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Abstract

Storage management overhead accounts for a considerable proportion of execution
time in straightforward implementations of languages with dynamic storage alloca-
tion. Our approach to reducing this overhead is to shift some of the work to compile
time. With static reference count analysis, we determine when an object becomes
inaccessible, and insert explicit deallocation code into the program at those points.
This will reduce the frequency and number of garbage collections at run time.

We discuss previous approaches to storage analysis and show that reference count
analysis can allow more precise modeling of storage accessibility than other ap-
proaches.

The analysis is extended to the interprocedural case. It is formulated as a set
of path problems on a specially designed summary graph. The effectiveness of our
implemented optimization on a variety of programs is presented.
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Chapter 1

Introduction and Motivation

In early programming languages, such as ForTran and Cobol, storage for variables
is allocated statically. This scheme is simple and cheap to implement, but imposes
some severe restrictions on programming flexibility. For example, recursive procedures
cannot be accommodated, and all data objects must be of fixed size and shat)e.

Greater flexibility is available with dynamic stack allocation. Algol-60 is the
standard example of this scheme. PL/1 and C also use stack allocation for most
objects except those that the programmer explicitly specifies should be statically
allocated. Typically all allocation takes place at procedure entry and deallocation
takes place at procedure exit. Stack allocation allows implementation of recursive
procedures. It is more expensive than static allocation since some amount of execution
time is spent allocating and deallocating.

Dynamic heap allocation is the method of choice in modern high-level program-
ming languages. Dynamic heap allocation is “the simplest, most natural and most
powerful method from the programmer’s viewpoint” {MJ76]. However it is also the
most expensive. Unless the programmer is expected to explicitly deallocate storage,
special techniques are needed to recover it, since storage is generally not an unlimited
resource. Storage reclamation contributes'a sizable proportion of execution time in
languages such as LISP or Russell where heap deallocation is implicit. Reclamation

techniques are discussed in the next section.
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In Russell [BDD85] a programmer has no control over the allocation policy used
for the various kinds of values. The semantics assume that all storage is heap al-
located. But a correct implementation need not actually allocate everything on the
héap. To do so would be wasteful. In general, since Russell functions are first class
objects, function closures and function activation records must be allocated on the
heap. Variable cells must also be heap allocated since they may be returned to a sur-
rounding function. For other objects the flexibility of heap allocation is not required.
The following chapter looks at the problem of wasted flexibility in more detail, and

discusses techniques for switching to cheaper allocation policies where possible.

1.1 Storage Reclamation

In dynamic heap schemes a storage allocator hands out storage cells, from a limited
supply. When this supply runs out, it is necessary to reclaim cells which are clearly no
longer needed, that is cells which are not accessible from the user’s program. These
are “garbage” cells and the reclamation of them is called “garbage collection”.
There are basically two approaches to garbage coliection, For a detailed survey
see [Coh81]. Mark-sweep collectors maintain free lists of storage cells. Garbage col-
lection proceeds in two phases. First accessible storage is identified and marked in a
depth first search from a program’s variables and from pointers on the stack. Then
the collector sweeps over the heap and places all unmarked storage onto a free list.
Generally, storage allocation cannot be resumed until collection is finished, making
this scheme unsuitable for real-time applications. Copying collectors [Bak78] divide
memory into newspace and oldspace. Storage cells are allocated from newspace. When

this fills up the roles of the spaces are flipped and the copying phase begins. Accessible
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objects i‘n oldspace are identified, in a breadth first search, and copied to newspace.
A tagged forwarding address is left in the old cell. When other pointers to the cell are
encountered they are repia.ced with the forwarding address. Storage allocation can
resume as soon as the spaces have been flipped, making copying collectors suitable
for applications with real-time constraints.

Generation scavengers [LH33, Ung84, Moo84] are copying collectors which opti-
mize garbage collection for short-lived objects. They are based on two observations:
short-lived objects are much more common than longer-lived ones in LISP-like envi-
ronments, and it is wasteful to copy relatively permanent data on every collection.
Generation scavengers place objects which have been copied some number of times
in a special area, which is collected rarely, if ever. These collectors are proving very
fast and eliminate much of the overhead heretofore associated with dynamic heap
allocation. In certain circumstances, given a large amount of available memory, heap
allocation can become even more efficient than stack allocation [App87]. In these
environments most storage allocation optimizations (see chapter 2) become unimpor-

tant.

1.2 Conservative Garbage Collection

Unfortunately copying collectors, including generation scavengers, are not suitable
for all environments. They require that pointers be distinguishable from other data.
It may not be desirable or feasible to maintain enough run time information to dis-
tinguish pointers with certainty. If storage allocation is relatively infrequent in com-
parison with other operations, the overhead of maintaining sufficient information to

identify pointers at run-time may dominate other storage management overhead. If
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the client program was, at least partially, generated by a conventional (say C, or
Pascal) compiler, it will not maintain the necessary information. Even if the compiler
was designed to support automatic storage management, similar problems may occur
if a general purpose code generator is used. Maintaining tag information to identify
pointers may introduce incompatibilities in data representation that are viewed as un-
acceptable. In these situations a “conservative” collector is needed [BW88, Rov83].
A conservative collector treats any bit pattern that represents the address of a valid
object as though it were a pointer. It must retain any object which could conceivably
be accessible, and thus may fail to reclaim some garbage.

As a consequence of possibly treating an integer as a pointer, the collector cannot
move any object. Suppose some accessible bit pattern is assumed to be a pointer, and
the referenced cell is moved. The supposed pointer must be changed to refer to the new
cell location. But if the bit pattern is actually an integer it is not correct to change
its value. Copying collection is not possible. Conservative collectors therefore use
mark-sweep collection. These collectors can incorporate various techniques to speed
up recognition of valid heap objects, and to reduce the probability of misidentification
of integers as pointers." However it is unlikely that the performance can be brought
in line with that of generation scavengers. Thus it remains important to minimize

the number of heap allocations and garbage collections.

1.3 Russell Storage Management

The Russell run time environment uses the conservative collection scheme described

in [BW88]. The storage allocator maintains a separate free list for objects of different

!With the scherne described in [BW88], the collector fails to reclaim garbage exceedingly rarely.




sizes. It is therefore feasible to return a cell to the storage allocator.? Explicit
deallocation of an object of specified size costs 3 or 4 machine instructions. Garbage
collection is relatively costly, in a typical case taking perhaps 100 instructions per
reclamation of a small object. This is the key to the optimization which we propose
in this dissertation and which has been implemented in the Russell compiler.

Straightforward implementations of Russell produce very storage allocation of in-
tensive code. Various storage optimizations have already been implemented in the
Russell compiler [BD86, BH88]. These include stack allocation of activation records
and variable cells where possible. But some obvious “waste” of heap space remains.
Russell is used for many semi-numerical computations. The bignum (unbounded inte-
ger) facility is used as the foundation for a Russell implementation of the constructive
reals, which is the subject of on-going research at Rice [BCOR86, Boe87]. Since the
size of bignum objects is unknown at compile time, in the absence of further analysis
they must be heap-allocated. This means that all bignum temporaries, as well as
those mentidned explicitly in a program, are on the heap. Most of these témpora.ries
are very short-lived. Yet they consume heap-space very quickly.

There is a similar problem with floating point temporaries. They are double
precision numbers, and do not fit into the standard registers. To allocate them on
the stack would involve less work than for bignums, but it has not yet been looked
into.

This work is targeted at these and other temporary heap objects. We set out to
slow down consumption of the heap by explicitly freeing such objects when it is clear

that they are no longer in use.

2This is not the case for copying collectors.



The analysis which we developed has also been used for improving the efficiency

y
of Russell’s implement

ams [AS585]. In Russell a stream is represented by
a linked list of cons nodes, with a function closure as its tail node. These nodes are
differentiated by a cons/closure tag. When evaluation of the tail is forced. a new cons
node is created, with a new closure node as the tail. The old function closure almost
always becomes inaccessible at that point. But sometimes it won’t, and therefore, in
general, it cannot be explicitly deallocated. If it can be ascertained that the closure
node has no references to it other than from the preceding stream node, this fact
can be included with the cons/closure tag. The stream implementation uses this

information to discard the node when once it has been evaluated. The analysis which

will be described in this dissertation has allowed this optimization to be implemented.

1.4 Compile Time Garbage Collection

Garbage collection is the process of identifying and reclaiming inaccessible storage
cells. At compile time data flow analysis techniques [ASUS86] can be used to identify
points in a program where the last reference to a heap object is removed. By inserting
code at these points to free the object, we shift some of the overhead of the marking
phase of garbage collection from run time to compile time. This is generally an
optimization. By returning storage to the free list as it becomes garbage, we postpone
the moment when the free list becomes empty, and reduce the total number of garbage
collections needed. We call this optimization “compile time garbage collection”.? It
1s the approach to storage optimization which we have pursued. The compile time

analysis we use to identify when storage becomes inaccessible is based on Hudak’s

3Perhaps the optimization should be called “compile time marking” since it is only marking overhead
which is shifted to compile time.




reference count model [Hud86], which is an abstraction of an early automatic storage

reclamation technique, outlined here.

1.5 Reference-Count Based Storage

Management

Reference counting is a conceptually simple technique. An object must be garbage
if there are no references to it. In a reference count based reclamation system, each
run time object has an associated reference count, which is the number of references
to it (from variables, the stack, and pointers nested inside other objects). This count
is initially zero, and must be updated each time a pointer to the object is created or
destroyed. When the reference count of an object becomes 0 the object may safely be
freed. Any pointers nested in the object are thereby destroyed and the corresponding
reference counts must be decremented.

Other than its simplicity, the chief advantage of reference count based reclamation
is that the overhead costs are distributed over the entire execution. (With mark-
sweep and simple copying collectors program execution is halted while collection

takes place). The disadvantages are that extra space is needed for the counts, there

1s an overhead associated with every pointer assignment, and circular objects are not

reclaimed.

1.6 Outline of the Dissertation

Although modern generation scavenging garbage collectors can be very efficient, they

are not suitable for all run time environments. Therefore it remains important to re-
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duce garbage collection overhead, whether by reducing the number of heap allocations
or assisting the collector in its operations. The following chapter discusses these kinds
of storage optimizations. All are based on the idea that it is possible to use static
(compile time) information about objects and pointers to implement more efficient
memory management. Some previous techniques for gathering static information are
presented, for comparison with our analysis.

The remainder of the dissertation presents our approach to reducing garbage col-
lection costs, which is to introduce explicit deallocation code wherever it is deter-
mined to be safe. The optimization is based on the assumption that the storage
allocator maintains a free list to which inaccessible objects can be explicitly returned.
Chapter 3. describes the reference count analysis algorithm, which computes the in-
formation needed to identify when deallocation is safe. The algorithm is presented in
a data flow analysis framework [ASU86, KU77]. We show that compile time reference
counting can sometimes provide a more precise analysis of storage accessibility than
other approaches.

