
TEACH THESES A.Sloman Jan 1990
 Updated Feb 1992
 Updated Dec 2003
 Updated May 2004
 Updated Mar 2009

 NOTES ON PRESENTING THESES
 Aaron Sloman
 School of Computer Science
 The University of Birmingham

Online at
 http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses
 http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses.pdf

Internally in CS AT Bham
 /bham/doc/research_students/theses.txt
 /bham/doc/research_students/theses.pdf

 CONTENTS

 -- {0} A fresh view of doing a PhD
 -- {1} Introduction
 -- {2} Some general comments
 -- {3} Good communication is extremely important
 -- {4} Motivate the reader
 -- {5} Structure the thesis
 -- {6} Commonly required sections of a thesis
 -- {7} Issues concerning length
 -- {8} The opening chapter(s)
 -- {9} Surveying related work
 -- {10} Two kinds of literature survey: scene-setting and critical
 -- {11} Criticising the work of others
 -- {12} Scenarios and examples
 -- {13} Describing programs: a formal description
 -- {14} Describing programs: saying WHAT they do
 -- {15} Describing programs: saying HOW they work
 -- {16} Further information about the program
 -- {17} Criteria for evaluating your thesis
 -- {18} Program style
 -- {19} Program output and tracing
 -- {20} Proof-reading is very important
 -- {21} Avoid embarrassing omissions (proofread carefully)
 -- {22} Try out the thesis on a friend or colleague
 -- {23} Bibliography and references
 -- {24} Quotations
 -- {25} If English is not your native language get help
 -- {26} Encouraging final comment!
 -- {27} References (Good scenarios)
 -- {28} Further reading
 -- Acknowledgements

-- {0} A fresh view of doing a PhD ------------------------------------

In answer to a question from a PhD student about the knowledge a PhD
student should produce Ata Kaban wrote

 I've just started to supervise so I've spent a few thoughts on
 the issue. A concise Bayesian characterisation, in terms of a
 'necessary condition' would be that a PhD is a process, which
 even if it may start with the prior belief that your supervisor
 is right in everything, it must end with the posterior belief
 (i.e. after accumulating evidence) that several researchers -
 including your supervisor - were wrong or ignorant in at least
 one scientific aspect.

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

1 of 17 22/04/2011 01:20

Included here with Ata's permission: 20 Nov 2003.

Comment from Peter Coxhead

 My more metaphorical definition is that a PhD involves (as a minimum)
 putting at least one brick into the wall of knowledge which
 constitutes one area of science/engineering.

 Occasionally PhD students start new walls, but this is NOT expected.

 A few new bricks are quite enough. It's important not to get
 over-hung-up on the idea that a PhD must involve _massive_
 originality.

 Another test I've used when acting as a PhD Examiner, particularly an
 External, is "Is this student now one of us?".

 Interestingly, I think both of my tests are consistent with Ata's:
 "one scientific aspect" = "one brick"; "several researchers were
 wrong or ignorant" = you are are now one of the researchers who are
 right and not ignorant (at least as regards that brick).

Included here with Peter's permission: 21 Nov 2003

The following is also relevant:

 http://www.cs.bham.ac.uk/~axs/misc/cs-research.html

This arose out of a conference in Manchester in January 2000 to discuss
how the Computing Science community should present its research
objectives and achievements to EPSRC and the bodies which award funding
to EPSRC.

With help from people at the conference and others who commented
subsequently, a list of five types of research was drawn up, with
comments on how different criteria of evaluation were relevant to the
five types. That also applies to evaluation of different types
of PhD research.

-- {1} Introduction ---

These notes are intended to guide, but not direct, research students
when planning and writing their theses. The notes are primarily
concerned with research theses (MPhil and DPhil/PhD). For course-based
MA or MSc students the requirements are not so stringent, but the notes
may be of some use to them too.

It is assumed that the topic of research is AI, Cognitive Science, or
Computer Science (including HCI), though many of the comments are more
generally relevant.

I have produced this document (with help from several other people)
because too many research students are being asked by their examiners to
re-submit theses after substantial modification. This is wasteful for
everyone and we should try to move to a situation where most theses are
accepted first time, and where none of the re-writing requested is
simply to improve presentation or organisation. I.e. only modifications
of substance should be necessary.

There is no fool-proof way to ensure that no re-writing will be
required: No matter how good the student and the supervisor,
examinations are always chancy and there is always the risk that
examiners will require additional substantive work to be done, e.g. to
extend the range of a program, fix a flaw in a proof, extend the
generality of some notation, include discussion of some relevant
literature not considered, etc.

Most of the points below are not concerned with the substance of a

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

2 of 17 22/04/2011 01:20

thesis but with its presentation. They complement TEACH PSTYLE which
makes general points about project descriptions, applicable to a variety
of levels e.g. undergraduate, masters, doctoral, etc. (TEACH PROGSTYLE
discusses programming style.)

Presentation may seem relatively unimportant, but part of what is being
assessed is your ability to communicate ("Doctor" once meant "teacher").
Moreover, a presentation that makes the structure of your work clear can
reveal gaps in arguments and other deficiencies, thereby helping to
improve the substance. It can also help others appreciate the real
strengths of your work, and how it contributes to our knowledge or
understanding.

This document does not live up to its own standards as regards
presentation! It needs to be re-written with a clearer and more logical
structure, with hierarchical section headings, etc. But I have not had
time.

