State Reduction

The reduction in the number of flip-flops in a sequential circuit is referred to as the state-reduction problem.

State-reduction algorithms are concerned with procedures for reducing the number of states in a state table, while keeping the external input-output requirements unchanged.

Since \(m \) flip-flops produce \(2^m \) states, a reduction in the number of states may (or may not) result in a reduction in the number of flip-flops.

An unpredictable effect in reducing the number of flip-flops is that sometimes the equivalent circuit (with fewer flip-flops) may require more combinational gates to realize its next state and output logic.
In each column, we have the present state, input value, and output value.

The next state is written on top of the next column.

It is important to realize that in this circuit the states themselves are of secondary importance, because we are interested only in output sequences caused by input sequences.
Two states are said to be equivalent if, for each member of the set of inputs, they give exactly the same output and send the circuit either to the same state or to an equivalent state.

When two states are equivalent, one of them can be removed without altering the input-output relationships.
look for two present states that go to the same next state and have the same output for both input combinations. States e and g are two such states: They both go to states a and f and have outputs of 0 and 1 for $x = 0$ and $x = 1$, respectively.

Therefore, states g and e are equivalent, and one of these states can be removed.
The row with present state g is removed, and state g is replaced by state e each time it occurs in the columns headed “Next State.”

<table>
<thead>
<tr>
<th>Present State</th>
<th>$x = 0$</th>
<th>$x = 1$</th>
<th>Output $x = 0$</th>
<th>Output $x = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>d</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>d</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>f</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>a</td>
<td>f</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
<td>f</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Present state f now has next states e and f and outputs 0 and 1 for $x = 0$ and $x = 1$, respectively.

The same next states and outputs appear in the row with present state d.

Therefore, states f and d are equivalent, and state f can be removed and replaced by d.
This state diagram satisfies the original input-output specifications and will produce the required output sequence for any given input sequence.

<table>
<thead>
<tr>
<th>Present State</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$x = 0$</td>
<td>$x = 1$</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>d</td>
</tr>
<tr>
<td>e</td>
<td>a</td>
<td>d</td>
</tr>
</tbody>
</table>

This state diagram satisfies the original input-output specifications and will produce the required output sequence for any given input sequence.

<table>
<thead>
<tr>
<th>state</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>d</th>
<th>d</th>
<th>e</th>
<th>d</th>
<th>e</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>output</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note that the same output sequence results, although the state sequence is different.
State Assignment

The simplest way to code five states is to use the first five integers in binary counting order.

Another similar assignment is the Gray code shown in assignment 2. Here, only one bit in the code group changes when going from one number to the next.

This code makes it easier for the Boolean functions to be placed in the map for simplification.

The table below shows the three possible binary state assignments:

<table>
<thead>
<tr>
<th>State</th>
<th>Assignment 1, Binary</th>
<th>Assignment 2, Gray Code</th>
<th>Assignment 3, One-Hot</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>000</td>
<td>000</td>
<td>00001</td>
</tr>
<tr>
<td>b</td>
<td>001</td>
<td>001</td>
<td>00010</td>
</tr>
<tr>
<td>c</td>
<td>010</td>
<td>011</td>
<td>00100</td>
</tr>
<tr>
<td>d</td>
<td>011</td>
<td>010</td>
<td>01000</td>
</tr>
<tr>
<td>e</td>
<td>100</td>
<td>110</td>
<td>10000</td>
</tr>
</tbody>
</table>
Another possible assignment often used in the design of state machines to control data-path units is the one-hot assignment.

This configuration uses as many bits as there are states in the circuit.

At any given time, only one bit is equal to 1 while all others are kept at 0.

This type of assignment uses one flip-flop per state.

One-hot encoding usually leads to simpler decoding logic for the next state and output.

One-hot machines can be faster than machines with sequential binary encoding, and the silicon area required by the extra flip-flops can be offset by the area saved by using simpler decoding logic.
<table>
<thead>
<tr>
<th>Present State</th>
<th>Next State</th>
<th>Output</th>
<th>Output</th>
</tr>
</thead>
</table>
| | $x = 0$ | $x = 1$| $x = 0$| $x = 1$
| a | a | b | 0 | 0 |
| b | c | d | 0 | 0 |
| c | a | d | 0 | 0 |
| d | e | d | 0 | 1 |
| e | a | d | 0 | 1 |

Reduced State Table with Binary Assignment 1

<table>
<thead>
<tr>
<th>Present State</th>
<th>Next State</th>
<th>Output</th>
<th>Output</th>
</tr>
</thead>
</table>
| | $x = 0$ | $x = 1$| $x = 0$| $x = 1$
| 000 | 000 | 001 | 0 | 0 |
| 001 | 010 | 011 | 0 | 0 |
| 010 | 000 | 011 | 0 | 0 |
| 011 | 100 | 011 | 0 | 1 |
| 100 | 000 | 011 | 0 | 1 |
The design of a clocked sequential circuit starts from a set of specifications and culminates in a logic diagram or a list of Boolean functions from which the logic diagram can be obtained.