Chapter 4 extends the reference count analysis of chapter 3 to compute and use
interprocedural information. The interprocedural analysis requires flow-sensitive in-
formation about procedures. But since the context of calls can be ignored the prob-
lem remains tractable {Cal88]. The algorithm differs from traditional interprocedural
analysis algorithms. Instead of solving a data flow framework over a program call
graph, it solves path problems on a specially designed “flow summary graph”.

The algorithms of chapters 3 and 4 have been implemented as an optional op-
timization phase of the Russell compiler. In chapter 5 the results of applying this

optimization to a selection of Russell programs are presented.




The final chapter summarizes the contributions of this work, and mentions possible

directions for future work.



Chapter 2

Memory Management

Optimizations

Storage allocation policies range from static allocation to implicit global heap allo-
cation. Static allocation represents very early (compile time) binding of variables to
storage. Stack allocation binds at procedure entry. Heap allocation is fully dynamic,
allowing binding to storage at every assignment statement. Static allocation is cheap,
but inflexible. At the other end of the spectrum, dynamic global heap allocation
allows flexibility, but this benefit is offset i)y significant memory management costs.
Straightforward implementations of languages in which global heap allocation is the
default allocation policy, or in which the heap is implicit, use the heap for all objects,
even those that don’t need it.

This problem was first identified by Muchnik and Jones, in [MJ76], as the storage
allocation optimization problem, which they summarize as the problem of determin-
ing for each variable in the program the most appropriate storage allocation policy.
[MJ76, Sch75, Ste78, BH88, RM88] all describe techniques to switch to static and
stack allocation where possible. Ruggieri proposes a new run time memory organi-
zation and an associated allocation policy, which falls between stack and global heap
policies on the spectrum described earlier [Rug87]. She proposes that each procedure

have a local heap and that objects be allocated in the local heap associated with a
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procedure whose lifetime contains the lifetime of the object. An entire local heap
can then be reclaimed when its procedure terminates. While it will occasionally be
necessary to garbage collect a local heap. most garbage will be deallocated in bulk at
procedure termination. This scheme and the “lifetime analysis” used to implement it
are discussed in section 2.2.

The other way to avoid the costs of dynamic heap management is to attack the
garbage collection overhead directly. Efforts in this direction fall into two classes. One
of these is to reuse allocated storage without letting it become garbage (“overwriting
update” or “destructive update”) [HB85, Gop88, Sch75]. This kind of optimization is
particularly useful for functional or value assignment style programming languages,
for which straigﬁfforwa.rd implementations copy objects before updating a component.
even if the original value is never needed. The other class consists of optimizations
which assist the garbage collector in its operations [Sch75, Bar77]. Our insertion
of explicit deallocation code falls into this category. Barth’s work is described in
section 2.3.

In [MJ81], Muchnik and Jones describe analysis aimed at what might be called
“storage reclamation optimization”. They classify objects according to the most

suitable reclamation technique for each object, as follows:

e Objects whose reference count is never greater than one — When a pointer to
one of these objects is to be destroyed the object can be deallocated. No other

reclamation strategy is needed.

e Objects that never appear in a cycle. These can be reclaimed with reference

counting.



e Objects that can appear in cycles. These need to be garbage collected, but the

overhead of reference counting is not needed.

Typically a large proportion of objects are never poihted to more than once (92
to 98% in LISP programs [SGT77]). Not having to reclaim these cells can result in
substantial savings. The analysis constructs finite approximations to the run time
data structures. It is considerably more general than the similar methods of Barth
(section 2.3).

Most storage optimizations require some static modeling of a program’s data struc-
tures. In {Sch75], Schwartz presents analysis of SETL programs which can be used
to implement various optimizations. Chase extends Schwartz analysis with what he
calls “containment analysis” {Cha87a], which was specifically designed for storage op-
timization. The “lifetime analysis”™ which Ruggieri uses to implement her local heap
memory organization, is closely related Chase’s analysis.

These two analyses are described in detail in the following sections. This will
provide the reader with a base from which to evaluate the reference count analysis of
the following chapter. It is also hoped that it will help readers who are interested in
the general area of storage optimizations. However it is not necessary to understand
these sections before going on to the next chapter.

Structure graph analysis has been developed for other optimizations. Larus and
Hilfinger’s alias graph is a conservative summary of the program’s structure graph
[LH88]. The alias graph is used to detect interprocedural aliases, for computation of

conflicting structure accesses.

o R
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2.1 Containment Analysis

Chase proposes an analysis which can be used to compute lifetimes of storage which,
in turn. is used to decide when destructive updates and stack (or static) allocations
are safe [Cha87a]. The analysis computes containment relationships between storage
allocated at different definition points. In conjunction with live variable analysis, this
information is used to compute lifetimes of storage. The analysis extends the analysis
of the SETL compiler [Sch73] by handling more complex containment relationships.

The notion of “containment™ is a little vague. Intuitively, b contains a if the
storage for a is used to implement b. The essential idea is that if changing the value
of an object a causes the value of object b to change then b contains a.

Chase’s work was designed for languages in which there are no explicit pointers
and copying is “by reference”. It seems best suited to value-assignment languages

since the analysis becomes very costly in the presence of side-effects.

2.1.1 The Storage Containment Graph

A storage containment graph, or SCG, approximates the containment relationships
of a (side-effect free) program. Graph nodes come in two types — store nodes rep-
resent allocated storage, def nodes represent the variable definition and modification
statements in the program. Store edges go from a def node representing an allocation
to the store node for the storage allocated by that definition. An edge (a, o) indicates
that the storage for the object defined at a might be o. All storage arising from
a particular allocation is represented by a single store node. This form of abstrac-
tion is common to most analyses of storage [Hud86, RMS8]. Some such abstraction is

needed to bound the size of the analysis framework (in this case the size of the graph).



14

Consequently storage from different executions of an allocation operation cannot be
distinguished, which may result in some loss of precision. Containment edges join def
nodes and are labeled with selector operations. An edge s : (d.e) indicates that an
object created at e can be extracted from an object created at d by applying an s
selection operation to it. The object created at d contains the object created at e.
The SCG deals naturally with aliasing. Two variables are aliased if they refer fo
the same storage. In the SCG representation the values resulting from definitions d,
and dy may be aliased only if the def nodes each have a store edge to the same store
node. Furthermore the SCG can express the fact that while a and b may be aliases
and b and ¢ may be aliases, it is not possible for a and ¢ to be aljases (see figure 2.1).
Such a situation might result from combining the effects of alternate branches.
Incomplete information is expressed with a special def node L and a special store
node o, . There is a store edge from L to ¢, and for each possible selector s there is a
selector edge s : (L, L). If there is compile time type-checking, incomplete definitions
may be expressed with different 1, and o, for each type t, with the appropriate
selector edges. Differently typed L nodes can safely use different store nodes because

it is assumed that two variables of different types will never simultaneously use the

1

g1 02

same piece of storage.

Figure 2.1 Representation of Aliasing in an SCG

'This assumption does not hold for certain uses of union types which violate any reasonable concept
of type correctness, but are commonly used by C hackers, and the like. More seriously, languages
which allow polymorphic types may not fit this assumption.
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The construction of an SCG assumes that simple use-definition chains have been
computed. For each program statement there is an associated graph transformation,
which adds some set of nodes and edges to the SCG. The graph is constructed by
iteratively applying these transformations until no more edges may be added.

[n Chase’s language model five definition types affect the SCG. The graph trans-
formations associated with each type are described here. Value-assignment semantics
are assumed. Remember that there may be many def nodes for a variable at its
use, corresponding to the set of definitions for the variable which reach the use. The

use-definition chains are used to identify the set of def nodes for a variable at a point.

d:z — new]

Create a new store node and an edge from d to it.

d:r — newly, ...,y
Create a new store node and an edge from d to it. For each initializer y; add
selector edges s; from d to the nodes for the definitions that reach y;. (s, is the

1th field selector for the type of storage allocated.)

d:z e~y

Copy to d all edges from def nodes for y.

d:r—y.s
Find the set of def nodes for y.s. They are the nodes at the end of all s-edges

from all def nodes for y. Copy to d all edges which leave these y.s nodes.

d:z.s—y
Depending on the semantics and implementation, this could be either a copying

update, in which case new storage is allocated for z, or an in-place update.
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Also s could be an imprecise selector (such as an array index whose value is
unknown at compile time) or a precise one. In all (four) cases, the node d
should represent the new z value. The non-s fields of the new z value could
have any of the values that any existing definitions for z have: copy to d all
selector edges from def nodes for r; if the selector is precise do not copy those
labeled s — the new z will not have old s values. Also in all four cases, add

selector edges labeled s from d to all def nodes for y, to represent the new s

field of the definition.

In the case of a copying update, new storage is allocated: create a new store
node with a store edge from d. For an overwriting update the storage used by
definition d could be any storage used by any definition for z: add edges from

d to all store nodes adjacent to def nodes for z.

Note that all the edges added by a transformation for a definition originate at that
definition’s node.

The derivation of the graph falls into a monotone data flow analysis framework
([KUTT], see section 3.2). Since all the transformations are monotonic, increasing
and finite the derivation has the Church-Rosser property. Thus transformations can
x S) process
(where S is the maximum number of selectors applicable to an object), since this is
the maximum number of edges the graph may have.

If analysis of an SCG allows a copying update to be changed to an overwriting
one the SCG must be changed accordingly before further analysis can be done. This
involves making all definitions that were previously adjacent to the storage allocated
by the copying update, adjacent to the storage overwritten. The transformation is of

comparable complexity to those defined above.

e
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2.1.2 Use of the Storage Containment Graph

The storage containment graph represents all the relationships which may exist be-
tween value definitions and storage. Questions about storage containment and sharing
translate into path questions on the SCG. For example “what storage can the results
of definition d contain ?" translates to “what store nodes are reachable from d ?”. and
“what definitions produce results that can contain storage o (allocated at a particu-
lar definition)?” translates to “which def nodes can reach o ?”. This latter question
is asked when computing an approximation to the lifetime of storage allocated at a
particular definition d. Let A be the set of def nodes that can reach the single store
node o4 associated with the allocation d. Using simple use-definition chains on the
program’s flow graph, find all uses of the definitions in A. The live range of storage
o4 is the set of (flow graph) nodes and edges on paths from these definitions to their
uses.

The storage containment graph was not designed to identify when storage becomes
inaccessible, with a view to inserting deallocation code. But since the graph does
express all value-storage relationships it could be used to identify inaccessible storage.?
Storage “accessibility” is a different criterion from storage “liveness”. Storage is no
longer live past the last use of any reference to it. It becomes inaccessible once the
last reference to it is killed. In either case the storage can safely be freed. However
with the SCG representation there appears to be no way to specify at compile time
the address of the storage to be freed. The run time address(es) corresponding to

a store node are not known at compile time. Unless some variable or component is

ZNote that inaccessible storage is not expressed by store nodes which have no incoming edges.
There will always be an edge to a store node since no edge is ever removed from the SCG by any
transformation. Storage inaccessibility is expressed by the non-existence of a path to the store node
from any definition for a live variable.
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known to definitely refer to the storage which is to be freed, there is no way to specify

it.