Comments and suggestions for improvement are welcome.

-- {2} Some general comments --

{2.1} You are not expected to write a world-shaking thesis, nor a
mammoth tome. Avoid any temptation to add bulk simply to make the thesis
look more substantial.

{2.2} The object of the thesis is to demonstrate to the examiners that
you can do research of a quality that should lead to one or two refereed
journal publications. Be prepared at the oral examination to say which
bits, if any, you think are publishable in that form. In rare cases you
can argue that it is publishable only as a whole, because all the bits
are too closely connected for separate publication. (That can be a sign
of poor organisation in your thinking.)

{2.3} NB it is not enough simply to develop some useful software or
programming technique. Lots of people working for commercial
organisations do that. They may make a lot of money, but they don't get
PhDs for it. A PhD thesis must advance KNOWLEDGE in some way. So you
must include an analysis of the new knowledge embodied in your program
or technique. This requires comparing your work with work done by
others, as described in later sections in this file. It also requires
you to provide an analysis of the strengths and weaknesses of your
program or technique, clearly identifying its limitations, explaining
why it succeeds where others have failed, etc. Merely demonstrating that
you can do something new has been described as the "Look ma, no hands!"
approach. It isn't enough.

-- {3} Good communication is extremely important ----------------------

{3.1} The thesis should also demonstrate that you can communicate
effectively, not only to narrow specialists in your field but also to
others who can be expected to find the results interesting. This means
that obscure jargon should be avoided (unless it is explained first) and
the same goes for notation.

{3.2} It also means using examples all over the place to illustrate the
general points you are making. Examples should be clear and pointed, and
preferably very short and memorable. Try to avoid "cluttered" examples:
a good example should be the simplest one that illustrates the problem
you are addressing or the idea you are presenting.

{3.3} If you use a formal notation that is not widely known, then it is
a good idea to give English translations of any formula that is at all
complex (e.g. has more than a dozen symbols or has a deeply nested
structure). Even if the notation is well known, not everyone will be
familiar with it, so when in doubt give a translation. (But don't overdo
it.)

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

3 of 17 22/04/2011 01:20

{3.4} If you introduce a lot of technical terminology that is not
generally known to all workers in the field (not just your specialised
sub-field, but the discipline as a whole) then you should have a special
section summarising the terminology with cross references to places
where terms are defined.

{3.5} Try to think of your reader as intelligent but given to wilful
misunderstanding. Try, especially, to anticipate the main forms of
prejudice that could produce misunderstanding and guard against them
with persuasive explanations, examples, etc.

{3.6} Remember: if anything can be misunderstood it probably will be!

(I've incorporated a number of comments by Alan Bundy in this section,
including that last one.)

-- {4} Motivate the reader --

{4.1} An important aspect of communication is always making sure that
the reader wants to read on. So in the very first chapter, and at
intervals thereafter, you should make sure that you say why what you are
doing is interesting or important. It may be because it solves some
important theoretical problem. It may be because it solves an important
practical problem. It may be because it reveals an underlying unity in a
variety of previous theories and techniques. If you can't give good
reasons why people should be interested in your work, then you probably
shouldn't be doing it.

{4.2} Another aspect of motivation is making sure that the reader knows
WHAT you are doing, as well as why. Good illustrative examples are
important for this. The section on scenarios, below, expands on this.
But it is not enough to give examples: you must present both
illustrative examples and a general characterisation of the scope of
your work. This includes negative characterisations: i.e. state clearly
what the programs cannot do, which facts the theories, cannot explain,
etc. This will lead into the section on possible further work. (See
below)

-- {5} Structure the thesis ---

{5.1} Good communication does not necessarily imply writing in the style
of a novel. The work should be structured so that important points (e.g.
definitions, examples, theses, proofs, etc.) are easy to find if one
looks back at the thesis. So make sure that they are numbered or
labelled in some way that facilitates cross reference. (E.g. this
document is numbered so that you can easily communicate with the author
- or others - by complaining about paragraph (4) for instance.)

It is also advisable to have lots of section headings with a numbering
scheme that shows the structure (e.g. chapter 4 section 3 first
sub-section will be numbered 4.3.1). All section headings should be
listed in the main table of contents giving page numbers.

{5.2} If you have tables or figures, number them according to the
chapters they are in. E.g. the first figure in chapter 4 is Fig 4.1, the
first table is Table 4.1. Alternatively base the numbering on
subsections. This will help with their location in large chapters. E.g.
the third figure in section 4.3.2 is Fig 4.3.2.3.

{5.3} It is not customary to include an alphabetic index of subjects in
a thesis, but your examiners will probably be grateful if you do.
Certainly if you define technical terms ("the frame problem") or
abbreviations ("ATMS") or acronyms make sure you have a list giving page
numbers where they are defined. It is probably also wise to assume that
the reader will NOT remember an acronym last used 60 pages earlier. So
whenever you use an abbreviation ask yourself whether the reader should
be reminded of its definition or given a cross reference to the
definition.

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

4 of 17 22/04/2011 01:20

-- {6} Commonly required sections of a thesis -------------------------

The following section or chapter headings are required in most theses,
though you may find it preferable for some of the items to be spread
across several chapters. Some of the points made in this section are
expanded in later sections.

