Supplementary Information for CS4LL5

IBM Model 1 formula

\[P(o, a, \ell_o | s) = \kappa(\ell_o, \ell_s) \times \prod_j [p(o_j | s_{a(j)})] \]

(1)

where \(\kappa(\ell_o, \ell_s) \) is \(\frac{p(\ell_o | \ell_s)}{p(\ell_o)} \) and isolates a factor which is fixed for a given \(s \) and \(o \).

Phrase-based formula

\[P(\bar{o}_{1:K}, \tau, \bar{s}_{1:K}) = \prod_{k=1}^{K} \left[\text{tr}(\bar{o}_{\tau(k)}|\bar{s}_k)d(\bar{o}_{\tau(k-1)}, \bar{o}_{\tau(k)}) \right] \times \Phi_{LM}(s) \]

(2)

where \(s \) is the word sequence underlying the phrase sequence \(\bar{s}_{1:K} \).

Definitions for HMMs

- "forward probability" \(\alpha_t(i) \)
 \[= P(o_1 \ldots o_t, s_t = i) \]
 = joint prob of being in state \(i \) at time \(t \) and emitting the observation symbols \(o_1 \ldots o_t \)

- "backward probability" \(\beta_t(i) \)
 \[= P(o_{t+1} \ldots o_T|s_t = i) \]
 = conditional prob of emitting the observation symbols \(o_{t+1} \ldots o_T \) given being in state \(i \) at time \(t \)

- \(\alpha_t(i)\beta_t(i) \)
 \[= P(o_1 \ldots o_t, s_t = i, o_{t+1} \ldots o_T) \]
 = joint prob of being in state \(i \) at time \(t \) and emitting the observation symbols \(o_1 \ldots o_T \)