2.1.3 Some Algorithmic Details

For languages with value-assignment semantics (i.e. no side-effects) a single storage
containment graph provides precise information for an entire program. To understand
how this is possible. imagine having a separate storage containment graph at each
program definition. Each precisely represehts the containment information resulting
from execution of All paths to that point (and not paths in other branches). Chase
has proved that merging any two such SCGs preserves the containment information
of both ([Cha87a] section 5.4). The fundamental intuition is that for all transfor-
mations, the transformation applied at a definition d only affects the containment
information for that definition’s node, and no other. As an example of how this
allows “containment-preserving” merging of graphs, consider a piece of code where
the then branch of a conditional incorporates an object a into b, and the else clause
incorporates the same object into c. The graph for the then branch (figure 2.2(1))

shows the containment of a in the definition of b, and the graph for the else branch

1f _— the else the dclsc
then
b.s —a § s N S
else
C.S «— a
(i) (i1) (iii)

Figure 2.2 A code fragment and the relevant parts of (i) the graph for the
then branch (ii) the graph for the else branch (iii) the merged graph. Since
the containment of a definition is not relevant if that definition is not live,
(ii1) is no less precise than (i) and (ii).
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(ii) shows the containment of a in c. In the graph produced by merging these graphs
(figure 2.2(iii)) it appears that in both clauses a is contained in both dipen and d,,,.
This appears to be less precise than the relationships expressed in the separate graphs.
However, since information about what is contained by a definition is only relevant if
that definition is live. and since dys.n is not live within the else clause, the apparent
imprecision does not matter.

If the language semantics allows side-effects the graph construction algorithm
changes. Side-effects occur when an assignment to a field of z could change the
value of any def nodes aliased to r. The transformation associated with a side-effect
assignment adds more edges to the graph in addition to those added for a side-effect
free assignment. For d : z.s « y, add edges labeled s to definitions for y from all
definitions adjacent to store nodes adjacent to d. (Chase does not allow removal of
any edges since this would make the construction process non-monotonic and would
complicate the sharing of graphs described below. However it appears that the set
of edges labeled s from all definitions for z could correctly be removed when z.s is
assigned something new.)

The extra edges introduced for a side-effect assignment do not originate at that
assignment’s def node. Thus they may affect the containment relationships of def-
initions other than the assignment. Therefore it is no longer the case that a single
SCG expresses the same containment relationships as the SCGs at each point. In
the example of the previous paragraph, not only is the containment of disen and d.jse
affected by the transformations, but perhaps that of some other definition outside
the conditional. In a single SCG for the entire program the effects of both branches
will be seen in each branch. Now that definitions outside the scope of the branch are

affected, a single SCG for an entire program may be imprecise.
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So it would seem that we need a separate SCG for every node. Note however that
the SCG of a successor of a node P is no smaller than the SCG of P. With suitable data
structures an SCG can be used as a base for all its successors. Furthermore all points
in a strongly connected component (SCC) must have the same storage containment
graph: all points are predecessors of each other and thus for all 1,7 SCG; C SCG;,
which implies that for all i, j SCG; =SCG;. By constructing the graphs for each SCC

in topological order, an SCG can be built up from graphs of the SCC’s predecessors,

saving space and time.

2.1.4 Discussion

This work placed very little emphasis on interprocedural analysis. The strategy which
Chase suggests involves substituting a specially “reduced” version of the SCG of the
called procedure at each call site. This special version is called a PRUG (partially
reduced update graph). The PRUG contains information about storage reachable
from returned values, global variables and reference parameters. All other _information
is irrelevant in an interprocedural context. For recursive procedures the PRUG is
generated by successive approximation. This strategy is potentially very expensive.

he work deals with languages with linked data structures where all pointers are
implicit; there are no “address of” operations. In languages with explicit pointers

some optimizations are missed. Chase is working on some ideas for handling explicit

pointers and dereferencing operations [Cha87b].
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2.2 Lifetime Analysis

The work of Ruggieri [RM88] is also concerned with the lifetime of storage. But the
intended application of her analysis is a little different from Chase’s. She proposes
an allocation policy in which objects are allocated on a local heap associated with a
procedure whose lifetime is guaranteed to be greater than the lifetime of the objects.
All the objects in a local heap are deallocated in one chunk when the procedure
terminates.

Ruggieri and Murtagh point out, in [RM88] that this policy groups objects of
similar lifetimes together, which is the strategy that is proving so successful in gener-
ation scavenging collection schemes (see chapter 1 and [Ung84, LH83]). The benefit
of Ruggieri's proposed policy is that short-lived objects do not incur the expenses
associated with a global heap. She hopes that the local heaps will rarely need to
be garbage collected. Even if one of them does, the overhead will be minimal since
each heap will be small compared to a global heap. It remains to be seen whether
Ruggieri’s local heap scheme is practicable.

To implement this allocation policy, detailed information about the lifetimes of
objects is needed. The analysis algorithm focuses on procedural languages with dy-
namically allocated objects and destructive updates. Other than requiring that the
language support static type-checking, the techniques are widely applicable. Type
information is used to avoid having to make worst-case assumptions about aliasing.
The algorithm emphasizes inter-procedural analysis, unlike Chase’s. However prob-
lems of inter-procedural variable aliasing need to be handled explicitly rather than

being implicit as in the SCG representation.
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Expressions which allocate storage are referred to as resolved sources. Sources
approximate run time objects. Fach source represents all the objects allocated by
the corresponding expression. (Compare with Chase's approximation of all objects
allocated by a particular definition, by a single definition node). The problem is to
associate each of these with some procedure. During intra-procedural analysis formal
parameters and procedure calls must be treated as possible sources of objects. They
are represented by unresolved sources which serve as place-holders for sets of resolved
sources.

The data flow analysis problem, referred to as the reaching sources problem, is
to determine for each procedure the set of all possible resolved sources that might
produce objects created local to the procedure or returned to the procedure by proce-
dures it calls. The algorithm proceeds in three phases. The first, the intra-procedural
phase, computes summary information for each procedure. This consists of two parts:
the set of all sources which the procedure may return to its caller, and for each ar-
gument to each call within the procedure, the set of all sources which could produce
that argument. A monotone data flow analysis framework is used. The functions as-
sociated with program statements trace the bindings of objects to variables through
assignment statements. They also handle the effects of aliasing which accounts for
their considerable complexity.

The second, inter-procedural phase replaces each unresolved source by the ap-
propriate set of resolved sources. For example an unresolved source representing a
formal parameter will be replaced by the set of sources which could reach the actual
parameter. Again a monotone data flow analysis framework is used. On each edge of
the call graph a function models the effect of the call on the set of sources returned

by the calling function. Each edge has a slightly different function because of the
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different association of actual and formal parameter sources. The purpose of the
inter-procedural phase is to compute for each procedure the sets of resolved sources
returned to the procedure by procedures it calls and by the procedure to its callers.

The final phase uses this information in conjunction with the call graph to deter-
mine in which procedure’s local heap the objects represented by each resolved source
should be allocated. In a single pass over the nodes of a dominator tree for the call
graph, it finds the shortest-lived procedure whose lifetime is guaranteed to include
the lifetime of the objects created by the source.

Note that ultimately Ruggieri is not concerned with what goes on inside proce-
dures. The behavior of individual assignments, definitions and modifications is of no
interest after the intra-procedural phase. This is not the case for Chase’s analysis nor
ours. Note also that sources are associated with variables rather than with definitions.

The analysis traces the bindings of o-bjects not only to variables, but also to
subcomponents of objects. Each variable of a structured type induces subvariables
for each of its fields. For example the subvariable associated with the s field of
variable v is v.s. For recursive types the set of subvariables would be infinite. So
approximations have to be made at some point. Higher “order” approximations will
generally lead to more precise information and to slower convergence. But in many
cases the higher order will yield no useful information. Chase has pointed out that
by associating information with definitions instead of with variables he automatically
achieves information as precise as Ruggieri can achieve by tuning the order.

While Chase’s storage containment graph was not designed specifically to solve
Ruggieri's reaching sources problem, I believe it contains all the necessary information.

We will see in chapter 4 that the first two phases of Ruggieri’s algorithm corre-

spond very closely to the first two phases of our inter-procedural algorithm. Indeed
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her algorithm might provide a good starting place from which to extend our analysis

2.3 Shifting Garbage Collection Overhead to

Compile Time

ora)

Barth, in {Bar77], describes an algorithm which reduces the run time costs of storage
reclamation. Some of the work required to maintain reference counts in the collection
scheme described by Deutsch and Bobrow [DB76], is shifted to compile time.

Deutsch and Bobrow’s collector is intended for a LISP environment, and uses a
combination of reference counting and mark-sweep collection. Only nested references
(i.e. from the heap) are counted, not those from program variables. The collection
phase reclaims objects if they are not referenced from a program variable (i.e. the
stack) and their reference count is zero. Counts are recorded in two tables, rather
than with the objects. The Zero Count Table (ZCT) contains the addresses of storage
cells to which there are no references. The Multiple Reference Table (MRT) records
the addresses of cells with more than one reference, and maintains the counts with the
addresses. Cells with exactly one reference are not recorded. Since most accessible
cells in LISP programs fall into this last category, a considerable amount of space can
be saved.

Changes to reference counts are recorded in a transaction file. There are three
possible transactions — ALLOC enters a cell address in the ZCT, CREATEREF re-
moves a cell address from the ZCT if it is there, increments its count if it is in the
MRT, or enters it in the MRT with count 2 if it is in neither table. DELETEREF

is the inverse of CREATEREF. These transactions can be considered to be part of
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the program code. For example an assignment p.a «— ¢ can be considered to be the

sequence

DeleteRef (p.a)

D.a g
CreateRef (p.a)

It is intended that the tables be maintained on backing store. Periodically they are
brought into memory and updated by processing the transaction file. Certain pairs
of transactions on the same cell address cancel each other (ALLOC—CREATEREF,
CREATEREF—DELETEREF, DELETEREF—CREATEREF). During the processing
of the transaction file this fact can be exploited to reduce the number of operations
on the tables.

Barth’s optimization involves identifying such canceling pairs at compile time and
removing the transactions from the program, thereby avoiding the generation and
processing of the transactions at run time. His analysis also allows other transfor-
mations as well as the three above. Notably, when an ALLOC transaction is followed
by a loss of all variable references to the allocated cell, the ALLOC can be removed
and inline code inserted to return the cell to the free list at the point where the last
reference is lost (ALLOC—CANCELLATION transformation). This transformation is
exactly the optimization with which our work is concerned. However our analysis will
find more opportunities for applying this transformation than Barth’s does.

