• Dependable Texas Instruments Quality and Reliability

description/ordering information

These devices contain six independent inverters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>T_A</th>
<th>PACKAGE†</th>
<th>ORDERABLE PART NUMBER</th>
<th>TOP-SIDE MARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDIP − N</td>
<td>Tube</td>
<td>SN7404N</td>
<td>SN7404N</td>
</tr>
<tr>
<td></td>
<td>Tube</td>
<td>SN74LS04N</td>
<td>SN74LS04N</td>
</tr>
<tr>
<td></td>
<td>Tube</td>
<td>SN74S04N</td>
<td>SN74S04N</td>
</tr>
<tr>
<td>SOIC − D</td>
<td>Tube</td>
<td>SN7404D</td>
<td>7404</td>
</tr>
<tr>
<td></td>
<td>Tape and reel</td>
<td>SN7404DR</td>
<td>LS04</td>
</tr>
<tr>
<td></td>
<td>Tube</td>
<td>SN74LS04D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tape and reel</td>
<td>SN74LS04DR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tube</td>
<td>SN74S04D</td>
<td>S04</td>
</tr>
<tr>
<td></td>
<td>Tape and reel</td>
<td>SN74S04DR</td>
<td></td>
</tr>
<tr>
<td>SOP − NS</td>
<td>Tape and reel</td>
<td>SN7404NSR</td>
<td>SN7404</td>
</tr>
<tr>
<td></td>
<td>Tape and reel</td>
<td>SN74LS04NSR</td>
<td>74LS04</td>
</tr>
<tr>
<td></td>
<td>Tape and reel</td>
<td>SN74S04NSR</td>
<td>74S04</td>
</tr>
<tr>
<td>SSOP − DB</td>
<td>Tape and reel</td>
<td>SN74LS04DBR</td>
<td>LS04</td>
</tr>
</tbody>
</table>

CDIP − J	Tube	SN5404J	SN5404J
	Tube	SNJ5404J	SNJ5404J
	Tube	SN54LS04J	SN54LS04J
	Tube	SN54S04J	SN54S04J
	Tube	SNJ54LS04J	SNJ54S04J
	Tube	SNJ54S04J	SNJ54S04J
CFP − W	Tube	SNJ5404W	SNJ5404W
	Tube	SNJ54LS04W	SNJ54LS04W
	Tube	SNJ54S04W	SNJ54S04W
LCCC − FK	Tube	SNJ54LS04FK	SNJ54LS04FK
	Tube	SNJ54S04FK	SNJ54S04FK

†Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

(Each inverter)

<table>
<thead>
<tr>
<th>INPUT A</th>
<th>OUTPUT Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>
logic diagram (positive logic)

Y = \overline{A}
schematics (each gate)

Resistor values shown are nominal.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, \(V_{CC} \) (see Note 1) ... 7 V
Input voltage, \(V_I \): '04, 'S04 ... 5.5 V
'LS04 ... 7 V
Package thermal impedance, \(\theta_{JA} \) (see Note 2): D package 86°C/W
DB package ... 96°C/W
N package ... 80°C/W
NS package ... 76°C/W
Storage temperature range, \(T_{stg} \) ... −65°C to 150°C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. This is stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES:
1. Voltage values are with respect to network ground terminal.
2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS‡</th>
<th>SN5404</th>
<th></th>
<th>SN7404</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>NOM</td>
<td>MAX</td>
<td></td>
</tr>
<tr>
<td>(V_{CC})</td>
<td>Supply voltage</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>High-level input voltage</td>
<td>2</td>
<td>2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Low-level input voltage</td>
<td>0.8</td>
<td>0.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{OH})</td>
<td>High-level output current</td>
<td>−0.4</td>
<td>−0.4</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{OL})</td>
<td>Low-level output current</td>
<td>16</td>
<td>16</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(T_A)</td>
<td>Operating free-air temperature</td>
<td>−55</td>
<td>125</td>
<td>0</td>
<td>70 °C</td>
</tr>
</tbody>
</table>

