

	FI 177			77Y	SYSTEMS	
,	(nowledge	Representati	on & Reasoning	: The Air	r-conditioner Example	
	Recall	that the	rules gover	rning	the air-	
	conditi	ioner are	as follows			
	KULE#1:	IF	<u>TEMP</u> is COLD	THEN	<u>SPEED</u> <i>is</i> MINIMAL	
	RULE#2:	IF	<u>TEMP</u> is COOL	THEN	<u>SPEED</u> is SLOW	
	RULE#3:	IF	<u>TEMP</u> is PLEAS	ENT	THEN <u>SPEED</u> is MEDILIM	
	RULE#4:	IF	<u>TEMP</u> is WARM	THEN	<u>SPEED</u> is FAST	
	RULE#5:	IF	<u>TEMP</u> is HOT	THEN	SPEED is BLAST	
	-					
						8

FU77	ΎΙΟ	GIC & FU77Y SYSTEMS	
Kr	owled	ge-Based Expert Systems	
		Pneumonia Expert System	
Conside	r a small ch	unk of a medical experts knowledge about diagnosing	
		pneumonia and fever	
rule pneumon	ia		
	if	'the patient has chest pain' &	
		'the patient has a fever' &	
		'the patient produces purulent sputum'	
	then	'the patient has pneumonia'	
rule fever			
	if	'the patient has a temperature above 100'	
	then	'the patient has a fever'.	
The nur	se has just c	ome in a with a patient with the following symptoms:	
		'the patient has a chest pain' &	
	ʻth	e patient has a temperature above 100'&	
	4	the patient produces purulent sputum'	
		And the expert has to deduce	
	wh	ether or not the patient has pneumonia?	

FUZZY LOGIC & FUZZ	ZY SYSTEMS
Knowledge-Based Expe	ert Systems
Pneumonia Expert S	ystem
The nurse has just come in a with a patient wi	th the following symptoms:
'the patient has a chest pa	in' &
'the patient has a temperature a	bove 100'&
'the patient produces purulent	t sputum'
And the expert has to de	educe
whether or not the patient has p	neumonia?
In order to prove whether or not the patient has pneu	umonia, the expert has to prove:
prove 'the patient has pneumonia'	← GOAL
prove 'the patient has a chest pain'	← SUB-GOAL
prove 'the patient has a fever'	←SUB-GOAL
prove 'the patient produces purulent sputum'	← SUB-GOAL

Pr	oducti	on Sys	stems	
		1		
Rule#1:	<u>r a knowledge-</u> <i>IF</i>	A&B&C	THEN	ng rule D
Rule#2:	IF	D&F	THEN	G
Rule#3:	IF	A&J	THEN	G
Rule#4:	IF	В	THEN	J
Rule#5:	IF	F	THEN	В
Rule#6:	IF	L	THEN	J
Rule#7:	IF	G	THEN	H.
The l	knowledge-base	e also contains	the following	g facts
Fact#1:	A.	('A' is know	vn to be true)	
Fact#2 :	F.	('F' is kno	wn to be true)	

		Sheystenis
	An Example Proble Cycles of Prod	em: To prove that H is true? uction: FIRST CYCLE
1.	Current goal is <u>H</u>	
2.	Check Database	<u>H</u> is not in the database
3	Find 'appropriate rule'	Rule 7 has <u>H</u> as an implication
4.	Fire rule 7	To prove that <u>G</u> is true
5.	Set <u>G</u> as the current goal	Store this information in the Working Memory (WM)
6.	Cycle through the KB	

Pr	oducti	on Sys	stems	
Conside	r a knowledge	hase containi	ng the followi	ng rule
Rule#1:	IF	A&B&C	THEN	D
Rule#2:	IF	D&F	THEN	G
Rule#3:	IF	A&J	THEN	G
Rule#4:	IF	В	THEN	J
Rule#5:	IF	F	THEN	В
Rule#6:	IF	L	THEN	J
Rule#7:	IF	G	THEN	H.
The l	knowledge-base	e also contains	the following	g facts
Fact#1:	A.	('A' is know	n to be true)	
Fact#2 :	F.	('F' is kno	wn to he true)	