The analysis traces the flow of references to newly allocated objects through vari-
ables. An algorithm which detects ALLOC—CREATEREF and ALLOC—CANCEL-
LATION transformations is described. The algorithm watches each allocated cell in
turn, from the time it is allocated until it is first pointed to from the heap, keeping
track, as precisely as possible, of references to it from program variables. If the cell

becomes referenced from the heap then the CREATEREF at that point cancels the
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ALLOC transaction, and both are removed from the program. If the set of references
1ever pointed to from the heap) then an ALLOC—-
CANCELLATION transformation may be performed.

On each edge of a program's flow graph two bit vectors are computed, representing
those variables which may reference the allocated cell (Maybe Set, MS) and those
which definitely reference it (Definitely Set, DS). The algorithm which Barth proposes
appears to be excessively conservative. For a given allocation site, some of the nodes of
the flow graph are assigned a numbering such that no node, other than the allocation
node, is numbered before all its predecessors have been. The numbering gives the
order in which nodes are visited. (It is not clear how the nodes of a cycle would be
numbered). A node is visited by intersecting incoming DS sets and unioning MS sets,
and then, if the node represents an assignment that affects the references to the cell
in queétion, the appropriate changes are made to the sets. These changes basically
make the membership of the LHS variable in the sets match that of the RHS variable.
As described the algorithm does not iterate to find a fixed point. This presumably is
related to the ordering of nodes, but seems very conservative.

In the final pass over the nodes, “ALLOC owed” markers are propagated through
the graph. The edge out of the first node, which is the allocation node, is marked.
At other nodes, if all the edges into the node are marked then the algorithm seeks a
canceling CREATEREF or a loss of all references. Markers are updated accordingly.
Once all the nodes have been visited, ALLOC transactions are inserted on each marked
edge.

The algorithm given in [Bar77] for finding and handling the ALLOC—CANCELLA-
TION transformation does not seem correct. If all the MS sets leaving an assignment

are empty then the last reference to some cell is lost at that node. An ALLOC—-
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CANCELLATION transformation is performed, which inserts code to deallocate the cell
which has become inaccessible. It is unclear how Barth manages to get a handle on
the cell to be freed. in order to specify it in the inline deallocation code. Its address
is not known at compile time. Barth refers to it as “the last allocated cell”; but there
is no reason why there could not be another allocation site between the one under
consideration and this assignment node. If LHS definitely refers to the cell before
the assignment (if LHS is in all incoming DS sets) then the cell to be freed can be
specified as “the cell to which LHS refers”. However if LHS may refer to other cells,
cells about which we know nothing, this won't work. Recall that the same problem
arises when trying to use Chase’s graph to insert deallocation code.
This work places no emphasis on interprocedural analysis. It is intended for a
very specific application, namely a transaction-oriented reference-counted collection
scheme in a LISP-like environment. It probably works well at finding canceling pairs

of transactions that are close to each other, and very short-lived cells.
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Chapter 3

Reference Count Analysis

As outlined in the introduction the purpose of our work is to find, at compile-time,
points in the program when the last reference to a heap-allocated object is removed,
and to insert explicit deallocation code at those points, which will return the inac-
cessible object to the heap, thereby assisting with garbage collection. This chapter
presents the static anélysis which we use to implement this optimization. It is based
on reference counting. Qur algorithm avoids most of the complexity of previous work
by ignoring nested pointers. While this clearly compromises the precision, it allowed
us to easily implement the algorithm and to discover that reference counting can, in
certain cases, produce more precise information than any of the previous methods.

The next stage of our research would be to extend our analysis to handle nested

pointers, using techniques from the previous chapter.

3.1 Introduction

Our compile time analysis is based on Hudak's semantic model of “reference counting”
[Hud86]. In a run time context the reference count of an object at a given time is
the number of references to that object in existence at that time. At run time it
1s possible to maintain accurate reference counts for all objects. When an object is
created (storage is allocated for it) and assigned to a variable (e.g. 7 — alloc) it

Is given a reference count of 1. A pointer assignment, such as z « y, kills the old

28
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reference from z and copies the reference from y. The reference count of the ob ject
to which z refers (before the assignment) is decremented by 1. The reference count
of the object to which y refers is incremented by 1. When a reference count becomes
0. the object is freed — returned to the heap. Any references within the object are
thereby killed and the appropriate reference counts must be decremented.

The reference count analysis which we have developed approximates this scheme.
At compile time we cannot hope to maintain accurate counts. We do not know which
paths will be taken through the program. nor what objects will be produced, nor to
which object a variable will be referring at an assignment statement. We will need
to use global data-flow analysis techniques [ASUS6] and suitable abstractions for run
time information [CC77] in order to feasibly compute useful information at compile
time.

For our purposes a safe approximation to a reference count is one which s at least
as great as the true reference count. A safe approximation for the object referred to by
a variable at a point is a set of objécts which includes the one referred to. To be safe,
when a reference (a variable's value) is copied, the reference counts of all the objects
to which the variable may refer must be incremented. When a reference is killed. no
reference count may be decremented unless it is clear exactly which object is involved:
that is only if the set of objects to which the variable may refer contains only one
object. For example if at a point where r is assigned y our best approximation to the
object referred to by =z is {t.7} and by v is {j, &, [}, the best we can do is to say that
there may be new references to J.k and I: we don’t know what reference is removed.
These abstractions follow Hudak’s abstract interpretation model of reference counting

(Huds6).
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This chapter formulates our algorithm for reference count analysis as a distriby-
tive data flow analysis framework and describes how reference count information is

used to allow insertion of deallocation code. For now we assume that there are no

procedure calls. or we make worst case assumptions at call sites, Chapter 4 describes

an interprocedural analysis algorithm.

3.2 Monotone Data Flow Analysis Frameworks

Global data flow analysis [ASUS6] generally seeks the meet over all paths (MOP)
solution of a data flow problem. The M\fOp solution for a program is the calculation
for each point in the program of the maximum (“best”) information, relevant to
the data flow problem, which is true along every possible execution path from the
starting point of the program to that point. “Bit-vector” data flow problems have
been studied extensively. A detailed survey of algorithms for these problems can be
found in [Ken81].

For problems in which the data, to be computed at each point is more complex than
a bit-vector, a data flow analysis framework provides a structured (lattice-theoretic)
way to formulate the problem [Kil73, KUT7, ASUS6). A broad class of these problems
are distributive. For distributjve problems an instance of the corresponding framework
implicitly defines a set of simultaneous equations whose maximum fixed point solution
is the desired MOP solution. Given an instance of a framework, Kildall’s algorithm
[Kil73) computes the maximum fixed point solution of these equations, yielding the
MOP solution if the framework is distributive. A more general class of problems are
monotone. For these the maximum fixed point golution to the corresponding set of

equations may differ from the MOP solution. However it is a safe, and frequently

¢
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adequate, approximation. There exists no single algorithm which will compute the
MOP solution for all monotone frameworks [KU77).!

A monotone data flow analysis framework (MDFAF) F consists of

¢ a bounded semilattice L. whose elements are the values propagated through a

flow graph,

® a meet operation A, on L, which defines the effect a program “join” has on the

values of L. and

® a monotone function space F of transfer functions from L to L which are used

to define the effect of flow graph nodes on values of L.

Refer to [KUT77] for a fuller description.

The following definitions will be useful later in the chapter.

Monotonicity A function f on L is monotone iff
(Vz,y € L)[f(z Ay) < f(2) A fly)).
Distributivity A function f on L is distributive iff

(Vz,y e L)[f(z Ay) = f(z) A f(y)).2

A function space is monotone/distributive if all the functions in the space have the
corresponding property.

An instance of a MDFAF consists of

[KU77] gives a variant of Kildall’s algorithm which computes a better approximation than Kildall’s,
but one which may still differ from the MOP solution for monotone non-distributive frameworks.

2Clearly all distributive functions are monotone.
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¢ aprogram flow graph; the nodes of the graph are the basic blocks of the program

and the edges represent the control flow; one node is the start node: and

* a mapping from each node of the flow graph to a function in F: the function
associated with a node represents the effect of the basic block on the incoming

data values.

The following is a description of Kildall’s algorithm (based on the one in [KU77].

Kildall’s Algorithm:

Input An instance (flow graph, start node no, and associated transfer
functions) of a framework (bounded semilattice I. meet operation
A. top element T, bottom element L, and monotone function space)

Notation Paths(n) is the set of paths in the flow graph from the start
node ng to n. Preds(n) is the set of predecessors of n.
If nis a node, f, is the transfer function associated with that node.
If Pis a path, fp is the composition of transfer functions for nodes
on the path.

Output A[n] € L for all nodes n that are the maximum fixed point
solution to the simultaneous equations

X[no] = 1 (31)
X[n] = A R(XD) (3.2)
PEPreds(n)
Method Initialize al] nodes

T otherwise

A[n]z{ L ifn=n,

Visit all nodes, iterating to a fixed-point, where a node is visited by

A[n] = /\ fp(-‘{[p])

p€Preds(n)
[KU77] proves that the algorithm will eventually halt, that it is correct and that the

solution approximates the MOP solution :

(vn)[A[n]g A fe(L)] .

P€Paths(n)
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For many problems it i unnecessarily conservative to yse the bottom value for the
start node. The value used should represent the best safe estimate of the situation
before the Program begins execution.

The solution gives information about the beginning of a node which is generally
a sequence of instructijons. Information at other points is obtained by applying the

transfer functions for the instructions between the start of its basic block and that

address code which assumes an unbounded number of virt ual registers. In this analysis
we trace references to heap objects from virtual registers only. When a reference is
stored to memory we give up and will never explicitly free the referenced object.
In other words we make no attempt to statically model containment nor to trace
nested pointers. Clearly this will prevent us from introducing as much deallocation
code as we might otherwise be able to. But it is in keeping with our initja) concern,
which is compile time collection of floating-point and bignum temporaries. It has also
allowed us to refine basic “accessibility analysis” in a direction orthogonal to Chase
and Ruggieri without producing unwieldy algorithms.3 Ap optional optimization in
the Russell front-end which allocates as many variables and identifiers as possible to
virtual registers greatly enhances our analysis.

Four kinds of intermediate code instruction are of interest.

3of course, the initial reason we did not model containment is that in the intermediate code there
is little evidence of data structures.
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1ew heap object and creates one reference to it from register z.

T « nil
nil represents all values for which deallocation makes no sense (constants, static
and stack objects, and miscellaneous values) and objects which we will never
deallocate because we have lost track of references to them (all values loaded

from memory).

T —y (assume z # y)

Assigns the value of register y, which may be a reference to a heap object, to z.

mem ez

Stores the value in z to memory.

Note that the first four of these “kill” the LHS value, r, and may cause an object
to become garbage. Virtual registers are declared and undeclared explicitly. The
intermediate code also contains explicit information about liveness of registers. This
information is important for the effectiveness of our analysis. The instruction z — nil

is used to model z becoming dead or being undeclared.