{6.1} Introduction
 This should give an overview of the main objectives of the thesis,
including an account of why the work is worth doing (see section on
motivating the reader), and a summary of what has and has not been
achieved. It may also be helpful for the reader to have an indication of
how you solved your problem, even if you can't yet give full details.
The introduction should include an overview of the whole thesis, helping
the reader to understand what is coming later, and providing information
on which bits to read if he wants to take short cuts.

{6.2} Review of related work
 Sometimes this needs a separate chapter sometimes not, e.g. where you
have such reviews in a number of different chapters dealing with
different topics. However, it is very important in a thesis that you
demonstrate that you are familiar with relevant literature, that you can
expound it properly and that you know exactly what your own work adds to
the work of others. (See sections on surveying related work).

{6.3} More detailed statement of the problem you have worked on
 The first chapter need not go in to full technical detail. It should be
readable by people who are not experts in your field. A later chapter,
which may come before or after the literature review, or be combined
with it, can go into full technical detail on the nature of the problem.

{6.4} One or more chapters outlining your own solution.
 There are two main strategies that can be followed.

(a) Give a high level overview of the solution, then a more detailed
overview, then a still more detailed description. I.e. this is the
method of "progressive deepening".

(b) Present your solution in stages, e.g. describing different
techniques or partial solutions separately, followed by a chapter
showing how they are combined.

Even if you adopt (b) it is probably a good idea to have an element of
(a) - i.e. start with a high level overview before going into the
details.

{6.5} Illustrations/Demonstrations of what the solution achieves
 This may consist of examples of the execution of the program, solutions
to theoretical problems, uses of the new notation you have developed,
etc. It is important that you don't merely provide the examples but also
give some analysis showing what they are examples of. Be sure that the
reader understands the scope of your thesis. This includes being honest
about what the work does not achieve. If you claim complete generality
then then you are almost certain to fall flat on your face when someone
provides a counter-example later on.

{6.6} Discussion of possible further developments
 No PhD thesis is ever complete. There are always limitations to the
concepts, theory, technique, or program. Make sure that you have looked
for such limitations and that you have some ideas about how further work
may reduce them. This could be part of a concluding chapter.

{6.7} Discussion of how to evaluate the thesis
 This could either be a separate chapter, or part of the introduction
and concluding chapters. Show that you know how someone should assess
your work. Explain what would count as success or failure for your
project. Evaluation of a theory in cognitive science might include doing
experiments on people (even if you have not done them you should say

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

5 of 17 22/04/2011 01:20

which experiments would be relevant.) Evaluation of theoretical work in
computer science might include attempting to apply it to design of new
languages or hardware, or to software engineering techniques, or simply
to the solution of other theoretical problems. Evaluation of a new
program or technique would include comparing what it achieves with what
is achieved by previously existing software and techniques. There are
several different dimension in which software can be evaluated:
generality, usability, portability, maintainability, understandability,
efficiency, etc. Make sure you and your readers know which dimensions
are relevant to assessing your work.

{6.8} Conclusion
 This should summarise the main points of the thesis, evaluate what has
been achieved (see discussion of evaluation), summarise the way it
compares with prior work, mention limitations and failings, and sketch
possible future developments or future research suggested by your work.

{6.9} Acknowledgements
 It is conventional, though not absolutely necessary, to have a section
acknowledging the people who have helped, inspired, advised you, the
institutions that have supported you etc. E.g. if you have a research
council studentship say so and give the studentship number. If you have
taken someone else's idea and developed it, this should be stated in the
main text, though a brief note can also be included in the
acknowledgements section. Most people appreciate acknowledgements, but
don't go over the top and include everyone you know, including the
bus-driver who gets you to work....

{6.10} Bibliography
 Every item referred to in the thesis must be included here. There are
different styles for bibliographies and citations, as described below.

{6.11} Appendices
 These may include detailed mathematical proofs, detailed definitions of
formalisms, detailed descriptions of programs or techniques used, and
examples of the program's execution if you have developed a program.
Opinions differ on whether actual code should be an appendices. I
strongly recommend that where there are any interesting algorithms or
techniques the code should be included. But don't include all the
trivial details of your program, including low level routines (e.g.
concatenate two lists).

-- {7} Issues concerning length ---------------------------------------

{7.1} Length limits in exam regulations are UPPER BOUNDS, not targets to
aim at. If the main text of your thesis is over 150 pages or 55000
words, then there's a good chance that it is too long. Trim all waffle
and repetitions.

{7.2} If thesis plus appendices is much over 220 pages or 80,000 words
then it is probably too long and you risk making busy examiners upset at
having to be burdened with it - unless the whole thing is fascinating,
from beginning to end.

If you have lots of diagrams or pictures (e.g. for a thesis on vision or
image processing), that can justify additional bulk. Similarly if
there's lots of empirical data that you have collected, e.g. for input
to your program. Even then ask yourself whether it ALL needs to go into
the thesis, or only a sample that makes the points adequately.

If you have empirical data that are too bulky to go into the thesis,
make sure they are preserved in a form that will allow others to access
them, e.g. to check out the claims in your thesis or other publications.

{7.3} Include the INTERESTING parts of the program in an appendix.
Include only enough to enable a competent programmer to replicate your
program if necessary.

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

6 of 17 22/04/2011 01:20

Do NOT include obvious and trivial procedures (e.g. defining a procedure
to intersect two lists, or join two lists, or count the elements of a
list satisfying a predicate, etc. are all trivial. Don't include them. A
procedure to compare two networks and build a description of the
difference is not trivial. Include that, unless you can refer to a
widely available publication that describes the algorithm very clearly.)
If in doubt about what to include ask your supervisor for advice - then
use your own judgement - it's YOUR thesis.

