
CS4021/4521 Tutorial 2  2018 jones@scss.tcd.ie

1

CS4021/4521 Tutorial 2

Q1. Implement and compare the performance of (i) a binary search tree (BST) protected by a

lock (ii) a lockless BST using HLE and (iii) a lockless BST using RTM.

 The source code for a test framework can be downloaded from the CS4021/4521 web site.

There are four files tsxBST.cpp, helper.h, helper.cpp and a simple makefile. The easiest way
to get the test framework running is to download the four files into a directory on malbec,
type make and run the executable ./tsxBST. Remember that the final code for this project
needs to run on a CPU that supports TSX such as malbec.

Alternatively, the files can be placed in a Visual Studio or Eclipse project. If the “Visual C++
for Linux Development” feature is installed [Tools][Get Tools and Features…], the files can
be compiled and run remotely on malbec using Visual Studio on a Windows PC.

The code in tsxBST.cpp is written to run on Windows in the first instance. If compiled on a
linux machine, however, the window specific functions are mapped to linux equivalents by
helper.h and helper.cpp.

 The file tsxBST.cpp defines METHOD. If METHOD is set to 0, the test framework uses a

single thread to randomly add and remove random keys from a BST for NSECONDS with
maxKey ranging from 16 (keys 0 to 15) up to 1,048,576 (keys 0 to 1,048,575). The
framework reports the number of operations per second, the average search depth and
the max search depth amongst others (see figure above). As would be expected, the larger
the key range the fewer operations can be performed per second.

If METHOD is set to 1, the same series of tests are performed with the number of threads
ranging from 1 to 2*NCPU. The BST is protected by a lock.

CS4021/4521 Tutorial 2  2018 jones@scss.tcd.ie

2

Code must to be added for METHOD 2 and 3. For METHOD 2, the testAndTestAndSet lock
is replaced with an HLE testAndTestAndSet lock and for METHOD 3 the BST is updated using
transactional memory (RTM).

Rand function: the standard VC++ rand() function only generates a 15 bit pseudo random
number (0 .. 32767). For key ranges greater than 32768, this version of rand() is unsuitable.
Alternative rand functions are provided in helper.cpp (for example UINT rand(UINT &r)).
Note also that the VC++ rand() function is thread safe, but clearly the ones in helper.cpp
are not. This means that the variable used to hold the by address parameter r must be
thread local (for example declared in worker, not globally).

Prefilling BST: a large tree will take time to fill, consequently the ops/sec may be higher
than expected because the most of the operations will occur on a smaller tree than that in
steady state. It can take seconds for a large BST to become full and the ops/sec to reach a
steady state. One way around this is to prefill the BST. Set PREFILL = 0 to fill a BST perfectly
with odd integers, set PREFILL to 1 to prefill BST with a list of ascending odd integers (a
linked list) and PREFILL = 2 for a list of descending odd integers (again a linked list). Large
trees are filled using multiple threads.

Transaction size: the transaction size should be kept as small as possible. Larger read and
write sets increase the probability of conflicts and hence transaction aborts. The code for
adding and removing keys is iterative (rather than recursive) in an attempt to reduce the
size of the read and write sets. It should also be apparent that it is unwise to call malloc
and free (new and delete) within a transaction. Although is not possible to know exactly
which memory locations these routine access, it is sensible to assume they read and write
many memory locations and consequently, if include in a transaction, would increase the
probability of transaction aborts. Consequently, calls to malloc and free (new and delete)
should be kept outside of a transaction.

Recycling nodes: calls to malloc and free (to allocate nodes) from multiple threads may be
a bottleneck because they normally cannot be executed concurrently (protected by a lock).
Setting RECYCLENODES make uses of a per thread allocator (alloc and dealloc). Each thread
maintains a list of free nodes (see PerThreadData free). When a thread allocates a node, if
the per thread free list is not empty it takes a node for the head of the list otherwise it calls
malloc. When a node is freed by a thread, it is placed on its per thread free list. This
approach allows nodes to be allocated and freed concurrently most of the time.

Per thread data: a pointer to a thread’s per thread data is stored at index tlsPtIndx in thread
local storage (see the start of the worker function)

Hand in a short report describing what you have done, your results including graphs (max
four A4 pages) and a code listing.

Consult CS4021/4521 web page for the project deadline.