3.4 Simplest Accessibility Analysis

In this seétion we will present an analysis which corresponds to a restriction of Chase
or Ruggieri’s analysis that makes no attempt to model containment of data structures.
We will show that this approach is imprecise for reasons unrelated to static modeling
of data structures. The information computed by this analysis will be used in the

reference count analysis of the next section.
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Some opportunities for deallocation can be uncovered with a simple analysis which
approximates the set of objects to which virtual registers may refer. When an object
no longer appears in any set it must be inaccessible and can therefore be deallocated.

The set of virtual registers in a program, {z,y,...} . is augmented with a special
register mem which represents memory, giving V = {mem, z,y,...}. The objects of
interest for our analysis are heap objects, which are generated by allocators — instruc-
tions which allocate heap-storage. Without running a program we cannot identify the
objects which it produces. Instead we approximate heap objects by identifying them
with their allocation sites [Cha87a, Hud86, Rug87].4 This will prevent us from dis-
tinguishing distinct objects created by a single allocation instruction, and thus may
hide opportunities for deallocation. For convenience we will assume that allocators
are numbered 1, ..., numlocs and that each carries its unique number with it, as in
T « alloc;. Values represented by nil in the language model are represented by a
single object nil. O = {nil, 1, ..., numlocs} is the set of objects. Consider the lattice
P(0O), the power set of O, with set union (U) as its meet operation. This reflects the
fact that at a program join a register may refer to any of the things it could refer to
on all incoming paths. The top element of the lattice is {}; the bottom element is
O, the set of all ébjects. The approximation ordering on elements of the lattice is 2
(superset ordering). The lattice is bounded since numlocs is finite.

Let A map registers to sets of objects: A = (V — Po). The data flow problem is
to compute a, € A for each program point p. The interpretation of a, is that at point
p in the running program the register z will not refer to any object other than those

(represented by elements) in the set a,[z]. In the framework F4 for this problem

4These object approximations correspond to Ruggieri’s “sources” [Rug87]. We will use the word “ob-
Ject” to denote both real, run time objects and object approximations. Occasionally the distinction
will become important, and will be pointed out.
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P

the transfer functions associated with basic blocks are composed from the following
functions for individual instructions. Throughout these function definitions assume

that components which are not redefined are simply copied.®

!

(z « alloci)s(a) = a' where d'[z] = {i}

(z — nil)s(a) = a' where o[z] = {nil}

(mem «— z)4(a) = a’ where o'[mem|= a[mem] U a[z]

These functions are distributive with respect to A. The proofs are trivial. Thus F,
is distributive and Kildall’s algorithm computes the MOP solution. The initial value
(at the start node) for all registers, including mem, is {nil}.

Once the solution has been computed it is used to uncover instructions which
definitely cause an object to become inaccessible, and thus “deallocatable”. All in-
structions which kill a register are considered.

Deallocation Criterion: If the value in register z is about to be
killed it’s referent may be deallocated if a € A is the value computed for
that point, and if

1. nil ¢ a[z] and
2. (Vi€ alz])[(Vy # z)[i ¢ aly]]].

That is £ must refer to a heap-object, and none of the ob jects to which ¢ may refer
may have other references (including references from memory). Alternatively, letting
n(i,a) be the number of occurrences of i in the sets of a, with an occurrence in mem'’s
set contributing oo, the second condition can be rewritten:

2. n(i,a) = 1.
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Ly; — allo;] LJ: — allOCT,

a[r] = {i.j}

Figure 3.1 Accessibility analysis allows deallocation of r’s referent.

For the annotated program fragment represented by figure 3.1, a[z] = {i,j} and
Vy # z,aly] = {nil} at the join.® Thus we may deallocate z’s referent, whichever
object it may be. However accessibility analysis is not general enough to show that
in figure 3.2, in which one branch swaps the values of z and y, the referents of both z

and y may be deallocated when the register values are killed. When z is about to be

z — alloc;
y « alloc;
t e~z
T afz] = {1}
%l =1, afy} = {5}
— nil
s{z] = {7}
afy] = {i}
afz] = ‘{i,j}
aly] = {i,5}
z — ni;
Y — ni

Figure 3.2 Swap program segment: accessibility misses the opportunity to
deallocate z’s referent.

The notation “(instr);” denotes the transfer function corresponding to the instruction instr in the
framework F associated with the semilattice L.

®In all annotated flow graphs, assume that components of an a value which are not mentioned in an
annotation have the value {nil}.
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killed it appears that the objects to which it may refer may have another reference
(from y). So z's referent is not deallocated. But in fact no matter which branch
is taken there can be only one reference to each object. (This analysis does allow
deallocation of y’s referent.)

As was mentioned. this is essentially Chase or Ruggieri’s analysis restricted to
simple objects. Neither of them would uncover both opportunities for deallocation i

the example of figure 3.2.

3.5 Adding Reference Counts

For an improved analysis we need to record how many references to an object may
exist. The scheme was outlined in the introduction to this chapter. It represents an
improvement over the previous analysis because it allows us to infer a reference count
for an object which is less than the number of occurrences of it in the sets associated
with the registers. Since we need to bound the lattice for the reference counting
framework (to ensure termination), we must bound the set of values which an inferred
reference count can assume. The bounded set of values is C =1{0,1,..., mazre, }.
Since most objects are not shared very widely even a small value for mazre will give
accurate results.” (We have been using 3). The domain is “sticky” — once a reference
count reaches oo it stays there [Hud86]. Addition and subtraction operations are
redefined accordingly.

@ n =1if (z+ n) > mazrc then = else (z + n)

T n=if (r=o0) then oo else (z - n) (n # 00,z > n)

"Often, run time reference-counting implementations, in an effort to save space, use a small fixed-size
reference-count field, and periodically collect the garbage thereby missed with a mark-sweep type
collector.
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The meet operation for C is arithmetic maz. This reflects the fact that at a join
an object can have no more references than it has on any one incoming path. As a
consequence of the meet operation, C is ordered by arithmetic > and oo is less than
0 in the lattice. The top element is 0. The. bottom element is oc.®

This meet operation explains why reference counting can be an improvement over
simple accessibility. Consider figure 3.2 again. Assume that we can infer that on each
branch ¢ and j have one reference each. When we meet this information we (correctly)
infer that ¢ and j still have one reference each, though we do n.ot know whether the
reference is from z or from y. Now when z is about to be killed if z actually refers
to ¢ then it must be the only reference, since the reference count analysis tells us
that there is only one reference to i. Likewise if z actually refers to j. Therefore
the reference from z is the only one to its referent and the referent can safely be
deallocated.

Let R map object approximations to inferred reference counts: R = (O = C).
The data flow problem is to compute r, € R for each program point p. r,[t] is an upper
bound on the number of references, to any and all objects created by alloc;, which may
exist at point p during program execution. In the framework Fpg for this problem, the
transfer functions associated with basic blocks are composed from the functions for
individual instructions defined below. The functions depend on the A values which
are computed with F4 of the previous section. The function kill(z,r,a) € R encodes
how killing z affects the reference count lattice element r, given that a records what
objects registers may refer to at that point. If z definitely refers to some one object

then, and only then, that object’s reference count is decremented.

SFor further clarification, the meet of 2 and 1 is 2. That is the maz operation is the regular arithmetic
one. A meet operation on a lattice must return the _greatest lower bound of its operands, that is a
value on the bottom side of the operands.
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kill(z,r,a) = ' where

o ] rllel a[z] = {i} (a singleton)
r Ll =

r(e] otherwise
Here are the transfer functions:

(z — alloc;)p(r.a) = r" where

!

r = kil(r,r.a) and r"[i] = r'[§]

f=rizdl

(r — nil)g(r,a) = kill(z,r,a)

(z «— y)r(r,a) = r where
r' = kill(z,r,a) and (Vi € aly))[r"li] = ~[i] @ 1]
(mem «— z)p(a) = r' where
(Vi € alz])[ri] = oo

See section 3.5.1 for further discussion of the function (z — alloc;)p. For (z « nil)p,
note that it is not necessary to count copies of values that are not references to heap
objects. If nil is actually a heap object being loaded out of memory, the reference
count for that object is already oo.

The transfer functions are distributive and hence Kildall’s algorithm computes the
MOP solution for this problem. All reference counts are initialized to 0, since this
represents the situation before the program starts when there are no heap objects
in existence yet. The computed solution is used to decide which instructions must
remove the last reference to a heap object.

Deallocation Criterion: If the value in register z is about to be
killed it’s referent may be deallocated if a € A,r € R are the values
computed for that point, and if
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1. nil ¢ a[z] and
2. (Vie a[.r])[r[i]_:_ lor n(i,a) = 1]

At all instructions satisfving these conditions we may safely assert that the object to
which z refers may be freed.

Figure 3.3 shows the “swap” program of figure 3.2 annotated with inferred refer-
ence counts. The deallocation criterion for reference counting allows both z and y’s
referents to be deallocated. Without reference counts this was not possible.

Recall that n(i,a), in the final clause of the deallocation criterion, is the number
of occurrences of i in the sets of a (oo if i is a member of a[mem]).® That is n(i,a) is
the cardinality of the set of registers which may refer to any and all objects allocated

by alloc;.'® The final clause of the deallocation criterion is necessary since it is quite

z « alloc;
y « alloc;
te— =z
T r[i] =r ] =1
il 1, afz] = {i
—nil | ey = ()
ril=r]=1
alz] = {j}
afy] = {i}
Ml =rl]=1
afz] = {i.5}
aly] = {i.;}
z — nzf;
Yy — m

Figure 3.3 Swap program segment annotated with inferred reference
counts. Reference count analysis allows both z and y's referents to be
deallocated

Sn(i, a) should be an element of C, the set of “sticky” reference counts.

*°n(i,a) is NOT the same as r[i]. If this is not clear, return to figure 3.3. At the final node n(i,a) = 2
(since i occurs in a[z] and in a[y]), while r[i] = 1.
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possible that the inferred reference count of an ob ject will be greater than the number
of occurrences of that o_'oject In sets associated with registers. The anomaly arises as a
result of our being frequently unable to decrement reference counts when a register is
killed (c.f. the auxiliary kil function above). As an example consider what happens
when r is assigned nil, with a[z] = {i.j}. While one occurrence of each of ¢ and
J is removed from the sets of a by (z « nil) 4, the reference count of all objects
remains unchanged by kill. Consider figure 3.4 where the annotations suggest that
any solution must satisfy n = m+ 1 and m = n, Since n and m are elements of C,
n = m = 2o satisfies. These values are clearly excessive since there is never more than
one reference to either object. Even the simple accessibility analysis can infer this
since n(z,a) and n(j,a) are never greater than 1. The “or n(i,a) = 1” clause of the
deallocation criterion allows z's referent to be deallocated at the z « nil instruction.

