
LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 1

Lockless Algorithms

• CAS based algorithms

• stack

• order linked list

• memory management (hazard pointers)

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 2

Obstruction, Lock and Wait Free Methods

• obstruction free – method guaranteed to complete in some bounded number of
program steps if no other thread executes any steps during that same interval [easiest]

• lock free – a method M is said to be lock free if some thread is guaranteed to make
progress in some bounded number of M's program steps

• wait free – if method M is guaranteed to complete in some bounded number of its own
program steps - bound need not be statically known [hardest]

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 3

Obstruction, Lock and Wait Free Methods...

• a lock based solution is not obstruction free, if a thread sleeps holding the lock then NO
other thread cannot make progress

• solutions based on CAS or LL/SC are normally lock free; the only way to prevent CAS
succeeding is if some other CAS succeeds meaning that some other thread is making
progress; solution may NOT be wait free as a particular thread's CAS may never succeed

• wait free solutions often based on helper functions, if a thread finds itself "blocked" by
another thread, it completes the action on behalf of the other thread first [unblocks the
blockage!]; implementations often idempotent as many threads may try to perform the
same action which must only be effectively executed once.

• linearization point – instruction where method takes effect [eg. marking a node when
removing node from concurrent CAS based ordered linked list]

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 4

Lockless Stack

Node *top = NULL; // top of stack

void push(Node *n) {
do {

Node *o = top; // copy pointer
n->next = o;

} while (CAS(&top, o, n) == 0);
}

• CAS returns 1 if successful

• threads can push and pop nodes “concurrently”

• what can possibly go wrong? algorithm suffers from the ABA problem

Node* pop() {
Node *o, *n;
do {

o = top; // copy pointer
if (o == NULL)

return NULL;
n = o->next;

} while (CAS(&top, o, n) == 0);
return o;

}

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 5

Lockless Stack

• imagine the following stack and execution interleave...

• thread 0 executes pop(), but gets pre-empted after executing n = o->next [n = b]

• thread 1 now pops node a from stack and then pushes nodes x and a, REUSING node a

• thread 0 is then rescheduled and executes its CAS which will succeed!

top
next next next next

ba

top
next next next

b

top
next next next

b

next

a

next

x

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 6

Lockless Stack

• CAS succeeds, BUT stack is left in the following state

• node a returned, but "two nodes popped from stack"

• called the ABA problem because top is assigned A, then B and then A again

 the different A is not detected

• the Trieber [1986] stack uses a sequence count embedded in the top-of-stack pointer
to avoid the ABA problem [counted pointer]

• needs a double length CAS - DCAS [IA32 - cmpxchg8b, x64 - cmpxchg16b]

top
next next next

b

next

a

next

x

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 7

cmpxchg8b (IA32) / cmpxchg16b (x64)

Operation

IF (64-Bit Mode and OperandSize = 64)
THEN

TEMP128 ← DEST
IF (RDX:RAX = TEMP128)

THEN
ZF ← 1;
DEST ← RCX:RBX;

ELSE
ZF ← 0;
RDX:RAX ← TEMP128;
DEST ← TEMP128;
FI;

FI
ELSE

TEMP64 ← DEST;
IF (EDX:EAX = TEMP64)

THEN
ZF ← 1;
DEST ← ECX:EBX;

ELSE
ZF ← 0;
EDX:EAX ← TEMP64;
DEST ← TEMP64;
FI;

FI;
FI;

DCAS(a, e , n)

a typically in a register esi or edi
edx:eax = e
ecx:ebx = n

DCAS(a, e , n)

a typically in a register rsi or rdi
rdx:rax = e
rcx:rbx = n

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 8

Trieber Lockless Stack

<Node*, int> top; // Node* and count

void push(Node *n) {
do {

<o, c> = top; // take atomic copy
n->next = o;

} while (CAS(&top, o, n) == 0);
}

• pseudo C/C++
• count incremented each time a node popped from stack
• count wrap around is potentially a problem

• DCAS not necessary in push, CAS used instead
• original push code works with an ABA sequence - it doesn’t matter if the first Node has

changed as always pushing on to front of stack

Node* pop() {
do {

<o, c> = top; // take atomic copy
if (o == NULL)

return NULL;
n = o->next;

} while (DCAS(&top, <o, c>, <n, c+1>) == 0);
return o;

}

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 9

Trieber Lockless Stack…

• lockless, but not much concurrency as access to top is a serious
bottleneck

• is algorithm obstruction, lock or wait free?

