Further details of the Baum-Welch algorithm

Martin Emms

November 17, 2019

real Baum-Welch: summing the 'clock-tick' probs

- brute-force EM would for each o^d calculate 'responsibility' $\gamma^d(s) = p(s|o^d)$ for all s and from these calculate various expectations (e.g., $E^d(i)$, $E^d(ij)$)

- Baum-Welch instead first runs α and β for o^d. By various terms involving α and β can derive various per t 'clock tick' mini responsibilities and then summations over these give various expectations ($E^d(i)$, $E^d(ij)$ etc). These are

 • 'occupation' $\gamma_t^d(i) = \text{the cond. prob. of state } i \text{ at } t \text{ given } o^d$
 $$= \frac{\alpha_t(i)\beta_t(i)}{P(o^d)}$$

 • 'transition' $\xi_t^d(i,j) = \text{the cond. prob. of transition } ij \text{ at } t \text{ given } o^d$
 $$= \frac{[\alpha_t(i) \times a_{ij} b_{o_{t+1}}] \times \beta_{t+1}(j)}{P(o^d)}$$
Further details of the Baum-Welch algorithm

re-estimation of transition probs A

The re-estimation for the transition probs a_{ij} involves getting the expected count of transition ij and comparing to the expected count of i

$$a_{ij} = \frac{\sum d \sum_{t=1}^{T-1} \xi^d_t(i,j)}{\sum d \sum_{t=1}^{T-1} \gamma^d_t(i)}$$

Note the limit $T - 1$: at the last time tick there is no defined ij transition, nor should any expected state value at T be relevant.

Further details of the Baum-Welch algorithm

re-estimating the observation probs B

The re-estimation for the obs probs $b_j(k)$ involves getting the expected count being in state j and producing observation symbol k and comparing this to the expected count of being in state j

$$b_j(k) = \frac{\sum d \sum_{t=1}^{T} |o_t=k \gamma_t(j)}{\sum d \sum_{t=1}^{T} \gamma_t(j)}$$

In the numerator just the time ticks where $o_t = k$ are taken, and in the denominator every time tick is taken.

Further details of the Baum-Welch algorithm

picturing the numerator summation for transition probs

$\sum_{t=1}^{T-1} \xi_t(i,j)$

Further details of the Baum-Welch algorithm

picturing the numerator summation for the observation probs

$\sum_{t=1}^{T} |o_t=k \gamma_t(j)$

ie. sum $\gamma_t(j)$ only where o_t is obs k
Further details of the Baum-Welch algorithm

re-estimating the start probs π

the re-estimation for start prob $\pi[i]$ involves getting the expected count of being in state i at $t = 1$ and comparing to number of observations D

$$\hat{\pi}[i] = \frac{\sum_d \gamma_d^t(i)}{D}$$

The backward algorithm

Recall

'forward probability' $\alpha_t(i) = P(o_1 \ldots o_t, s_t = i)$

Recursion for α

base

$$\alpha_1(i) = \pi(i) b(o_1)$$

recursive

$$\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} b(o_t), \text{ for } t = 2, \ldots, T$$

corresponding for β

'backward probability' $\beta_t(i) = P(o_{t+1} \ldots o_T | s_t = i)$

Recursion for β

base

$$\beta_T(i) = 1$$

recursive

$$\beta_t(i) = \sum_{j=1}^N a_{ij} b(o_{t+1}) \beta_{t+1}(j), \text{ for } t = T-1, \ldots, 1$$

deriving β

for $\beta_t(i)$ need $P(o_{t+1} \ldots o_T | s_t = i)$. let j be some arbitrary state at $t + 1$. If had $P(s_{t+1} = j, o_{t+1} \ldots o_T | s_t = i)$, could sum over the j to get desired quantity.

$$P(s_{t+1} = j, o_{t+1} \ldots o_T | s_t = i) = \frac{P(s_t = i, s_{t+1} = j, o_{t+1} \ldots o_T)}{P(s_t = i)} = \frac{P(s_t = 1, s_{t+1} = j, o_{t+1}) \beta_{t+1}(j)}{P(s_t = i)} = \frac{P(s_t = 1, s_{t+1} = j) b(o_{t+1}) \beta_{t+1}(j)}{P(s_t = i)} = a_{ij} b(o_{t+1}) \beta_{t+1}(j)$$

hence

$$\beta_t(i) = \sum_{j=1}^N a_{ij} b(o_{t+1}) \beta_{t+1}(j)$$