NOTE 3: All unused inputs of the device must be held at \(V_{CC} \) or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS§</th>
<th>SN5404</th>
<th></th>
<th>SN7404</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP§</td>
<td>MAX</td>
<td></td>
</tr>
<tr>
<td>(V_{IK})</td>
<td>(V_{CC} = \text{MIN}, V_I = -12 \text{ mA})</td>
<td>-1.5</td>
<td>-1.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>(V_{CC} = \text{MIN}, V_{IL} = 0.8 \text{ V}, I_{OH} = -0.4 \text{ mA})</td>
<td>2.4</td>
<td>3.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>(V_{CC} = \text{MIN}, V_{IH} = 2 \text{ V}, I_{OL} = 16 \text{ mA})</td>
<td>0.2</td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{I})</td>
<td>(V_{CC} = \text{MAX}, V_I = 5.5 \text{ V})</td>
<td>1</td>
<td>1</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{IH})</td>
<td>(V_{CC} = \text{MAX}, V_I = 2.4 \text{ V})</td>
<td>40</td>
<td>40</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>(V_{CC} = \text{MAX}, V_I = 0.4 \text{ V})</td>
<td>-1.6</td>
<td>-1.6</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{OS})</td>
<td>(V_{CC} = \text{MAX})</td>
<td>-20</td>
<td>-55</td>
<td>-18</td>
<td>-55</td>
</tr>
<tr>
<td>(I_{CCH})</td>
<td>(V_{CC} = \text{MAX}, V_I = 0 \text{ V})</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>(I_{CCL})</td>
<td>(V_{CC} = \text{MAX}, V_I = 4.5 \text{ V})</td>
<td>18</td>
<td>33</td>
<td>18</td>
<td>33</td>
</tr>
</tbody>
</table>

‡ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ All typical values are at \(V_{CC} = 5 \text{ V}, T_A = 25°C \).
¶ Not more than one output should be shorted at a time.
switching characteristics, \(V_{CC} = 5 \, V, \, T_A = 25\, ^\circ C \) (see Figure 1)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>TEST CONDITIONS</th>
<th>SN5404</th>
<th>SN7404</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{PLH})</td>
<td>A</td>
<td>Y</td>
<td>(R_L = 400 , \Omega, , C_L = 15 , pF)</td>
<td>12</td>
<td>22</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PHL})</td>
<td>A</td>
<td>Y</td>
<td>(R_L = 400 , \Omega, , C_L = 15 , pF)</td>
<td>8</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

recommended operating conditions (see Note 3)

<table>
<thead>
<tr>
<th>(V_{CC}) Supply voltage</th>
<th>SN54LS04</th>
<th>SN74LS04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>4.5</td>
<td>4.75</td>
</tr>
<tr>
<td>Nom</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Max</td>
<td>5.5</td>
<td>5.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(V_{IH}) High-level input voltage</th>
<th>SN54LS04</th>
<th>SN74LS04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Nom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(V_{IL}) Low-level input voltage</th>
<th>SN54LS04</th>
<th>SN74LS04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Nom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(IOH) High-level output current</th>
<th>SN54LS04</th>
<th>SN74LS04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>-0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>Nom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(IOL) Low-level output current</th>
<th>SN54LS04</th>
<th>SN74LS04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Nom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(T_A) Operating free-air temperature</th>
<th>SN54LS04</th>
<th>SN74LS04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>-55</td>
<td>0</td>
</tr>
<tr>
<td>Nom</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Max</td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 3: All unused inputs of the device must be held at \(V_{CC} \) or GND to ensure proper device operation. Refer to the TI application report, "Implications of Slow or Floating CMOS Inputs," literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS†</th>
<th>SN54LS04</th>
<th>SN74LS04</th>
<th>UNI T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IK}) (V_{CC} = \text{MIN}), (I_I = -18 , mA)</td>
<td>Min</td>
<td>2.5</td>
<td>4.75</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>TYP†</td>
<td>3.4</td>
<td>4.75</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>MAX</td>
<td>4.4</td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH}) (V_{CC} = \text{MIN}), (V_{IL} = \text{MAX}), (I_{OH} = -0.4 , mA)</td>
<td>Min</td>
<td>0.25</td>
<td>0.25</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>TYP†</td>
<td>0.4</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>MAX</td>
<td>0.4</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL}) (V_{CC} = \text{MIN}), (V_{IH} = 2 , V), (I_{OL} = 4 , mA)</td>
<td>Min</td>
<td>0.01</td>
<td>0.01</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>TYP†</td>
<td>0.1</td>
<td>0.1</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>MAX</td>
<td>0.1</td>
<td>0.1</td>
<td>mA</td>
</tr>
<tr>
<td>(I_I) (V_{CC} = \text{MAX}), (V_{I} = 7 , V)</td>
<td>Min</td>
<td>0.20</td>
<td>0.20</td>
<td>(\mu)A</td>
</tr>
<tr>
<td></td>
<td>TYP†</td>
<td>0.4</td>
<td>0.4</td>
<td>(\mu)A</td>
</tr>
<tr>
<td></td>
<td>MAX</td>
<td>0.4</td>
<td>0.4</td>
<td>(\mu)A</td>
</tr>
<tr>
<td>(I_{IH}) (V_{CC} = \text{MAX}), (V_{I} = 2.7 , V)</td>
<td>Min</td>
<td>-0.4</td>
<td>-0.4</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>TYP†</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>MAX</td>
<td>-0.4</td>
<td>-0.4</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{OL}) (V_{CC} = \text{MAX}), (V_{I} = 0 , V)</td>
<td>Min</td>
<td>1.2</td>
<td>1.2</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>TYP†</td>
<td>2.4</td>
<td>2.4</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>MAX</td>
<td>3.6</td>
<td>3.6</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{OS}) (V_{CC} = \text{MAX})</td>
<td>Min</td>
<td>-20</td>
<td>-20</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>TYP†</td>
<td>-100</td>
<td>-100</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>MAX</td>
<td>-20</td>
<td>-100</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{CCH}) (V_{CC} = \text{MAX}), (V_{I} = 0 , V)</td>
<td>Min</td>
<td>2.4</td>
<td>2.4</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>TYP†</td>
<td>1.2</td>
<td>1.2</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>MAX</td>
<td>3.6</td>
<td>3.6</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{CCL}) (V_{CC} = \text{MAX}), (V_{I} = 4.5 , V)</td>
<td>Min</td>
<td>9</td>
<td>9</td>
<td>nS</td>
</tr>
<tr>
<td></td>
<td>TYP†</td>
<td>15</td>
<td>15</td>
<td>nS</td>
</tr>
<tr>
<td></td>
<td>MAX</td>
<td>15</td>
<td>15</td>
<td>nS</td>
</tr>
</tbody>
</table>