Even if you do not include all your program code in the thesis, you
should be willing to make it available to others so that they can test
your claims, criticise your work, or build on it. (Sometimes software
cannot be made available in this way because it is commercially
valuable.)

-- {8} The opening chapter(s) ---

{8.1} Start with a good, clear, compact, complete overview. By the end
of the first few pages of chapter 1, your reader should have a very good
idea of your main achievements, including whether you have written a
program and if so what sorts of things it can and cannot do (at least at
a high level of abstraction).

Alan Bundy has suggested to me that it is useful if students who are
starting to write up their theses first compose what he calls a `thesis
message': a sentence (or more) per chapter playing two roles: as a
description of the chapter and as a part of an argument when read in
sequence. This helps the student locate gaps in the argument, ensures
that the chapters are in the right order, ensures that there IS a
message rather than a collection of disconnected thoughts, etc.

This message should then be reflected in the title, abstract,
introduction, conclusion and thesis as a whole.

-- {9} Surveying related work ---

{9.1} A literature survey is a necessary part of any thesis. It can take
different forms, e.g. bunched in one place or distributed across several
chapters so that literature is discussed in the context where it is
relevant (make sure the reader knows which you are doing - e.g. after
the first portion of a literature survey state that remaining literature
will be surveyed in other chapters where it is relevant).

{9.2} One thing you should avoid is a very superficial survey in which
you cover 25 authors in 10 pages giving a potted summary of each that
will give little information to readers who do not already know the
work.

{9.3} Choose a few of the authors who have made the main contribution to
the field and give an in depth discussion that will show the examiners
that you are able to expound the work of someone else clearly,
accurately, and critically. Then, if necessary, give a list of other
work in the field saying that you don't have space to survey it in
detail. At least that will show that you are aware of it. Better still
if there are different approaches, different views, or different kinds
of results, etc. then organise the list into different categories.

If possible choose at least one author whose views are opposed to yours
and discuss the issues in detail.

{9.4} Imposing a new structure on previous work in the field is one way
of making a contribution to knowledge.

{9.5} Tracking down relevant literature is less fun than working on your
program, and therefore too many students don't do the job properly. It
is your responsibility to make sure that you have covered all the main
relevant work. By the end of the first year or so, any good research
student should know more about recent literature in the field than his

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

7 of 17 22/04/2011 01:20

or her supervisor, who is probably too busy to keep up properly. So
don't just depend on your supervisor to tell you what to read. Your
survey must include both recent work and the most important earlier
work, which you can track down by following up references in other
people's bibliographies. If you don't look at the history of your topic
you are in danger of re-inventing wheels, including wheels that other
people have demonstrated don't work. (This happens too often.)

{9.5} The next two sections are also relevant to the literature review.

-- {10} Two kinds of literature survey: scene-setting and critical ----

{10.1} It's up to you whether you expound your ideas before or after the
literature survey. Sometimes discussion of other work nicely sets the
stage for your solution. In other cases your own analysis provides a
conceptual framework that makes it easier to expound and classify or
criticise the work of others.

{10.2} It may be useful (as Alan Bundy pointed out) to distinguish two
kinds of literature survey: scene-setting and comparative evaluation. An
early chapter (e.g. chapter 1 or chapter 2) can include a "scene
setting" survey to help the reader understand what problems you are
addressing and how they relate to the work of others. Later on, either
in a separate chapter, or distributed over several chapters, you can
include "comparative evaluation" surveys to show in detail how your work
extends or improves on others (or how it doesn't!) This is part of the
process of convincing examiners that you have done something original
and significant.

-- {11} Criticising the work of others --------------------------------

{11.1} Remember that before refuting X you should present the views of X
in as strong and convincing a form as possible: otherwise you risk being
accused of refuting a caricature or straw man. (I owe this point to the
writings of Karl Popper.) There is no point arguing against a view that
only a fool would support. If possible improve on X's own arguments
before you try to refute them - i.e. anticipate possible ways of
wriggling out of your criticisms. Too often people write criticisms of a
particular view without asking "How would I react to this criticism if I
were a really intelligent and well informed person on the other side?".

-- {12} Scenarios and examples --

{12.1} Many AI theses have made good use of sample scenarios (a) to
demonstrate what the problem domain is and (b) to demonstrate what the
program can do. A scenario is an example of a hypothetical or actual
piece of behaviour, e.g. solving a problem, making a plan, engaging in a
dialogue. Good examples of expositions using scenarios are the theses by
Winograd and Sussman.

{12.2} It is important that scenarios serving these two purposes are
clearly distinguished, unless the same one serves both. I.e. if you use
a scenario to define the problem domain, but your program cannot cope
with it, say so, so that your reader is not given false expectations.
I.e. If you give examples of scenarios make sure you indicate clearly
which can and which cannot be done by your program. Also make clear
whether the input and output are as they would be for your program, or
whether you have tarted them up for the purpose of communication.

-- {13} Describing programs: a formal description ---------------------

{13.1} If you have written a program make sure that in addition to a
scenario giving examples of what it can do, you also give a fairly
formal account of its capabilities. Mere examples don't, by themselves,
make clear what the program cannot do. Also, readers don't want to have
to plough through lots of verbiage when a concise formal account will

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

8 of 17 22/04/2011 01:20

suffice.

{13.2} If there is a way of explaining an algorithm or relationship in a
well known formalism, e.g. algebra or predicate calculus do so - don't
just witter on in English. However, if you use formulae or equations,
re-state them in English if they are at all complex, for instance if
there are more than two implicitly or explicitly quantified variables or
more than a dozen or so symbols, or if the notation is not widely known.

{13.3} Avoid vagueness, imprecision, etc. If you say that there is a
relationship between two observables say WHAT it is. E.g. don't just say
that measuring X enables you to infer Y - give the formula or
relationship. (But be clear whether this is an empirical or a
mathematical result.)

{13.4} If there are difficult new concepts, include the verbal
explanations, with illustrative examples, but make sure that there is a
formal summary for quick reference later. E.g. someone doing related
work wanting to check that she has covered all the cases you've dealt
with should be able to go through an explicit check list without having
to dig it out of the main expository text.

{13.5} "Formal" does not necessarily mean expressed in a formal
language. E.g. it may be enough to lay out the information in a formal
way, using tables, charts etc. It must be concise, clear, and well
structured.

-- {14} Describing programs: saying WHAT they do ----------------------

{14.1} As far as possible separate out your description of WHAT a
program does from HOW it does it. A common mistake is to muddle these
two up.

The account of WHAT the program does (not HOW it does it) should include
at least the following:

 What kind of domain(s) it is concerned with.
 What objects, properties, relationships, events etc. in that domain
 it can deal with.
 (Make sure you give an EXHAUSTIVE specification of the types of
 things, not just a few examples. Although the TYPES should be
 exhaustively specified, you need not include all the INSTANCES
 of those types.
 For the sake of clarity list those things it cannot do that
 readers might be tempted mistakenly to assume it does do.)
 What inputs it can have initially.
 If possible, give a formal specification (e.g. a grammar) as
 well as examples and descriptions in English.
 Where it gets its inputs from:
 The user at a terminal? Another procedure that invokes it
 with arguments? A global database or set of files on disk?
 What interactions can occur (if it is an interactive program)
 If possible give a grammar or other formal specification
 for its possible behaviours.
 What (final) outputs it produces.
 If possible give a grammar for the output, and a formal account
 of the relations between input and output. If it is not possible
 to give a formal account that is clearer and more concise than
 the program itself say so and explain why. (How did you know
 what program you were trying to write?)
 Where the output goes
 Printed on the terminal? Results returned to a calling
 procedure? Stored in a global database or disk file?
 What operations it can do. E.g if it is a simulation program,
 what exactly are the actions it simulates. If it is a problem
 solving program what kinds of solutions can it generate.

{14.2} A summary account of what your complete program does should occur
near the beginning of the whole thesis. Descriptions of smaller

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

9 of 17 22/04/2011 01:20

components can be left to chapters outlining the implementation.

{14.3} If you have a Prolog predicate that has lots of different rules
to handle different cases, then don't SIMPLY include all the rules -
explain the principle on the basis of which you have produced all those
cases. (e.g. "There is one case for each type of insect, and 300 types
of insects are dealt with", or "The predicate handles different types of
vehicles and there is one case for possible number of wheels, from 2 to
20...." etc.)

-- {15} Describing programs: saying HOW they work ---------------------

{15.1} The account of HOW the program works should be presented in a
manner that is, as far as possible, independent of the particular
programming language used, so that someone could use the description to
re-implement the program in another language.

{15.2} Don't mix up levels. Choose a level of description and stick to
it. If you refer to a sub-system in that description, then you can
describe it somewhere else, again sticking to a suitable level. A very
common way to make descriptions unintelligible to the reader is to
switch rapidly between a high level overview and gory details.

{15.3} At each level of description you can explain how a program, or
part of a program works by presenting:

 a. A specification of its main components (e.g. main datastructures
 or databases and the main processing components) and

 1. their tasks (what sort of things they do)
 2. the data-flow between them
 3. the control relations (what calls what)
 (including how much is conceptually parallel even if
 implemented sequentially).

 b. How the different kinds of objects, etc. etc. are represented
 (i.e. what sorts of data-structures are used - i.e. how many
 different types there are, what their components are, how they
 are related, etc.)

 c. What algorithms are employed (except where they are trivial)

 d. How the main program is broken up into smaller ones, at the
 next level of detail.

 e. What limitations the program has and why.

 f. A formal or informal complexity analysis: How its performance
 scales up with problem size - e.g. is it linear, exponential etc

 g. The implementation environment: machine, operating system,
 language and compiler/interpreter used. (e.g. not just Lisp,
 but whose Lisp system.)

 h. Some indication of times for typical problems on the system
 described in (g).

Use block diagrams and flow charts where this will help to make things
clear, but be sure the semantics of such diagrams are not left
unspecified. Don't use the same kind of diagram for two different
purposes (e.g. a state transition diagram and a block diagram showing
components). Don't use the same kind of box for two different kinds of
components, e.g. a database and a processing module. Don't use the same
kinds of arrows or links to represent different relationships, e.g. flow
of data and flow of control.

-- {16} Further information about the program -------------------------

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

10 of 17 22/04/2011 01:20

{16.1} If you have a program state clearly what it achieves: is it
something that others could make use of either as a sub-program, or as a
template for a family of programs? For what purposes can it be used -
does it have practical applications or is it only of theoretical
interest? Does it test some hypothesis? Did it help you clarify certain
concepts?

{16.2} If there is a program say whether it is in a form in which others
can run it, what user documentation there is, etc. Give a brief outline
of what one has to do to run it. Don't include user documentation in the
thesis (unless that is a major result of the research, e.g. for a
project on human-machine interface design).

However, user documentation should exist somewhere, and examiners should
be able to request it. They MAY also ask for a demonstration of the
program as part of the oral examination, so make sure that the program
is working and demonstrable.

{16.3} Explain the relationship between the implementation and your
requirements for the program. Is it provable that your program does what
you intend it to do, or can you simply claim that you have tested it
exhaustively? In the latter case give a description of the range and
variety of the tests used. Don't include them all in the thesis if that
would make it too bulky - just give an overview.

{16.4} Try to motivate the design decisions for your program. Don't
bother to comment on all the details, but for all the main features, or
at the least the features that you think worthy of mention, be very
clear as to whether you chose them because

 a. You are trying to model something that you think works in the
 same manner as your program.

 b. You chose that design in order to explore its possibilities
 (Suggested by Luc Beaudoin)

 c. There were several different options, and no rational way of
 choosing between them, so you have made an arbitrary choice.

 d. It is just an implementation detail where the choice is of no
 theoretical significance anyway.

 e. It was chosen for efficiency, or clarity, or maintainability
 (i.e. for some good engineering reason.)

 f. The choice was largely determined by the available hardware and
 software. (E.g. there was a library and you just used it.)

 g. You couldn't think of any other way to do it.

 h. You can't remember why you chose that method....

Don't waste time explaining details that are of no theoretical interest
in the main part of the thesis. If they are worth reporting because they
are not obvious put them in an appendix.

-- {17} Criteria for evaluating your thesis ---------------------------

{17.1} Make clear how YOU think your work is to be assessed. What would
have counted as an unsuccessful outcome for your research? The mere fact
that you have written a program that meets your specification or that
you have written down some axioms and definitions is not in itself
evidence of success.

{17.2} Why should someone want a program to do that? Why should anyone
be interested in your axioms and symbols? What is the new knowledge? Is
there a new useful design technique? Have you discovered some new

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

11 of 17 22/04/2011 01:20

important algorithms or heuristics for dealing with a class of problems?
Have you found new ways of representing information usefully? Have you
got a new model of some kind of human cognitive ability? Does the model
suggest new kinds of empirical research that can be done? Does the model
explain previously known facts better than previous theories? What does
the program add to the theory? Does the program simply help to check
that your theory is consistent and workable? Does the program allow new
predictions of human behaviour to be made when given appropriate inputs?
Does it merely explain a range of possibilities without predicting which
ones will actually be realised (in the sense explained in chapter 2 of
A.Sloman The Computer Revolution in Philosophy)?

I.e. Make clear what new knowledge you have discovered, and its nature,
e.g.
 previously unrecognised flaws in the work of others
 new requirements for a design or simulation
 a new formalism or programming language
 a new computer representation
 a new algorithm or heuristic
 improvements on the work of others
 new facts about how people work
 new concepts / taxonomy /conceptual framework for thinking about
 a particular domain
 a new previously unrecognised problem for AI or cognitive science
 a new design for human/machine interface
 new relationships between old problems
 a new generalisation of things previously thought to be
 different or unrelated (e.g. techniques, representations,
 problems, etc.)
 new predictions about human behaviour
 new negative results - concerning what won't work.

{17.3} If you have collected empirical data explain what their
significance is, and why anyone should be interested. Remember: it is
terribly easy to do experiments on people and collect data. Unlike
physical or chemical apparatus almost anything you ask people to do will
produce some response because they are intelligent and will interpret
your instructions. For the same reason there is likely to be individual
variation. But merely collecting data, finding averages, drawing graphs,
etc. is of little scientific value. There must be some interesting
theoretical implication, or the data should illustrate some important
concept. If the data refute some previously believed theory then that
can be a useful piece of research.

Also when you have collected data beware of wild and woolly speculation
as to how they are produced. If you offer an explanation, be sure that
it is the sort of explanation that is sufficiently precise and detailed
to be the basis of a construction of a working mechanism. E.g. to say of
someone "He solved the problem by constructing an image in his mind and
examining" is to say something pretty worthless. It is not at all clear
what it means to construct an image in one's mind: is it just a
metaphorical way of speaking, like "The pressure was building up in
him", or "He was pulled in two directions at once", or is there
something like a 2-D surface within his brain, on which visual processes
of analysis and interpretation operate? All too often psychological
writings use such psuedo-explanations because they make people feel they
understand. The ancients thought they understood what it meant to say
that different kinds of matter (Earth, Air, Fire and Water) all sought
out their "natural" place. Don't fall into similar traps.

-- {18} Program style ---

{18.1} In your program do not use incomprehensible abbreviations for
procedure names or variables. E.g. use "top_left_corner" NOT "tlc"
You may be able to remember what "tlc" stands for but you can't expect
readers to do so. If you have done this in your code, then expand it
into something intelligible for readers in the thesis. (Saying you have

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

12 of 17 22/04/2011 01:20

done so.)

See also TEACH PROGSTYLE

{18.2} Include comments with the programs, and where appropriate give
examples as well as general explanations in your comments. But don't mix
up the program with extensive examples of trace printing.

-- {19} Program output and tracing ------------------------------------

{19.1} Give examples of "trace" printing produced by your program
running, but make sure the examples are carefully selected to highlight
interesting points. Nothing is more offputting than pages and pages of
indigestible program output. You can't expect readers to plough through
masses of tedious detail. If necessary, add comments by hand to draw
attention to interesting points. Also edit out repetitive output, but
indicate that you have so.

{19.2} Don't assume that the output of standard tracing (or spying)
facilities is adequate for readers just because it is adequate for you,
the program developer. In 99% of cases it is better to devise
special-purpose printing procedures that will print things out in a form
that is both clear and interesting to read.

{19.3} For a trivial example, look at the trace output produced by the
following Pop-11 instructions (mark and load them):
 lib river
 start();
 trace putin, getin, crossriver, getout, takeout;
 putin(chicken);
 getin();
 crossriver();
 getout();
 takeout(chicken);

{19.4} You may represent things in a compact form e.g. using numbers, or
using an ordered list of names, but don't expect readers to remember
that the first number in the list represents the number of children and
the second name is the name of the spouse. Make sure your trace output
includes all relevant information to help the reader, even if it was not
necessary for you. But don't assume the reader is STUPID. Think of the
reader as a bright second year doctoral student in the same general area
as yourself - but not working on the particular sub-topic.

{19.5} Choose appropriate bits of illustrative output to work into the
main text. You can include more details in an appendix. But don't put it
ALL into appendices: examples of the program behaving should be part of
your main exposition if the program is worth reporting on at all.

-- {20} Proof-reading is very important -------------------------------

{20.1} Before submitting the thesis read through it carefully, asking
yourself - how would I feel about having to read this if I were a very
busy and over-worked academic who doesn't necessarily know this
sub-field in great detail. Look for opportunities to improve clarity,
remove repetition, correct errors, etc.

{20.2} Use an automatic spelling checker if possible, to help you find
most errors. Many errors e.g. grammatical errors, cannot be checked
automatically (yet). Get a friend to read the thesis looking for
typographical and other errors.

Double check the spelling of EVERY proper name, e.g. every author's name
in your bibliography. Too many people are sloppy about spelling of
names. E.g. do not confuse things like Jonson/Johnson/Johnstone
Ramsay/Ramsey, Allan/Alan/Allen, etc.

Examiners get VERY annoyed if they are used as proof-readers compiling

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

13 of 17 22/04/2011 01:20

long lists of minor errors for you to correct.

If you have any figures or tables that are referred to in the text make
sure that the figures (e.g. lettering, captions) are consistent with the
text. Too often either the text or a figure is changed without the other
being changed too. It is infuriating to read in the text about the item
labelled X in Figure 4.5 when there is no label X in Figure 4.5.

Sometimes there are reasons for putting figures or tables separately
from the text that discusses them (e.g. you want to put several figures
on successive pages, and the text discussing them is fairly lengthy). In
that case make sure that someone turning to a figure or table who has
not yet read the text can either tell what it is about or will know
where to look for an explanation (e.g. the caption to the figure or
table should mention the section where it is explained.) For examples of
how to do this look at the journal: Scientific American.

A good text formatter will enable you to avoid most of these problems,
including, for example, labelling of figures.

-- {21} Avoid embarrassing omissions (proofread carefully) ------------

{21.1} If not everything can be inserted by the text processor you are
using be prepared to write things in by hand in black ink. But make sure
there are NO omissions. While you are preparing the text keep a file
listing all the items to be inserted by hand, then before you make
photocopies go through that list carefully, ensuring that you have made
all the inserts. Leaving such things out (e.g. figure captions,
references, etc.) gives an impression of sloppiness.

{21.2} Similarly if you don't have a detailed reference when you write
something and leave a gap in the text MAKE SURE you fill in the gap for
the final version. Again, keep all such things in a "to be done" file
and check them carefully before submitting.

{21.3} Make sure that every item that you refer to in the text is
included in your bibliography. It is very irritating for the reader to
find a reference to (Bloggs 1903) then not find the entry in the
bibliography.

A good text formatter should help you avoid this.

{21.4} Don't put items in the bibliography simply because they are
relevant. Include ONLY those things you refer to explicitly somewhere. A
bulky bibliography is of no intrinsic merit. The only exception is the
case where production of a new bibliography on the material of your
thesis is itself part of the work, in which case say so.

{21.5} Use footnotes only to give details of references to literature,
or possibly to remind the less well informed reader of some technical
point. Do not use them for substantive extensions to the discussion,
qualifications, etc. If you have something important to say work it into
the main text, even if you label it as a digression from or
parenthetical insertion into your main. This is one way in which clear
section headings are useful.

-- {22} Try out the thesis on a friend or colleague -------------------

{22.1} Try to find the right balance between excessive terseness and
excessive verbosity. Try out your draft thesis on at least one other
D.Phil student who should be able to say whether it is readable
interesting, clear, convincing, etc.. (Similarly you should be prepared
to read at least one draft thesis written by another student.)

{22.2} In particular don't assume that everything you have explained
will always be remembered by your reader. So if the reader is likely to
need a reminder say something like "the floozle strategy (defined in
section 3.4.2) can be used...". Don't repeat points just because they
are relevant in different contexts. It is unkind to confront examiners

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

14 of 17 22/04/2011 01:20

with a repetitive and therefore unnecessarily bulky thesis.

-- {23} Bibliography and references -----------------------------------

{23.1} There are different conventions about format for references and
bibliography. Look at journals in your field and see what they do. Often
there are instructions for authors inside the back or front cover.
Choose a set of conventions and stick to them. E.g. some bibliographies
put initials after surname, some before. Some people put the publication
date immediately after the author's name, some at the end of the entry.
It is important to distinguish titles of book chapters or journal
articles from titles of books or journals.

 - Use `single quotes like this' or 'like this' for the titles of
 chapters or articles. (Not all printers can handle "`" nicely,
 so check that out before you use it. Using an asymmetrical pair
 of single quotes can look very silly in the printout.)

 - Titles of books or journals should be italicised or underlined.

{23.2} There are different conventions for bibliographical references
within the main text. The most compact is by a numerical reference (e.g.
[45] would refer to bibliography entry number 45.) Alternatives are name
and date (Smith 1975, Jones 1932a) or name and number (Smith [45]). As a
reader I prefer name and date since very often that will suffice to tell
me what is being referred to whereas if it is just a number then I am
forced to turn to the bibliography. Also there is more chance that you
will get numbers wrong as you update the bibliography.

A good text formatter can ensure that you follow uniform citation
conventions, and will often give you a choice of formats.

-- {24} Quotations --

{24.1} If you include a quotation from another author make sure you give
a FULL reference including page number so that it can be found quickly
and easily. E.g. the reader may wish to check the context to see whether
you have misunderstood.

{24.2} Don't assume that just because you can understand French, Urdu,
or Latin, or whatever, your readers can. If you include a quotation in a
foreign language you MUST give a translation into English as well.

-- {25} If English is not your native language get help ---------------

{25.1} If you are not a native speaker of English you are STRONGLY
advised to pay someone who is a native speaker to work carefully through
your thesis improving the spelling, syntax, etc. where necessary. The
examiners have to be convinced that the English is at least up to the
standard required for publication in an English language journal.

Examiners differ on the importance that they attach to linguistic
competence. Some examiners insist that the thesis be written in good
English even if you are not a native speaker of English. Others are
willing to make allowances for language if the scientific and technical
content is good enough. The best advice is to take no chances and assume
you are going to get the first kind of examiner.

{25/2} Even if you don't speak English there is no excuse for spelling
errors, as there are spelling checkers available on most computers. Make
sure that you double-check the spelling of names of other authors.

-- {26} Encouraging final comment!

{26.1} If you find these comments daunting, remember that many other
people, not all of them geniuses, have succeeded in getting PhD.s

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

15 of 17 22/04/2011 01:20

However, too many of them have been asked by examiners to do substantial
chunks of re-writing first.

-- {27} References (Good scenarios)

G.J. Sussman
 A Computer Model of Skill Acquisition.
 New York: American Elsevier, 1975.

T.S. Winograd,
 Understanding Natural Language.
 Edinburgh: Edinburgh Univ. Press, 1972.
(Winograd's scenario is re-printed in many books, e.g. M.Boden's
Artificial Intelligence and Natural Man.)

-- {28} Further reading

[This list was compiled a long time ago, and there are probably many
other useful references.
If you find something useful to add to the list, please email
 A.Sloman[AT]cs.bham.ac.uk]

Estelle Phillips & D.S. Pugh
 How to get a PhD
 Open University Press
 ISBN 0 335 155367 (paper back)

Bundy, A. du Boulay, J.B.H., Howe, J.A.M. & Plotkin, G.,
 'How to get a Ph.D. in A.I.', in
 Artificial Intelligence: Tools, Techniques and Applications,
 O'Shea, T. & Eisenstadt, M. (eds.),
 Harper & Row: London, 1984.

Chris Johnson has some useful suggestions for PhD students at his web
site:

 http://www.dcs.gla.ac.uk/~johnson/papers/phd.html
 What is a PhD in HCI?

 http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/research.html
 What is Research in Computer Science?

Compare that with
 http://www.cs.bham.ac.uk/~axs/misc/cs-research.html
 Types of research in computing science software engineering
 and AI.

There's more useful stuff by
 Marie desJardins,
 http://www.cs.umbc.edu/~mariedj/
 Dept. of CS & EE, University of Maryland, Baltimore County
 She has a web site with pointers to a useful guide she has written
 and other things:

 http://www.cs.umbc.edu/~mariedj/papers/advice-summary.html

Students who do not already know about LaTex and BibTex are strongly
encouraged to learn to use them, in order to reduce the work involved in
producing a well-formatted thesis and in order to produce better results
than you can achieve by other means.

The following local Poplog TEACH files are also relevant.

TEACH PROPOSALS
TEACH PSTYLE
TEACH PROGSTYLE

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

16 of 17 22/04/2011 01:20

-- Acknowledgements

Several people at Sussex, and Alan Bundy in Edinburgh, have contributed
useful suggestions, which led to revisions of early drafts. Ben Smyth
identified several typos, now fixed.

Comments and criticisms to Aaron Sloman: A.Sloman AT cs.bham.ac.uk

--- $poplocal/local/teach/theses
--- The University of Birmingham 2004

http://www.cs.bham.ac.uk/research/projects/poplog/teach/theses

17 of 17 22/04/2011 01:20

