Recursive Descent Parsing Algorithm - top down parsing.

- The parse tree is constructed
 - From the top
 - From left to right

- Terminals are seen in order of appearance in the token stream:
 \[t_2 \quad t_5 \quad t_6 \quad t_8 \quad t_9 \]
• Consider the grammar
 \[E \rightarrow T \mid T + E \]
 \[T \rightarrow \text{int} \mid \text{int} \times T \mid (E) \]

• Token stream is: \((\text{int}_5)\)

• Start with top-level non-terminal \(E\)
 — Try the rules for \(E\) in order
$E \rightarrow T \mid T + E$

$T \rightarrow \text{int} \mid \text{int} \times T \mid (E)$

Mismatch: int does not match (Backtrack ...)

$E \rightarrow T \mid T + E$

$T \rightarrow \text{int} \mid \text{int} \times T \mid (E)$

Mismatch: int does not match (Backtrack ...)
\[E \rightarrow T | T + E \]
\[T \rightarrow \text{int} | \text{int} \ast T | (E) \]

Diagram:

```
       E
      /|
     / \
   T   E
    /   \
   (   E)
     \   
      \  \  
       \ int
       \  \  
        \  \  
         \ int 
```

Note:

- Match! Advance input.
E → T | T + E
T → int | int * T | (E)

Match! Advance input.

(int₅)

E → T | T + E
T → int | int * T | (E)

End of input, accept.
• Let TOKEN be the type of tokens
 — Special tokens INT, OPEN, CLOSE, PLUS, TIMES

• Let the global next point to the next input token

• Define boolean functions that check for a match of:
 — A given token terminal

```c
bool term(TOKEN tok) { return *next ++ == tok; }
```
advances next, returns boolean
- The nth production of S: \(S_n() \) { ... }
- Try all productions of S: \(S() \) { ... }

- For production \(E \rightarrow T \) \(E_1() \) { return T(); }
- For production \(E \rightarrow T + E \) \(E_2() \) { return T() && term(PLUS) && E(); }

&& evaluates arguments in left to right order

these advance next
\[
\begin{align*}
E & \rightarrow T \mid T + E \\
T & \rightarrow \text{int} \mid \text{int} \ast T \mid (E)
\end{align*}
\]

- For all productions of E (with backtracking)

  ```
  bool E() {
    TOKEN *save = next;
    return (next = save, E_1())
    || (next = save, E_2());
  }
  ```

 || if first branch succeeds, do not bother with second branch

 backtracking

 if they all fail, the higher level will do the backtracking
\[E \rightarrow T | T + E \]
\[T \rightarrow \text{int} | \text{int} \ast T | (E) \]

- Functions for non-terminal T

```c
bool T_1() { return term(INT); }
bool T_2() { return term(INT) && term(TIMES) && T(); }
bool T_3() { return term(OPEN) && E() && term(CLOSE); }

bool T() {
    TOKEN *save = next;
    return (next = save, T_1())
         || (next = save, T_2())
         || (next = save, T_3()); }
```
Once a non-terminal succeeds, there is no way to try another production.

Example productions:

\[E \rightarrow T \mid T + E \]

\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

bool term(TOKEN tok) { return *next++ == tok; }

bool E1() { return T(); }
bool E2() { return T() && term(PLUS) && E(); }

bool E() { TOKEN *save = next; return (next = save, E1()) || (next = save, E2()); }

bool T1() { return term(INT); }
bool T2() { return term(INT) && term(TIMES) && T(); }
bool T3() { return term(OP) && E() && term(CLOSE); }

bool T() { TOKEN *save = next; return (next = save, T1()) || (next = save, T2()) || (next = save, T3()); }

Int + int will be rejected.
• If a production for non-terminal X succeeds
 – Cannot backtrack to try a different production for X later

• General recursive-descent algorithms support such “full” backtracking
 – Can implement any grammar
• Presented recursive descent algorithm is not general
 – But is easy to implement by hand

• Sufficient for grammars where for any non-terminal at most one production can succeed

• The example grammar can be rewritten to work with the presented algorithm
 – By left factoring
In the formal language theory of computer science, left recursion is a special case of recursion where a string is recognized as part of a language by the fact that it decomposes into a string from that same language (on the left) and a suffix (on the right).

- Consider a production $S \rightarrow S \alpha$

```cpp
bool S_1() { return S() && term(a); }
bool S() { return S_1(); }
```

- A left-recursive grammar has a non-terminal S

$$S \rightarrow^* S \alpha \text{ for some } \alpha$$

- Recursive descent does not work in such cases
• Consider the left-recursive grammar
 \[S \rightarrow S \alpha | \beta \]

\[S \rightarrow S \alpha \rightarrow S \alpha \alpha \rightarrow S \alpha \alpha \alpha \rightarrow \cdots \rightarrow S \alpha \cdots \alpha \rightarrow \beta \alpha \cdots \alpha \]

• \(S \) generates all strings starting with a \(\beta \) and followed by any number of \(\alpha \)'s.

zero or more

• Can rewrite using right-recursion
 \[S \rightarrow \beta S' \]

\[S' \rightarrow \alpha S' | \varepsilon \]
• In general

\[S \rightarrow S \alpha_1 | \ldots | S \alpha_n | \beta_1 | \ldots | \beta_m \]

• All strings derived from \(S \) start with one of \(\beta_1, \ldots, \beta_m \)
and continue with several instances of \(\alpha_1, \ldots, \alpha_n \)

zero or more

• Rewrite as

\[S \rightarrow \beta_1 S' | \ldots | \beta_m S' \]
\[S' \rightarrow \alpha_1 S' | \ldots | \alpha_n S' | \varepsilon \]
• The grammar
 \[S \rightarrow A \alpha \mid \delta \]
 \[A \rightarrow S \beta \]
 is also left-recursive because
 \[S \rightarrow^+ S \beta \alpha \]

• This left-recursion can also be eliminated

• Recursive descent
 – Simple and general parsing strategy
 – Left-recursion must be eliminated first
 – ... but that can be done automatically

• Used in production compilers
 – E.g., gcc
Predictive Parsers

• Like recursive-descent but parser can “predict” which production to use
 – By looking at the next few tokens
 – No backtracking

• Predictive parsers accept LL(k) grammars
 \[\text{left-to-right} \rightarrow k \text{ tokens lookahead} \]
 \[\text{left-most derivation} \]
• In recursive descent,
 – At each step, many choices of production to use
 – Backtracking used to undo bad choices

• In LL(1),
 – At each step, only one choice of production
Left factoring is removing the common left factor that appears in two productions of the same non-terminal.

It is done to avoid back-tracing by the parser.

Suppose the parser has a look-ahead consider this example

\[A \rightarrow qB \mid qC \]

where \(A, B, C \) are non-terminals and \(q \) is a sentence. In this case, the parser will be confused as to which of the two productions to choose and it might have to back-trace.

After left factoring, the grammar is converted to

\[A \rightarrow qD \]

\[D \rightarrow B \mid C \]

In this case, a parser with a look-ahead will always choose the right production.
• Recall the grammar
 \[E \rightarrow T + E | T \]
 \[T \rightarrow \text{int} | \text{int} \ast T | (E) \]

• Hard to predict because
 – For \(T \) two productions start with \text{int}
 – For \(E \) it is not clear how to predict

• We need to left-factor the grammar
 \[E \rightarrow T \ast X \]
 \[X \rightarrow + E | \epsilon \]
 \[T \rightarrow \text{int} \ast Y | (E) \]
 \[Y \rightarrow \ast T | \epsilon \]
• Left-factored grammar
 \[E \rightarrow T X \]
 \[X \rightarrow + E \mid \epsilon \]
 \[T \rightarrow (E) \mid \text{int} \ Y \]
 \[Y \rightarrow * T \mid \epsilon \]

• The LL(1) parsing table:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>+ E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td></td>
<td></td>
<td>(E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td>* T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **next input token**
- **leftmost non-terminal**
- **rhs of production to use**

• Consider the [E, int] entry
 “When current non-terminal is E and next input is int, use production \(E \rightarrow T X \)”.

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>+ E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td></td>
<td></td>
<td>(E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td>* T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Consider the \([Y,+]\) entry

 – “When current non-terminal is \(Y\) and current token is +, get rid of \(Y\)”

 – \(Y\) can be followed by + only if \(Y \rightarrow \varepsilon\)

\[
\begin{array}{|c|c|c|c|c|}
\hline
 & int & * & + & (& \varepsilon & \varepsilon \\
\hline
E & TX & & & TX & & \\
X & \varepsilon & & +E & \varepsilon & \varepsilon \\
T & int Y & & \varepsilon & (E) & \varepsilon \\
Y & \varepsilon & * T & \varepsilon & \varepsilon & \varepsilon \\
\hline
\end{array}
\]

• Consider the \([E,*]\) entry

 – “There is no way to derive a string starting with * from non-terminal \(E\)”

\[
\begin{array}{|c|c|c|c|c|}
\hline
 & int & * & + & (& \varepsilon & \varepsilon \\
\hline
E & TX & & & TX & & \\
X & \varepsilon & & +E & \varepsilon & \varepsilon \\
T & int Y & & \varepsilon & (E) & \varepsilon \\
Y & \varepsilon & * T & \varepsilon & \varepsilon & \varepsilon \\
\hline
\end{array}
\]
• Method similar to recursive descent, except
 – For the leftmost non-terminal S
 – We look at the next input token a
 – And choose the production shown at $[S,a]$

• A stack records frontier of parse tree
 – Non-terminals that have yet to be expanded
 – Terminals that have yet to matched against the input
 – Top of stack = leftmost pending terminal or non-terminal

• Reject on reaching error state
• Accept on end of input & empty stack
initialize stack = <$ > and next
repeat
 case stack of
 <X, rest> : if T[X,*next] = Y₁...Yₙ
 then stack ← <Y₁... Yₙ rest>;
 else error ();
 <t, rest> : if t == *next ++
 then stack ← <rest>;
 else error ();
 until stack == < >

terminal on top of stack
matches input, pop and advance
input
• Left-factored grammar

\[E \rightarrow TX \]
\[X \rightarrow +E \mid \varepsilon \]
\[T \rightarrow (E) \mid \text{int } Y \]
\[Y \rightarrow *T \mid \varepsilon \]

• The LL(1) parsing table:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td></td>
<td>TX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>+E</td>
<td></td>
<td>\varepsilon</td>
<td>\varepsilon</td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td></td>
<td></td>
<td>(E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>*T</td>
<td>\varepsilon</td>
<td></td>
<td>\varepsilon</td>
<td>\varepsilon</td>
</tr>
</tbody>
</table>

- **next input token**
- **leftmost non-terminal**
- **rhs of production to use**

Stack	Input	Action
E $ | int * int $ | TX
TX $ | int * int $ | int Y
• The LL(1) parsing table:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>T X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>int Y</td>
<td></td>
<td>+ E</td>
<td></td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td>* T</td>
<td></td>
<td>(E)</td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>Y</td>
<td>* T</td>
<td>ε</td>
<td></td>
<td></td>
<td>ε</td>
<td>ε</td>
</tr>
</tbody>
</table>

leftmost non-terminal
d next input token

rhs of production to use

int Y X $ int * int $ terminal

Y X $ * int $ * T

* T X $ * int $ terminal

T X $ int $ int Y

3071
• Left-factored grammar

\[
\begin{align*}
E & \rightarrow TX \\
X & \rightarrow +E \mid \varepsilon \\
T & \rightarrow (E) \mid \text{int} \ Y \\
Y & \rightarrow *T \mid \varepsilon
\end{align*}
\]

• The LL(1) parsing table:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>+E</td>
<td></td>
<td>TX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td></td>
<td></td>
<td>(E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>*T</td>
<td></td>
<td></td>
<td>\varepsilon</td>
<td>\varepsilon</td>
</tr>
</tbody>
</table>

- "When current non-terminal is Y and current token is +, get rid of Y"
• Left-factored grammar

$E \rightarrow T \ X$
$X \rightarrow + \ E \mid \varepsilon$
$T \rightarrow (\ E) \mid \text{int} \ Y$
$Y \rightarrow * \ T \mid \varepsilon$

• The LL(1) parsing table:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>int</td>
<td></td>
<td>+E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>int</td>
<td>*T</td>
<td></td>
<td></td>
<td>(E)</td>
<td></td>
</tr>
</tbody>
</table>

leftmost non-terminal
next input token
rhs of production to use

E X int ε

ε

ACCEPT