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
‡ All typical values are at \(V_{CC} = 5 \, V, \, T_A = 25\, ^\circ C \).
§ Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, \(V_{CC} = 5 \, V, \, T_A = 25\, ^\circ C \) (see Figure 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>TEST CONDITIONS</th>
<th>SN54LS04</th>
<th>SN74LS04</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{PLH})</td>
<td>A</td>
<td>Y</td>
<td>(R_L = 2 , k\Omega, , C_L = 15 , pF)</td>
<td>9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>(t_{PHL})</td>
<td>A</td>
<td>Y</td>
<td>(R_L = 2 , k\Omega, , C_L = 15 , pF)</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
recommended operating conditions (see Note 3)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SN54S04</th>
<th>SN74S04</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>MIN</td>
<td>NOM</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td>VIH</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>VIL</td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>IOH</td>
<td></td>
<td>8-1</td>
<td></td>
</tr>
<tr>
<td>IOL</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td></td>
<td>-55</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS†</th>
<th>SN54S04</th>
<th>SN74S04</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>NOM</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>VIH</td>
<td>VCC = MIN,</td>
<td>-1.2</td>
<td>-1.2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>II = -18 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOH</td>
<td>VCC = MIN,</td>
<td>2.5</td>
<td>3.4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>VIL = 0.8 V,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IOH = -1 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOL</td>
<td>VCC = MIN,</td>
<td>0.5</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>VIH = 2 V,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IOL = 20 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL</td>
<td>VCC = MAX,</td>
<td>1</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>VI = 5.5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIL</td>
<td>VCC = MAX,</td>
<td>50</td>
<td>50</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>VI = 0.5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOS§</td>
<td>VCC = MAX</td>
<td>-40</td>
<td>-100</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>VI = 0 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICCH</td>
<td>VCC = MAX,</td>
<td>15</td>
<td>24</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>VI = 0 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICCL</td>
<td>VCC = MAX,</td>
<td>15</td>
<td>24</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>VI = 4.5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
‡ All typical values are at VCC = 5 V, TA = 25°C.
§ Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, VCC = 5 V, TA = 25°C (see Figure 1)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>TEST CONDITIONS</th>
<th>SN54S04</th>
<th>SN74S04</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>tPLH</td>
<td>A</td>
<td>Y</td>
<td>RL = 280 Ω, CL = 15 pF</td>
<td>3</td>
<td>4.5</td>
<td>ns</td>
</tr>
<tr>
<td>tPLH</td>
<td>A</td>
<td>Y</td>
<td>RL = 280 Ω, CL = 50 pF</td>
<td>4.5</td>
<td>5</td>
<td>ns</td>
</tr>
</tbody>
</table>

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
SERIES 54/74 AND 54S/74S DEVICES