In section 3.7 we will present a more precise solution to the anomaly.

rli] = ril=m rii] = rhl=m

afr] = {ni! alr] = {nil
ritf=m 41 rlij=m

rhl=m ril=m+1
afz] = {i} a[z] = {j}

Figure 3.4 Sketch of how Fg can produce excessive inferred reference
counts. (Missing reference count components are 0.)
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3.5.1 The Consequences of Collapsing Many Objects into
One

It may not be immediately clear why (z « alloc;) g should set r(1] to (r[i]®1). Because
of the abstraction which collapses all run time objects created by a given allocator
into one, it is clearly not correct to set the reference count of 7 at z alloc; to 1.
This would disregard any references to objects previously allocated here. However
it is tempting to set r[i] to maz(r(i].1), arguing that the allocation makes no new
references to old run time objects. This would be wrong. Consider the program of
figure 3.5. The fixed point solution that would result from setting r(i] to maz(r(i], 1)
at the allocation site is shown. (Remember that kill first decrements r[z] from its
value of 2, since the register being killed () must refer to an object represented by
t.) After the z «— nil instruction y may refer to an object allocated at the allocation
site. Therefore r[z] should not be 0 at that point.

The problem is that in arguing that an allocation makes no new references to old

objects we are differentiating objects which were collapsed into one. Decisions were

|
~

[
(v]

]
alz]=a

r[i] =1
az] = ay} = {i}

"
ne

Figure 3.5 Annotated using incorrect definition for (z « alloc;)R. Since y
may refer to an object allocated by alloc;, r[i] =0 at the end is wrong.
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made based on the assumption that all run time objects created by a single allocator
are represented by one object. They must not be differentiated. The meaning of
rlz] is that there are no more than r(i] references to any and all objects allocated by
alloc;. It is an upper bound on the sum of the number of references to each object
allocated by alloc;. The allocation instruction certainly makes a new reference to an
object created there, and thus increments this sum.

Returning to figure 3.3, consider what happens when the correct function js applied
at r « alloc;. The value of r[z] is 2 everywhere, representing the possible references
from r and from y. Just before the z « njl instruction these refer to different run
time objects. The referent of z does become inaccessible here but our analysis cannot
determine this, as a direct consequence of the approximation of objects.

Of course different abstractions are possible, and could be investigated if this one
proves to be a hindrance. For example, a first improvement might be to associate
two locations, one old and one new, with each allocation site. The functions would

become correspondingly more complicated. We have not pursued this approach.

3.6 Monotonicity and Distributivity

We have formulated reference count analysis in two separate phases, the first of which
computes the sets of objects to which registers may refer, and the second of which
uses this information to compute upper bounds on reference counts for objects. Let
us denote the MOP solution to a problem specified by some framework Fr on an
instance [ by F(I). Then the reference count analysis, which uses the F solution,

might be denoted Fg(/, F4(I)). Since we need to see the solution of both frameworks
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(for the deallocation criterion) we might denote the result of the entire algorithm by
the pair (Fa(1. Fy(1)). Fo(I)).

The algorithm could instead be presented in a single framework Frxa, that com- -

bines the information gathering process into one. The lattice for this framework is

R x A. The meet operation is obvious :
(ra) A(r'.ay=(rAr.an a').

This induces definitions for bottom, top, and the approximation ordering. The trans-
fer functions are easily derived from those for the separate frameworks. As an exam-
ple:

(x alloc;)px 4({r,a)) = (r”.a’) where
a'={i}and r' = kul(z,r,a) and r"[i] = r'[i] @ 1

The Fry 4 formulation is not equivalent to the original. It is more accurate. That
is Faxa(l) > (.FR([,.FA(I)),.F.‘(I)), and the inequality is strict for some instances.
The difference is in the A-values used to compute the R-values. For Fg, 4, the MOP
solution at the point p in figure 3.6, is the R component of frxal{r,a)) A frxa({r', a’))
whereas for the original framework the MOP solution at p is fr(r,aAa’) A fa(r, aha').
This latter value may be less precise if a A a’ is less precise than a or a’, as it will
frequently be. For the same reason, Fpyx.4 is not distributive. Figure 3.7 shows a

specific example of the non-distributive behavior. The solid lines and boxes represent

(r.a) /(r a')

f

P

Figure 3.6
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[ y — allog;
riij =1

afz] = {nil}

aly] = {1}

\
\
\
\
\
rali] =2 \
aalz} = m‘(,i} \

LAY = 4{ r ————— .
L — L E el
rall] = rli] =1

Figure 3.7 Non-Distributivity of Frxa

the calculation of (z nil)pxa(r' Ar,a' Aa). It’s i component is 2. The dotted lines
and boxes indicate computation of (z ¢« nillpe4(r',a’) and (z « nil) gy 4(r, a). Both
produce 1 as the i component, so that the ; component of their meet, 1A1, is 1. Since
1 #2in R, (z — nil)py4 is not distributive.!! As a result, Kildall’s algorithm does
not compute the MOP solution. So. although the simultaneous equations specified by
the combined framework are more precise than those for the separated frameworks,
the precise solution is not obtained with Kildall's algorithm. In fact it seems that
the solution obtained for Fg, 4 is equivalent to the MOP solution to the less precise
separated frameworks formulation, Fr(I, F4(I)). The improved algorithm presented

in [KU77] would recover some of the precision of Fpy 4. But it is more expensive.

"' This example does exhibit monotonicity since 1 is greater than 2 in the ordering on R.
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3.7 A Better Analysis

Recall that in the deallocation criterion for reference count analysis the final “or
n(i,a) = 17 clause is needed because Fr allows inferred reference counts to become
unnecessarily high. Unfortunately these “elevated” counts can hinder the data flow
analysis so that it is not sufficient to only worry about them after the data flow
algorithm has terminated. The benefit of reference count analysis is in being able to
infer an 7] which is less than n(i,a). If an elevated reference count hinders such an
inference the “or n(3, a) =17 clause cannot help out. Figure 3.8 outlines an example
of this problem. It is a modification of figure 3.3. The extra instructions on the right
hand branch should not have any effect on the deallocation of z and y’s referents later.

However, they do result in “elevated” counts for i and j. Deallocation in figure 3.3

| swap | wer vy
i ]

i I ]

. and |

{ y | r[i] = r[]] =2

Are B ol = 0o = )
alz] = {5} =2

afy] = {i}

Figure 3.8 Elevated Reference Counts Hinder the Analysis and Prevent
Deallocation.
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depended on the inferred reference counts being less than n(i,a) and n(j, a). In this
example they are not, as a direct resylt of the elevated counts. Consequently, r's
referent cannot be deallocated,

Eliminating elevated reference counts is not difficult. We create a new framework.
Fre. which is modification of Fr. At all points p, this framework will maintain
rs(i] < n(i,a,). Since the anomaly only arises from the handling of registers being
killed, the only change is to the auxiliary kil function:

kill’ (z,r,a) = ' where r' = r except
ril=rljlel a[z] = {j} (a singleton)
Vigalz],rfi] = min{ ;[(ll.’a) _| otherwise
Note that a is the A-value before the killing instruction. Therefore the number of
occurrences of ¢ in the sets of the A-valye after the instruction will be n(z,a) — 1 if
t € a[z]. If i ¢ a[z] the membership of ¢ in sets of g is unchanged at the instruction,

so it is not necessary to change rli].

Our implementation uses this framework.

3.8 Implementation Detajls

3.8.1 Handling Function Calls

If there are function'? calls in a program their possible effect on the accessibility
and reference counts of objects must be taken into consideration. In the absence

of interprocedural analysis (which is the subject of the following chapter), we are

’In Russell, all “subroutines” are called functions. All return some value (though it may be a
“void” value). Russell “functions” may, and frequently do have side-effects, and are therefore not
functions in the mathematical sense. We stick with the well-established terms “intraprocedural”
and “interprocedural” .
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forced to make worst case assumptions. In general a function call may return a new
object, one of its arguments, or a nil value. It may also store its arguments to
memory. It is safe to ignore any new object created by a call. by treating it as a
value for which deallocation makes no sense. If it is assumed that al] objects which
are passed to a function are stored to memory, their reference counts are set to x.
It is then safe to ignore the fact that one of them may be returned by the function.
Thus we can assume that a function call returns a nil valye. In Russell intermediate
code, a function call looks like r flai,.... an] where r, q,,. .. y@n are registers. In
the absence of interprocedural information. it is treated as the following séquence of
instructions : mem — Ay....Mém «— a,,r « nil.

Calls to fuﬁctions which may save a continuation wreak havoc on the analysis:
every accessible object could be stored to memory if a continuation is saved. We
depend on the compiler’s front end to indicate, where possible, that a called function
does not save a continuation.

The front end also helps greatly by providing information about the effect of
the many calls to built-in functions. Where possible it indicates that arguments are
not saved (stored in memory) by the called function. They can then be completely
ignored. It indicates when a built-in function returns a specific parameter without
saving references to it. This is typical of printing functions, whose parameter is
passed back as the result. The call to these functions can be treated as an assignment
ro r of the specified argument. The front end also indicates when a function call
can be treated as an allocator. For example, most of the arithmetic operations on
bignums are implemented by calls to built-in functions. These generally return the
only reference to a newly created object, and do not save any of their arguments.

Such functions produce many of the small temporary objects for which this compile-
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time garbage collection was devised. By treating the call as an allocator the object

it returns is included in the analysis and it might be found to be deallocatable.

3.8.2 Deallocation of Objects Whose Size is Known

In many cases the size of allocated objects is known at compile time. Explicit deal-
location of an object of known size 1s very inexpensive. The algorithm therefore
maintains a table of sizes of objects. If all the objects to which a register might refer

when it is to be deallocated are of ope size, then the fast deallocation sequence is

used.

3.8.3 “Deallocating” Non-heap Objects

Russell’s garbage collector provides a deallocation routine which recognizes and be-
haves intelligently when it is passed a pointer to non-heap memory, for example to
the stack or static areas. Therefore, while it does not make “sense” to deallocate
static and stack objects, it is safe to pass them to the deallocation routine. Thus if a
register which is being killed may refer to stack or static objects as well as otherwise-
inaccessible objects, explicit deallocation is possible. Therefore stack/static object
values are separated out from nil, giving an extra instruction type: z « stack/static,
and O is augmented with s, an object to represent these values. With appropriate
changes to the transfer functions and the deallocation criterion, some extra opportu-

nities for deallocation might be uncovered.



3.9 Discussion

We have compared acceséibility and reference count analysis and shown that refer-
ence count analysis can provide more precise information and allow more compile time
garbage collection. Accessibility is effectively what Chase or Ruggieri would compute
if they ignored “containment” 13 By giving up on nested pointers, we avoided the
complexity of previous analyses. This allowed us to implement a usable algorithm
and to investigate the issues and advantages of inferred reference counts. We discov-
ered that they result in greater precision in some cases, allowing deallocation where
accessibility analysis can not. There 1S no reason why our analysis could not be fully
extended using techmques from previous analyses. Reference count analysis depends
on an accessibility information. In our algorithm it is provided by F4. Chase and
Ruggieri provide much more precise information about accessibility. By building
reference counting on top of their analysis, the benefits of both schemes could be
obtained. However, the resulting algorithms might be very expensive.

