldots o_T)}{P(s_t = i)}
\]

\[
= \frac{P(s_t = 1, s_{t+1} = j, o_{t+1})\beta_{t+1}(j)}{P(s_t = i)}
\]

\[
= \frac{P(s_t = 1, s_{t+1} = j) b_j(o_{t+1})\beta_{t+1}(j)}{P(s_t = i)}
\]

\[
= a_{ij} b_j(o_{t+1})\beta_{t+1}(j)
\]

hence

\[
\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(o_{t+1})\beta_{t+1}(j)
\]