LOAD CIRCUIT
FOR 2-STATE TOTEM-POLE OUTPUTS

LOAD CIRCUIT
FOR OPEN-Collector OUTPUTS

LOAD CIRCUIT
FOR 3-STATE OUTPUTS

VOLTAGE WAVEFORMS
PULSE DURATIONS

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES:
A. C_L includes probe and jig capacitance.
B. All diodes are 1N3064 or equivalent.
C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
D. S1 and S2 are closed for t_{PLH}, t_{PHL}, t_{PHZ}, and t_{PLZ}; S1 is open and S2 is closed for t_{PZH}; S1 is closed and S2 is open for t_{PZL}.
E. All input pulses are supplied by generators having the following characteristics: $PRR \leq 1 \text{ MHz}$, $Z_O \approx 50 \Omega$; t_r and $t_f \leq 7 \text{ ns}$ for Series 54/74 devices and t_r and $t_f \leq 2.5 \text{ ns}$ for Series 54S/74S devices.
F. The outputs are measured one at a time, with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms
PARAMETER MEASUREMENT INFORMATION
SERIES 54LS/74LS DEVICES

LOAD CIRCUIT
FOR 2-STATE TOTEM-POLE OUTPUTS

LOAD CIRCUIT
FOR OPEN-COLLECTOR OUTPUTS

LOAD CIRCUIT
FOR 3-STATE OUTPUTS

VOLTAGE WAVEFORMS
PULSE DURATIONS

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES:
A. C_L includes probe and jig capacitance.
B. All diodes are 1N3064 or equivalent.
C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
D. S1 and S2 are closed for t_{PLH}, t_{PZH}, t_{PZL}; S1 is open and S2 is closed for t_{PHZ}; S1 is closed and S2 is open for t_{PZL}.
E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
F. All input pulses are supplied by generators having the following characteristics: $PRR \leq 1 \text{ MHz}$, $Z_O = 50 \Omega$, $t_f \leq 1.5 \text{ ns}$, $\tau_f \leq 2.6 \text{ ns}$.
G. The outputs are measured one at a time, with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms
CERAMIC DUAL IN-LINE PACKAGE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB
FK (S-CQCC-N)**

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

MECHANICAL DATA

NO. OF TERMINALS

<table>
<thead>
<tr>
<th>TERMINALS</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>20</td>
<td>0.342 (8.69)</td>
</tr>
<tr>
<td>28</td>
<td>0.442 (11.23)</td>
</tr>
<tr>
<td>44</td>
<td>0.640 (16.26)</td>
</tr>
<tr>
<td>52</td>
<td>0.739 (18.78)</td>
</tr>
<tr>
<td>68</td>
<td>0.938 (23.83)</td>
</tr>
<tr>
<td>84</td>
<td>1.141 (28.99)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
</tr>
<tr>
<td>0.307 (7.80)</td>
</tr>
<tr>
<td>0.406 (10.31)</td>
</tr>
<tr>
<td>0.495 (12.58)</td>
</tr>
<tr>
<td>0.850 (21.6)</td>
</tr>
<tr>
<td>1.047 (26.6)</td>
</tr>
</tbody>
</table>

NOTES:

A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004
N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

<table>
<thead>
<tr>
<th>PINS **</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM A MAX</td>
<td>0.775 (19.69)</td>
<td>0.775 (19.69)</td>
<td>0.920 (23.37)</td>
<td>1.060 (26.92)</td>
</tr>
<tr>
<td>DIM A MIN</td>
<td>0.745 (18.92)</td>
<td>0.745 (18.92)</td>
<td>0.850 (21.59)</td>
<td>0.940 (23.88)</td>
</tr>
</tbody>
</table>

MS-100 VARIATION
AA
BB
AC
AD

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
D. The 20 pin end lead shoulder width is a vendor option, either half or full width.
D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
8 PINS SHOWN

Notes:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0.15).
D. Falls within JEDEC MS-012
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

14-PINS SHOWN

<table>
<thead>
<tr>
<th>DIM</th>
<th>14</th>
<th>16</th>
<th>20</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>A MAX</td>
<td>10.50</td>
<td>10.50</td>
<td>12.90</td>
<td>15.30</td>
</tr>
<tr>
<td>A MIN</td>
<td>9.90</td>
<td>9.90</td>
<td>12.30</td>
<td>14.70</td>
</tr>
</tbody>
</table>

NOTES:

A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.15.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td></td>
<td>Telephony</td>
</tr>
<tr>
<td></td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated