Exynos 5 Octa Samsung Galaxy S4
A system on a chip or system on chip (SoC or SOC) is an integrated circuit (IC) that integrates all components of a computer or other electronic system into a single chip.

It may contain digital, analog, mixed-signal, and often radio-frequency functions—all on a single chip substrate.

SoCs are very common in the mobile electronics market because of their low power consumption.
RISC processors usually have a lower power consumption than CISC processors for example: ARM implementations (1-2 W) to x86 implementations (5 - 36 W)
ARM is a family of instruction set architectures for computer processors based on a reduced instruction set computing (RISC) architecture developed by British company ARM Holdings.

37 billion ARM processors have been produced as of 2013, up from 10 billion in 2008.

95% of smartphones, 35% of digital televisions and set-top boxes and 10% of mobile computers. Less market share servers and desktop PCs.

It is the most widely used 32-bit instruction set architecture in terms of quantity produced.
AMD, Intel and NVIDIA all make money by ultimately selling a chip. ARM’s revenue comes entirely from IP licensing.

There are two amounts that all ARM licensees have to pay: an upfront license fee, generally ranges from $1M - $10M, and a royalty on a per chip basis typically 1 - 2% of the selling price of the chip.
The µVision IDE from Keil combines project management, make facilities, source code editing, program debugging, and complete simulation in one powerful environment.

The µVision development platform is easy-to-use and helping you quickly create embedded programs that work.

The µVision editor and debugger are integrated in a single application that provides a seamless embedded project development environment.
SetupForStart(); // Setup for Run

*** error 34, line 104: undefined identifier
Lecture 1 Introduction
Lecture 2 Memory And Data
Lecture 3 ARM Assembly Language
Lecture 4 Arithmetic
Lecture 5 Logic Shift
Lecture 6 Flow Control
Lecture 7 Memory
Lecture 8 Stacks
Lecture 9 Subroutines