	An Example Proble Cycles of Produ	em: To prove that H is true? ction: FOURTH CYCLE
1.	Current goal is <u>A</u>	
2.	Check Database	<u>A</u> is in the database
3	Set <u>B</u> as the current goal	Store <u>B</u> in the WM
4	Cycle through the KB	

∇				
<u>Conside</u>	<u>r a knowledge</u>	-base containir	ng the followi	ng rules
Rule#1:	IF	A&B&C	THEN	D
Rule#2:	IF	D&F	THEN	G
Rule#3:	IF	A&J	THEN	G
Rule#4:	IF	В	THEN	J
Rule#5:	IF	F	THEN	В
Rule#6:	IF	L	THEN	J
Rule#7:	IF	G	THEN	H.
<u>The l</u>	knowledge-bas	e also contains	the following	<u>g facts</u>
Fact#1:	А.	('A' is know	n to be true)	
Fact#2:	F.	('F' is know	wn to be true)	

	Repres Producti	senta <mark>tion:</mark> on Systems	
 ,	An Example Probl Cycles of Proc	em: To prove that H is true? luction: FIFTH CYCLE	
 1.	Current goal is <u>B</u>		
 2.	Check Database	<u>B</u> is not in the database	
 3	Find 'appropriate rule'	Rule 5 has B as an implication	
 4.	Fire rule 5	To prove that $\underline{\mathbf{F}}$ is true, hence $\underline{\mathbf{B}}$ is true	
 5.	Set <u>C</u> as the current goal	Store <u>C</u> in the WM	
 6.	Cycle through the KB		31

FUZZY LO	GIC & FUZ	ZY SYSTEM
Knowledge	Representatio	on & Reasoning
A fuzzy knowledge- performs approxim- uses knowledge rep that are based on th	based system (KBS ate reasoning. Typ resentation and re period application of Fu	5) is a KBS that bically a fuzzy KBS asoning in systems
fuzzy knowledge bas rules of the form:	se comprises <u>vague</u>	<i>e facts</i> and <u>vague</u>
fuzzy knowledge bas rules of the form: KB Entity	se comprises <u>vague</u>	<i>E facts</i> and <u>vague</u>
fuzzy knowledge bas rules of the form: KB Entity Fact	se comprises <u>vague</u> Fuzzy KB X is μ _X	Crisp KB X is TRUE or
fuzzy knowledge bas rules of the form: KB Entity Fact	se comprises <u>vague</u> Fuzzy KB X is μ _X	Crisp KB X is TRUE or X is NOT TRUE
fuzzy knowledge bas rules of the form: KB Entity Fact Rule	Fuzzy KB X is μ _X IF X is μ _X	Crisp KB X is TRUE or X is NOT TRUE IF X

 Linguistic Variables This mapping from the perceptible, measurable and standardisable data to a cognitive, vague, and ambiguous linguistic description involves the mapping of the raw data onto a fuzzy set. The linguistic description –variable- can be modified to make the description more diffuse or highly focussed with the help of the <i>fuzzy modifiers</i> It is the combination of the raw data values with the linguistic feature fuzzy sets, that helps to capture the meaning encapsulated in a given concept through fuzzy logic concepts of <i>fuzzy sets, membership functions,</i> and <i>fuzzy logic operations</i> including conjunction and disjunction, quantification, and 	,	Knowledge Representation
 This mapping from the perceptible, measurable and standardisable data to a cognitive, vague, and ambiguous linguistic description involves the mapping of the raw data onto a fuzzy set. The linguistic description -variable- can be modified to make the description more diffuse or highly focussed with the help of the <i>fuzzy modifiers</i> It is the combination of the raw data values with the linguistic feature fuzzy sets, that helps to capture the meaning encapsulated in a given concept through fuzzy logic concepts of <i>fuzzy sets, membership functions,</i> and <i>fuzzy logic operations</i> including conjunction and disjunction, quantification, and 	Li	inguistic Variables
 of the <i>fuzzy modifiers</i> It is the combination of the raw data values with the linguistic feature fuzzy sets, that helps to capture the meaning encapsulated in a given concept through fuzzy logic concepts of <i>fuzzy sets, membership functions,</i> and <i>fuzzy logic operations</i> including conjunction and disjunction, quantification, and 	•	 This mapping from the perceptible, measurable and standardisable data to a cognitive, vague, and ambiguous linguistic description involves the mapping of the raw data onto a fuzzy set. The linguistic description –variable- can be modified to make the description more diffuse or highly focussed with the help
negation	•	of the <i>fuzzy modifiers</i> It is the combination of the raw data values with the linguistic feature fuzzy sets, that helps to capture the meaning encapsulated in a given concept through fuzzy logic concepts of <i>fuzzy sets, membership functions,</i> and <i>fuzzy logic operations</i> including conjunction and disjunction, quantification, and negation

FUZZY	LOGIC & FUZZY SYSTEMS
	(nowledge Representation
Linguistic	c Variables
For examp young an their respe From thes compatibil equation (1 a semantic	le, the primary terms in the equation above are ad old , whose meaning might be defined by ective compatibility functions μ_{young} and μ_{old} . e, then, the meaning - or, equivalently, the ity functions - of the non-primary terms in a) above may be computed by the application of rule.
	$\mu_{\underline{very young}} = (\mu_{\underline{young}})^2$
	$\mu_{\underline{\text{more or less old}}} = (\mu_{\underline{\text{old}}})^{1/2}$
	$\mu_{\underline{\text{not very young}}} = 1 - (\mu_{\underline{\text{young}}})^2$

FUZZY LOGIC & FUZZY SYSTEMS Knowledge Representation & Reasoning: The Air-conditioner Example Consider the problem of controlling an air-conditioner (again). The rules that are used to control the airconditioner can be expressed as a cross product: $CONTROL = TEMP \times SPEED$ 41

	F					
	FUZZ	Y LOG		ZZY	SYSTEMS	
ŀ	(nowledge	Representati	on & Reasoning	: The Ai	r-conditioner Example	
	Recall	that the	rules gove	rning	the air-	
	conditi	ioner are	as follows	:		
	RULE#1:	IF	<u>TEMP</u> is COLD	THEN	<u>SPEED</u> is MINIMAL	
	RULE#2:	IF	TEMP is COOL	THEN	SPEED is SLOW	
	RULE#3:	IF	<u>TEMP</u> is PLEAS	ENT	THEN <u>SPEED</u> is MEDIUM	
	RULE#4:	IF	TEMP is WARM	I THEN	SPEED is FAST	
	RULE#5:	IF	<u>TEMP</u> is HOT	THEN	<u>SPEED</u> is BLAST	
						43

-()	Fuzzy Relationships			
EXAMPLE fuzzy subsets	<u>CONTD.)</u> : The analytically expressed membership s for speed are:	for the re	feren	ce
Term	Membership function	a	b	с
MINIMAL	$\mu_{MINIMAL}(V) = \min\left(\frac{c-V}{a}, 1\right)$	30		
SLOW	$\mu_{SLOW}(V) = \max\left(\min\left(\frac{V-a}{b-a}, \frac{c-V}{c-b}\right), 0\right)$	10	30	5
MEDIUM	$\mu_{MEDIUM}(V) = \max\left(\min\left(\frac{V-a}{b-a}, \frac{c-V}{c-b}\right), 0\right)$	40	50	6
FAST	$\mu_{FAST}(V) = \max\left(\min\left(\frac{V-a}{b-a}, \frac{c-V}{c-b}\right), 0\right)$	50	70	9
BLAST	$\mu_{BLAST}(V) = \min\left(\frac{V-c}{2}, 1\right)$	30		7

FUZZ	Y LOGIC & FUZZY SY	ST	EM	S
0	Fuzzy Relationships			
EXAMPLE fuzzy subsets	(<u>CONTD.):</u> The analytically expressed membership for speed are:	or the re	ference	9
Term	Membership function	a	b	c
COLD	$\mu_{Cold}(T) = \min\left(\frac{c-T}{a}, 1\right)$	10		
COOL	$\mu_{COOL}(V) = \max\left(\min\left(\frac{T-a}{b-a}, \frac{c-T}{c-b}\right), 0\right)$	0	12.5	11
PLEASENT	$\mu_{PLEASENT}(V) = \max\left(\min\left(\frac{T-a}{b-a}, \frac{c-T}{c-b}\right), 0\right)$	15	22.5	
WARM	$\mu_{WARM}(V) = \max\left(\min\left(\frac{T-a}{b-a}, \frac{c-T}{c-b}\right), 0\right)$	17.5	22.5	2'
НОТ	$\mu_{HOT}(T) = \min\left(\frac{T-c}{a}, 1\right)$	5		

		n & keasoi	ning: The Air-cor	nditioner Ex	ample				
FUZZIFICATION: Consider that the temperature is 16°C and we want our knowledge base to compute the speed. The fuzzification of the the crisp temperature gives the following membership for the Temperature fuzzy set:									
	µcold	µ _{COOL}	µ pleasent	μ _{warm}	$\mu_{\rm HO}$				
Temp=16°C		0.3	0.4	0	0				
Fire Rule (#)	(#1)	(#2)	(#3)	(#4)	(#;				
	no	yes	yes	no	no				

FUZZY LOGIC & FUZZY SYSTEMS Fuzzy Relationships EXAMPLE (CONTD.): A sample computation of the SLOW membership function as a triangular membership function:								
Speed (V)	$\left(\frac{V-a}{b-a}\right)$	$\left(\frac{c-V}{c-b}\right)$	$\mu_{SLOW}(V) = \max\left(\min\left(\frac{V-a}{b-a}, \frac{c-V}{c-b}\right), 0\right)$					
10	0	2	0					
 15	0.25	1.75	0.25					
 20	0.5	1.5	0.5					
 25	0.75	1.25	0.75					
 30	1	1	1					
 35	1.25	0.75	0.75					
40	1.5	0.5	0.5					
45	1.75	0.25	0.25					
50	2	0	0					
 55	2.25	-0.25	0	49				

FUZZY LOGIC & FUZZY SYSTEMS Knowledge Representation & Reasoning: The Air-conditioner Example **DEFUZZIFICATION:** The 'Centre of Gravity' (COG) of the output of the rules: Formally, the crisp value is the value located under the centre of gravity of the area that is given by the function $\frac{1}{\prod_{x_1, x_n}^{output}(y) dy} \int_{y \in Y} \mathcal{\mu}_{x_1, \dots, x_n}^{output}(y) dy$ η 56

		001	~ 0			
🥶 Fl	ΙΖΖΥ Ι	_OGI	LĂ	FUZZYS	YSTEMS	
Know	ledae Repre	sentation	& Reas	onina: The Air-cor	ditioner Example:	
	DEFUZZI	FICATION	: CENTI	RE OF AREA COMP	UTATION	
E,	SPEED	MINIMAL	SLOW	OUTPUT OF 2 RULES	WEIGHTED SPEED	
S	12.5	0.125	0	0.125	1.5625	
	12.3	0.123	0	0.125	1.5025	
đ	17.5	0.23	0	0.23	5.75	
	20	0.3	0	0.3	6	
8	22.5	0.3	0	0.3	6.75	
	25	0.3	0	0.3	7.5	
ie te	27.5	0.3	0	0.3	8.25	
	30	0.3	0	0.3	9-	
VIII	32.5	0.3	0	0.3	9.75	
15	35	0.3	0	0.3	10.5	
a sr	37.5	0.3	0	0.3	11.25	
nall	40	0.3	0	0.3	12	
exc	42.5	0.3	0.25	0.3	12.75	
erp	45	0.25	0.4	0.4		
fo	47.5	0.125	0.4	0.4		
the	50	0	0.4	0.4	20	
con	52.5	0	0.4	0.4	21	
mdu	55	0	0.4	0.4	22	
tatic	57.5	0	0.25	0.25	14.375	
Ĕ	SUM			5.925	218.6875	