In contrast to a combinational circuit, which is fully specified by a truth table, a sequential circuit requires a state table for its specification.

The first step in the design of sequential circuits is to obtain a state table or an equivalent representation, such as a state diagram.
1. From the word description and specifications of the desired operation, derive a state diagram for the circuit.

2. Reduce the number of states if necessary.

3. Assign binary values to the states.

4. Obtain the binary-coded state table.

5. Choose the type of flip-flops to be used.

6. Derive the simplified flip-flop input equations and output equations.

7. Draw the logic diagram.
Consider, for example, the use of an FSM to model an old-time soda machine that dispenses soda for 30 cents.

The possible inputs to the machine are n - nickel (5 Cents), d - dime (10 cents), q - quarter (25 cents), s - select soda.

The states of the machine are designated by circles, each labelled with the amount of money that has been deposited so far.

State 00 is designated as the start or initial state by the incoming arrow.

States which represent a total input of 30 or more cents are considered final states and are designated by double circles.

The transitions from state to state are shown as arcs (lines with arrows). Each transition is labelled with the input that caused it.
If a person puts a nickel into the machine followed by a dime followed by a quarter, the FSM would transition from state 00 to state 05 to state 15 to final state 40. At that point, he could select a soda (and hopefully receive 10 cents in change).
Suppose we wish to design a circuit that detects a sequence of three or more consecutive 1's in a string of bits coming through an input line (i.e., the input is a serial bit stream).

This is a Moore model sequential circuit, since the output is 1 when the circuit is in state S3 and is 0 otherwise.
The advantage of designing with D flip-flops is that the Boolean equations describing the inputs to the flip-flops can be obtained directly from the state table.

We choose two D flip-flops to represent the four states, and we label their outputs A and B.

\[
A(t + 1) = D_A(A, B, x) = \Sigma(3, 5, 7)
\]

\[
B(t + 1) = D_B(A, B, x) = \Sigma(1, 5, 7)
\]

\[
y(A, B, x) = \Sigma(6, 7)
\]
Logic diagram of a Moore-type sequence detector

\[
D_A = Ax + Bx \\
D_B = Ax + B'x \\
y = AB
\]

```verilog
`timescale 1ns/100ps
`default_nettype none

module SequenceDetect (output y, input x, clk, reset_b);
wire A, B, B_bar;
wire w1, w2, w3, D_A, D_B;
  and (w1, A, x);
  and (w2, B, x);
  or (D_A, w1, w2);
  and (w3, B_bar, x);
  and (y, A, B);
  or (D_B, w1, w3);
DFF M0_A (A, D_A, clk, reset_b);
DFF M0_B (B, D_B, clk, reset_b);
not (B_bar, B);
endmodule

module DFF (output req Q, input data, clk, reset_b);
always @ (posedge clk, negedge reset_b)
if (reset_b == 0) Q <= 0; else Q <= data;
endmodule
```
module t_SequenceDetect();

reg bit_in, clk, reset_b;
wire detect;

initialize
begin
 $dumpfile("SequenceDetect.vcd");
 $dumpvars(0, t_SequenceDetect);
 $dumpvars(0, SequenceDetect);
end

initial #200$finish;
initial begin clk = 0; forever #5 clk = ~clk; end

initial fork

#2 reset_b = 1;
#3 reset_b = 0;
#4 reset_b = 1;

// Trace the state diagram and monitor detect (assert in S3)
bit_in = 0;
// Park in S0
#20 bit_in = 1;
// Drive to S0
#30 bit_in = 0;
// Drive to S1 and back to S0 (2 clocks)
#50 bit_in = 1;
#70 bit_in = 0;
// Drive to S2 and back to S0 (3 clocks)
#80 bit_in = 1;
#130 bit_in = 0; // Drive to S3, park, then and back to S0

join
endmodule
module SequenceDetect (output reg y, input x, clk, reset_b);
reg [1:0] state, next_state;

parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;
always @ (posedge clk, negedge reset_b)
 if (reset_b == 1'b0) state <= S0; else state <= next_state;
always @ (state, x)
// Form the next state
 begin
 case (state)
 S0: if (x) next_state = S1; else next_state = S0;
 S1: if (x) next_state = S2; else next_state = S0;
 S2: if (x) next_state = S3; else next_state = S0;
 S3: if (x) next_state = S3; else next_state = S0;
 endcase
 if (state == S3) y = 1'b1; else y = 1'b0;
 end
endmodule