Our optimization differs from many data flow analysis-based optimizations in that
it does not use information about “future behavior”. This ability to use “future be-
havior” is one of the principle sources of other compile time optimization. In deciding
that an object may be allocated on the stack or that storage may be overwritten (de-
structive update), Chase uses information about what may happen to the object or
storage after the allocation or update. Ruggieri decides where to allocate heap ob-
jects based on how long they will live. Barth removes reference count transactions if
he is sure there will be a canceling transaction. None of these optimizations could be

replaced by run time decisions. In contrast, our optimization simply shifts a run time

3We do not wish to make little of containment analysis. It is at least as deep a subject as static
reference counting.
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operation to compile time, During execution, no object will be freed with explicit
deallocation code, which could not at that same point be collected by the garbage col-
lector. Insertion of deallocation code is an 6ptimization only because it shifts garbage
collection overhead to compile time. An optimization which sought to explicitly deal-
locate objects when they will not be referenced again (based on live-variable analysis)
would use information about the future. Qur implementation does yse information

from a limited live-variable analysis performed in ap earlier pass of the compiler,



Chapter 4

Interprocedural Analysis

For reference count analysis to be effective for real programs, it is necessary to make
better than worst-case assumptions at call sites. This requires analysis of the effect
that function calls may have on references. A function may return a newly allocated
object, or an object passed to it as a parameter,! or a non-heap object value. It may
also change the accessibility and reference counts of any objects passed to it.

In Russell intermediate code, a function call looks like r « flai,...,a,] where r
is a register, f denotes a function, and a,, ... »@n are registers. Russell functions are
first class objects and Russel] strongly encourages full use of this feature. Thus f may
be a function-valued variable whose value is unknown at compile time, which would
prevent us from building a complete call graph. The front end makes a fair attempt
at computing the identity of the called function, but is hindered by the separate
compilation facility of Russell. We make o attempt to analyze such calls but treat
them as described in subsection 3.8.1. In what follows we assume that f is a known
function which is defined in the same file as the call. We also assume that the front
end has indicated that the call wil] not save a continuation, even indirectly.

Each function definition ends with a return instruction return z, where z is a

register. A function’s virtual registers are private to it. Thus a function can only

'T have tried to reserve “parameter” for the formal parameters of a function (i.e. on the called side),
and to use “argument” for the values on the calling side. However the distinction is not always clear.
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access objects through memory and its parameters. The only changes that can be
seen after a function returns are in the returned value and in memory.

Our interprocedural data flow analysis algorithm is different from standard ones
in that it does’not use the program call graph as the flow graph. The graph used here
is specially designed for this problem. Callahan’s program summary graph [Cal88)] is
an earlier example of this move away from call graphs.

The problem only requires “bottom-up” analysis. That is, the information to be
computed for a function f depends on functions it calls, but not on the context of
calls to it. Context (“top-down”) information does not add to the precision of the
analysis. The only information which context can give is of the flavor “every time f
is called its ith parameter may refer to any of the following objects, and the inferred

reference count of these objects, at all calls, is bounded by ...”. As already stated

" the overall (relevant) effect of a function call on the arguments can only be to copy

them to memory, or return one of them. Other copies which the function makes
disappear when the function terminates. The function certainly cannot destroy any
references in a virtual register of the calling function, since it does not have access to
them. In any case, separate compilation makes top-down analysis impossible, since it
prevents us from identifying all calls to f _at the time when f is being analyzed (c.f.

section 4.4).

4.1 What We Need to Know About Called
Functions

In the absence of interprocedural information we must assume that every argument in

a call may be stored to memory by the called function. The passing of an argument,
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a;, is treated as mem a;. This is seriously restrictive since it prevents any object
which may be passed to a function from ever being deallocated. If a function does
not store its isth parameter to memory nor return it as the result object then the
corresponding argument in calls to that function can be ignored : the call has no
permanent effect on the accessibility of any object passed to the function as one of
these arguments. As already noted a function cannot retain any references to its
parameters other than in memory, since its virtual registers disappear at the function
return.

The other source of imprecision at a call site is not knowing what kind of object
is returned by the called function. Without interprocedural information the call is
treated as r — nil. (Recall that ni] represents all values which cannot be considered for
deallocation). If one of the values which a function may return is a value represented
by nil then this is the best we can hope for. But if it can be ascertained that the
function definitely returns a newly allocated object,? and does not store any references
to that object, then the cal] should be treated as an allocator. If the function definitely
returns its :th parameter without storing any references to it, the call is effectively
an assignment: r « q;, (The argument can then be ignored instead of being treated
as mem « a;.) If stack and statjc objects are distinguished from nil (as described
in subsection 3.8.3), and if the result of the called function is definitely one of these
objects then the call can be treated as r — stack/static.

The treatment just described does not cover all possibilities. It may only be
possible to ascertain that a function returns some combination of the values described.

For example it may return a static or stack object or a newly allocated object, in which

By “newly allocated object” we mean a heap object which did not exist before the call. It is an
object which is allocated by the called function, or by a function it calls.
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case it can be treated as ap allocator. Other combinations cannot be handled with the
basic instruction types. Our implementation gives up, but it would not be difficult to
extend the set of instructions to include such things as r «— {ay, as, alloc;} (meaning
that r may be assigned a reference to any of the objects to which a; and a3 may refer
or to a new object).

The purpose of the interprocedural analysis will be to compute the following

summary information for each (n-ary) function f

1. the set result[f] ¢ {newobj, nil, static/stack, param,, . .. »paramy,}, which rep-

resents the smallest set of valyes that f may return;

2. for each of the n parameters, two boolean values, stored;(f], and returned,[f],

which denote whether f may store and/or return its sth parameter.

The information is computed in two phases. Fach function is first analyzed intrapro-
cedurally, and its dependence on other functions is established. Then the interproce-
dural phase analyzes the dependencies of al] the functions, and produces the summary
information. The information is used to decide how to handle function calls during

the intraprocedural reference count analysis, as outlined earljer in this section.

4.2 Flow-Sensitivity and Aliasing

The summary information is “flow-sensitive”. That is the flow of contro] within
a function must be taken into account in order to compute its summary. This is
because of the “propagation” nature of the data: reference values are propagated from
parameters by instructions within a procedure. Computation of summary information

requires an interprocedural accessibility analysis of each function.
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In general, flow-sensitive problems are intractable i the presence of aliasing
[Mye81]: intra and interprocedural information are not independent and must be
computed together to a fixed point. However, since our analysis ignores the cop-

text of calls, aliases are irrelevant, and the interprocedural problem can be solved

independently.

of a call to g, then result[f] depends on resultlgl. If f’s ith parameter is passed as

the jth argument to 9. 9 might store the valye to memory, so that stored,| f] depends

on stored;|gq].

4.3.1 Flow Summary Graph

These dependencies are represented by a “flow Summary graph”. Paths in the graph
express how parameters and new objects can be transmitted through function calls
and reach results or be stored in memory. The set of graph nodes consists of nodes
representing each of nil (node n), static/stack (node s), mem (node m), “new object”
(node I (“1” for location)),® and for each n-ary function f, a result node, r;, and
parameter nodes, pl;,.. ., pns. The nodes n,s and { are sources of edges only; m is

only a sink.

*In order to keep track of the size of heap objects, the flow summary graph should have an I node
for each different size of object. Then if a function f May return a new object, its size could be
included with the result(f] summary information.
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Edges in the flow Summary graph fall into two general categories: resylt edges,

sponding to the same function as the result node. Parameter edges end at m or at g
parameter node for a called functjon. Edges from a parameter node to a result node

are arbitrarily considered as resylt edges. A result edge from I to the result node for
edges from parameter and result nodes indicate that f may return the corresponding

value, but does not store jt to memory. Parameter edges indicate when a parameter

may be stored to memory, or passed to another function.

may return the result of calling either g or A, there are two edges incident on r 7- The

other edges should be self-explanatory.

function f[p,, p,]
if — then
T« g[p2]
else
r — hpl]

return r

function g[p, ]
return p,

function A[p,]
mem « p,
r «— alloc
return r

Figure 4.1 Example of a Flow Summary Graph
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Interprocedura information is derived from the flow summary graph. The relevant

questions translate to path problems on the graph. For example, in figure 4.1, the

path from p2; to r s indicates that f Mmay return its second argument. f may also
return a new object. Since there is only one path to Th, from I, h must return a newly

allocated object.

4.3.2 Derivation of the Graph

Fa, of section 3.4, with modifications in the set of objects and the treatment of some
instructions. When analyzing function f, the set O of objects is augmented with
“parameter objects” 01,...,0p for each of f’s parameters, and with “result objects”
¢; for the result of each call site ¢; in f. These correspond to the “formal sources” and
“unresolved sources” of [Rug87]. Parameters must be treated as sources of objects if
their propagation is to be traced. Similarly for function results. The result ob ject ¢;
acts as a place-holder for any objects which the function called at site ¢; may return.

A function’s parameters are registers. py,..., p,. Previously these registers were
assumed to initially contain a nil valye. But here the start node in the flow graph
for f is assumed to initialize them to refer to the corresponding parameter object,
with the sequence of instructions p; « 01, «++y Pn < 0,. Calls in f are treated as
allocations: r « alloc,,. The passing of arguments is ignored during the data flow
process.

As b<;,f¢')re, the solution which F, computes at each point, associates with each

register the set of objects to which that register may refer at that point. The sets
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associated with arguments at cal] sites, and with mem at the end of the function,
determine what parameter edges should be added to the flow summary graph on -
behalf of the analyzed function. Every parameter object appearing in one of these
sets causes a parameter edge to be added to the graph. Result edges are determined
by the set associated with the returned register, in conjunction with the set associated
with mem at the end of the function. Allocated objects, parameter objects and result
objects in the returned register’s set add edges only if the object does not appear in
the set associated with mem. More formally, given a solution a for a function f, the
following process computes the edges which should be added to the flow summary
graph: (end is the point in the flow graph for f at which the refurn instruction

appears.)

o At each call site ¢;, let g be the called function and T1,...,Tn be the arguments.
Then a.[z;] is the set of objects which may be passed as the Jth argument to
g.

For all parameter objects 0k (representing parameters of f) in a.[z;], add a

parameter edge from pk; to Plg-
* For all parameter objects 01 iD @eng[mem), add a parameter edge from pl; to m.

® If z is the register returned at the end of [ @end[z] is the set of objects which
may be returned. The edges added here are result edges.
If nil € a.nq4(z], add an edge from n to ry.
If stack/static € aony[z], add an edge from s to r;,

For all other objects i € @end[r] such that ; ¢ Gend[mem)

— if ¢ is parameter object oy, add an edge from pk; to r 7
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= if 7 is result object ¢; resulting from a call to g at call site ¢;, add an edge

from ry to r,

- ifZis an ordinary allocated object add an edge from [ to rs

Since there are no edges from a result node to a parameter node, cycles will consist
exclusively of parameter nodes or exclusively of result nodes. Parameter node cycles
are produced by a function which calls itself recursively (directly or indirectly) with
some ith parameter in the sth argument position. (For example the exponentiation
function: flmn) = if (n = 0) then 1 else m f(m,n — 1) produces a cycle from
ply to itself). Cycles of result nodes are generated by tail recursive functions. Note
that not all recursive programs will have cyclic flow summary graphs. For example,
consider a recursively defined factérial function (which returns a bignum, (i.e. a heap
object)):

f(n)=if n=0then 1 elsen*f(n-l)

Figure 4.2 is the flow Summary graph which would be produced if * and — were

Figure 4.2 Flow Summary Graph for the Factorial Function.
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not built-in functions.® f returns either a static object {1} or the object allocated
by the bignum multiplication function. f’s argument is passed to the multiplication
and subtraction functions, but not to the recursive call. Thus no graph cycles are

produced.

4.3.3 Summary Information from the Graph

A flow summary graph provides all the information needed to compute summary
information for all defined functions. The translation from paths in the graph to

summary information is as follows:

e Function f may store its ith parameter to memory (stored;[f] is true) if and

only if m can be reached from pis.

® Function f may return its ith parameter (returned;[f] is true) only if r; can be

reached from pi,,

o The subset of the nodes {i,n, $,Plyg,...,pnys} from which there is a path to ry

corresponds to result[f].

ome paths in the graph do not reflect possible flow through calls. This can produce
overly conservative information.
The summary information is produced from the graph with two iterative processes.
One propagates values back from m toward parameter nodes. The other propagates
values forward toward result nodes from all other nodes. These processes are formu-

lated as distributive data flow analysis frameworks.

*In fact, integer subtraction produces inline code. Also the front-end indicates that the call to
bignum multiplication is an allocation site, and that the function does not save any references to
the arguments.
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4.4 Separate Compilation

Russell’s separate compilation facility allows a function defined in one file to be called
in another. but it forces the file containing the definition to be compiled before that
containing the call. Optimization information about functions defined in a source file
is appended to the object file, and can be used in compiling source code that contains
calls to those functions. The interprocedural summary information described in this
chapter becomes part of the appended optimization information. Before reference
count analysis is performed on a function definition, the summary information for

external functions it calls is read and used to decide how to treat the calls.

4.5 Discussion

Full interprocedural reference count analysis has three phases. The first is intrapro-
cedural accessibility analysis of each function. Its purpose is to compute the flow
of parameters to calls and to memory, and of objects to the returned register. The
flow summary graph uses this information to encode the dependence of the summary
information for a function on functions it calls.

The second, interprocedural phase computes summary information by solving path
problems on the flow summary graph. Summary information is used to decide how to
handle calls in the final intraprocedural phase, which is the full-blown reference-count
analysis, as described in chapter 3.

By comparison Ruggieri’s algorithm (c.f. chapter 2.2) has only two phases. They
correspond to the first two phases of our algorithm. For her analysis, per-function

“summary” information is the goal: “with which function should each allocator be




64

associated ?”. Our goal is to identify instructions which create garbage. This involves
propag

gating information intraprocedurally to every program point.




Chapter 5

Results

The algorithm described in the previous two chapters has been implemented as an
optional pass of the Russel] compiler. Table 5.1 presents timing measurements for
variety of programs. The first column gives execution times when the default opti-
mizations are used. These include optimizations to put activation records and variable
cells on the stack where possible [BH88], and some inline expansion of functions. The
second column adds the compile time garbage collection optimization described in
this dissertation. Al] programs were run in a 576k heap, which was not expanded
during execution. Times are given in seconds on a Sun3/60. The number of garbage

collections is given in parentheses. The code generator uses a rather primitive register

allocator.
without with
reference reference
analysis analysis

factl 14.1 (8) 13.8 (0)
fact2 20.0 (15) 13.8 (0)
rational 73.3 (34) 71 (20)
divide 37.5 (36) 32.4 (24)
reals 33.0 (41) 35.1 (13)
exact 37.4 (26) 32.7 (20)

Table 5.1 Timing Comparison. Times in seconds on a Sun3/60 with a
376k heap. Number of garbage collections is given in parentheses.
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The first two programs compute the exact value (using bignums) of 100!, opne thou-
sand times, using a straightforward recursive program. The reference count analysis
allows all bignum values to be explicitly deallocated, so that no garbage collections
are required. In the first of these programs, “factl”, the results are not very impres-
sive because each garbage collection takes negligible time : eight of them take about
0.3secs. This is because there are very few accessible heap objects to be marked by
that phase of the collector. As pointed out earlier, insertion of deallocation code
primarily shifts overhead of the mark phase to compile time. The work of freeing
inaccessible storage, which the sweep phase normally does, still gets done during ex-
ecution time, though it is spread over the execution. Preliminary timings for this
example showed that garbage collection was faster than explicit deallocation. We
therefore hand coded the (short) most frequently executed path through the deallo-
cation routine, and succeeded in making it a little faster thap garbage collection.

The second program preallocates 240k bytes of memory (half the heap), which
remains accessible and must be traversed by the marking phase. The 15 traversals
of the 240k account for the 5.8 secs difference between unoptimized times for “fact]”
and “fact2”. With explicit deallocation no garbage collection is needed, and costs of
repeatedly marking the prealiocated data are avoided.!

The third example, “rational”, solves a randomly generated 35 by 35 system of
linear equations with 0-1 coeflicients using Gaussian elimination with exact rational
arithmetic. The fourth example, “divide”, performs 100 divisions of large bignums
(1000! / 900!). As for the second program, 240k bytes of memory are preallocated,

“reals”, solves an 8 by 8 system of equations using Gaussian elimination with construc-

preallocated data is a fruitless exercise, since it is always accessible. A generation scavenger would
not bother to traverse it after the first few attempts.
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tive real arithmetic. In these examples, explicit deallocation (primarily of bignums)
results in a noticeable performance improvement.

We observed that in some cases certain important loop variables cannot be explic-
itly deallocated because on the first iteration they may refer to the same object as the
variable used to initialize them (see figure 5.1). This difficulty could be overcome by
unrolling the loop once. Alternatively the loop variable (z in the example) could be
initialized with a copy of the initial value in a new object, thereby reducing reference
counts.

Other problems arise if all registers are not explicitly initialized (assigned a static
object) since it must be assumed that if a register is not initialized on some path it
may reference something which is not deallocatable.

The final example performs 20 multiplications on constructive real numbers using
an inefficient stream representation of the reals [BCORS6]. The benefit here is gained
from including “single reference” tags in stream cons nodes (see the last paragraph
of section 1.3).

For these experiments heap size was kept constant, and the effect of our opti-
mization on execution time was measured. If, instead the heap size is allowed to

grow on demand during execution, the unoptimized version of some of the (larger)

!y — alIoc,-,

e~y

rfi] =
afe] = {i.5)
afyl = {i

Figure 5.1 In the loop z’s referent cannot be deallocated.
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programs run as fast as the optimized ones, but at the expense of heap consump-

1%y
on

. ror example, the unoptimized “reals” takes 36.2 seconds when heap expansion

1s enabled.



Chapter 6

Conclusion

The objective of this thesis was to show that reference count analysis can improve the
precision of previous storage analyses, and to demonstrate the feasibility of using this
analysis to insert explicit deallocation code into Russell programs, and thereby reduce
run time garbage collection costs. By ignoring the complexity of data structures and
nested pointers we were able to investigate the specific advantages of static reference
counting.

We are unaware of any other implementation of static reference counting. In
fact, many of the storage optimization techniques which have been proposed have not
been implemented, or have been in a haphazard way. Our algorithm was fairly easy
to implement. While this work concentrated on Russell, the analysis is performed on
three-address intermediate code and is largely language independent.

The research began as a class assignment to apply Hudak’s semantic abstraction of
reference counting [Hud86] to the problem of the many short-lived temporaries eating
up heap space in (numerical) Russell programs. Since Russell’s storage allocator

maintains a free list of storage cells, it is feasible to return inaccessible objects to it.

6.1 Summary and Contributions

In chapter 3 we presented the reference count analysis algorithm and its use in insert-

ing explicit deallocation code. We began with accessibility analysis and showed why
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this is not sufficiently precise. Reference counting improves the accessibility analysis
by allowing us to infer that, while an object may be referred to by any of n registers,
at most m of them may actually refer to it. If m is less than n then reference count
analysis is more precise,

Previous work on storage analysis has developed in other directions. In chapter 2
some of these were outlined. An overview of optimizations which reduce storage
management costs was given. Two coml-)rehensive storage analysis schemes were
presented. It is hoped that as well as providing a basis for evaluation of our work,
the presentation will be useful to anyone interested in understanding previous work
in this area. The final section of chapter 2 presented an algorithm aimed at shifting
garbage collection overhead to compile time. The resulting optimizations are related
to my work.

In chapter 3 we noted an interesting property of “combining” distributive data
flow analysis frameworks. The resulting framework is not necessarily distributive.
This was a little surprising to us at first. Qur initial algorithm used the combined
framework and we had assumed it was distributive. While this is not a major discov-
ery, it has not been mentjoned before.
napter 4 presents an interprocedural algorithm which computes the summary in-
formation about functions that is relevant to reference count analysis. The algorithm
uses a specially designed graph. Computation of summary information is reduced to
solving path problems on this graph.

The resulting algorithm has been implemented as an optional pass of the Russell
compiler. Some timing results are presented in chapter 5. The algorithm is quite
effective at uncovering inaccessible objects, and results in noticeable speed-ups, par-

ticularly in some of the Russell “bignum” benchmark programs.
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6.2 Further Work

Now that we have shown the advantages of static reference counting, it would be
interesting to combine it with one of the e;arlier storage analysis schemes to come up
with an analysis that incorporates the benefits of both. There appears to be no reason
why they can not be combined. Specifically, I would work from Ruggieri's lifetime
analysis, taking the results of her interprocedural phase, add another intraprocedural
phase (corresponding to F 4), and then put reference counts on top.

As for optimization of Russel] storage management, the approach described here
does not solve all the problems. It is not yet clear whether insertion of explicit
deallocation code is the idea] way to handle the problem of floating point and bignum
temporaries. For some of them, particularly floating point ones, stack allocation
might be feasible. But reference count analysis provided an easy and effective way to
deal with the problem for now. ‘

An intermediately difficult extension has been suggested to me [Com88). It is
reminiscent of Barth’s optimizations. If our reference count analysis establishes that
an object can be deallocated in the same basic block in which it is allocated, then
the object could be stack allocated. This is correct since in a basic block there is a
single thread of control, and everything concerning such an object takes place on the
path from the allocation to the deallocation point. Many expression temporaries can
be expected to fall into this category. The optimization, like all transformations from
heap to stack allocation, would improve storage usage, and cut out heap allocation

and deallocation time.
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