FU	ZZY	LOGI	2&	FUZZY S	YSTEMS
DEF that sum the n	of Mear and we nember espondi	of Maxim ighted men ship funct ng to the <u>r</u>	a Meth mbersh ion is g naximu	e method of defi od. Here again ip are worked o iven another al <u>un value</u> of the	the weighted out, except that pha level cut output fuzzy
set.	This val	ue is 0.4 a	nd the	corresponding	speed value is
set. 50 R	This val PM (=10 SPEED	ue is 0.4 a 00/2). MINIMAL	nd the	CORRESPONDING	speed value is WEIGHTED OUTPUT
set. 50 R	This val PM (=10 SPEED 45	ue is 0.4 a 00/2). MINIMAL 0.25	nd the SLOW 0.4	OUTPUT OF 2 RULES 0.4	Speed value is WEIGHTED OUTPUT 18
set. 50 R	This val PM (=10 SPEED 45 47.5	ue is 0.4 a 00/2). MINIMAL 0.25 0.125	nd the SLOW 0.4 0.4	OUTPUT OF 2 RULES 0.4 0.4	Speed value is WEIGHTED OUTPUT 18 19
set. 50 R	This val PM (=10 5PEED 45 47.5 50	ue is 0.4 a 00/2). MINIMAL 0.25 0.125 0	SLOW 0.4 0.4 0.4	OUTPUT OF 2 RULES 0.4 0.4 0.4	Speed value is WEIGHTED OUTPUT 18 19 20
set. 50 R	This val PM (=10 SPEED 45 47.5 50 52.5	ue is 0.4 a 00/2). MINIMAL 0.25 0.125 0 0	SLOW 0.4 0.4 0.4 0.4 0.4	OUTPUT OF 2 RULES 0.4 0.4 0.4 0.4 0.4	Speed value is WEIGHTED OUTPUT 18 19 20 21
set. 50 R	This val PM (=10 5PEED 45 47.5 50 52.5 55	ue is 0.4 a 00/2). MINIMAL 0.25 0.125 0 0 0 0	SLOW 0.4 0.4 0.4 0.4 0.4 0.4	OUTPUT OF 2 RULES 0.4 0.4 0.4 0.4 0.4 0.4	speed value is WEIGHTED OUTPUT 18 19 20 20 21 21 22

J FUZZ	Y LOGIC & FUZ	ZZY SYSTEMS
Knowled	ge Representation & Reason	ing: Umbilical Cord Blood
Carbon die componen	oxide is the result of energy t production → Metabolism	production and cell
Condition	Increase in the blood of	Decrease in the blood of
Hypocapnia		Carbon dioxide
Hypercapnia	Carbon dioxide	
Acidemia	Hydrogen Ion	
Alkalemia		Hydrogen Ion
Garibaldi JM, I blood. In: Szcze Berlin: Springe	feachor EC. The development of a fuzzy exp paniak PS, Lisboa PJG, Kacprzyk J, editors r, Physica-Verlag, 2000. p. 652:668. (<u>http://w</u> y	ert system for the analysis of umbical cord . Chapter in fuzzy systems in medicine. ww.cs.nott.ac.uk/~img/papers/fsm-00.pdf)

K	nowledg	je Repre	esentatio	on & Rea	asoning	: Umbili	cal Cord	Blood
Rai	nges fo	r acid (Ply	-base j mout	param h and	eters Exete	for tw r)	o clini	ics
			Р	lymouth	(n=2684	4)		
Vessel	рН		pCO ₂		pO ₂		Bdecf	
	Min	Max	Min	Max	Min	Max	Min	Max
Artery	7.06	7.40	4.5	9.7	0.8	3.7	-0.9	11.0
Vein	7.16	7.49	3.3	7.6	1.9	5.3	-0.5	9.4
				Exeter (n=1222)			
Vessel	р	H	pC	02	рС	O_2	Bde	ecf
	Min	Max	Min	Max	Min	Max	Min	Max
Artery	7.03	7.36	4.6	10.3	0.9	4.3	-0.4	12.2
Vein	7.15	7.46	3.4	7.9	2.1	6.1	-0.6	10.