• lock free since a thread could be in an endless loop trying to push a Node
on to stack, BUT for its CAS to fail another thread must be making
progress

• ABA problem will not occur if algorithm implemented using LL/SC – why?
overwrite of top always detected

• alternatively, don’t reuse node until threads don’t have and cannot get a
pointer to the node [discussed later in lockless ordered list
implementation]

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 10

Lockless List

• ordered linked list or set

 add(key)

 remove(key)

• support concurrent add(key) and remove(key) operations

• would like number of operations per second to increase linearly with the number of
threads

• need to consider memory management

 if memory allocation / dealloction [new, delete, malloc and free] NOT lockless it
could be a bottleneck

• can be hard to reason about an algorithm that works on a list which is concurrently
being modified by other threads

• quite a challenge

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 11

Using CAS to add nodes

• use CAS to add nodes 15 and 35

• search for insertion point, initialise next pointer and then execute CAS with correct
parameters to insert node into list

CAS(&a->next, b, c); // add node c between a and b
CAS(&d->next, e, f); // add node f between d and e

• disjoint-access parallelism

key: 10
next

20 30
head

40

15

a b

c
35
f

d e

updated with CAS updated with CAS

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 12

Using CAS to add nodes...

• if 2 threads try to add nodes at the same position

CAS(&a->next, b, c) // first CAS executed will succeed…
CAS(&a->next, b, d) // and consequently second CAS executed will FAIL

• first CAS executed succeeds, second will fail as a->next != b

• RETRY on failure, which means searching for insertion point AGAIN [costly if list long]
and, if key not found, set up and re-execute CAS

10 20 30
head

40

15

a b

c

16
d

updated with CAS

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 13

Using CAS to remove nodes

• search for node and then execute CAS with correct parameters to remove node from list

• consider 2 threads removing non-adjacent nodes

CAS(&a->next, b, c) // remove node b (20)
CAS(&c->next, d, 0) // remove node d (40)

• disjoint access parallelism

10 20 30head 40
b c da

0

updated with CAS updated with CAS

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 14

Using CAS to remove nodes...

• if two threads try to remove the same node

CAS(&a->next, b, c)
CAS(&a->next, b, c)

• first CAS executed succeeds

• second CAS executed fails as a->next != b

• RETRY on failure, which means searching AGAIN for node [which may not be found]

10 20 30head 40
b ca

10 20 30head 40
b ca

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 15

What can go wrong with remove?

• imagine removing node 20 and adding node 25 concurrently

CAS(&a->next, b, c); // remove 20
CAS(&b->next, c, d); // add 25

• NOT what was intended!

10 20 30head 40
b ca

25
d

NB: same result if CAS instructions
executed in reverse order

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 16

What else can go wrong with remove?

• consider deleting adjacent nodes

CAS(&a->next, b, c) // remove 20
CAS(&b->next, c, d) // remove 30

• AGAIN NOT what was intended

NB: similar result if CAS
instructions executed in reverse
order (nodes 20 and 30 swapped)

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 17

ABA Problem Again

• imagine insertion point found, BUT before CAS(&a->next, b, c) is executed, thread is pre-
empted

• another thread then removes b from list

• if thread adding 15 resumes execution, the CAS fails which is OK in this case
• BUT need to consider an alternative interleave where node b is reused

10 20 30
head

40

15

a b

c

10 30
head

40

15

a

c
20
b

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 18

ABA Problem Again...

• if the memory used by b is reused, for example by a thread adding key 12 to the list
before thread adding 15 resumes…

• when the thread adding 15 to list resumes, its CAS will succeed and 15 will be added
into the list at the wrong position

• this is the ABA problem again

• nodes cannot be reused if any thread has or can get a pointer to the node

10 12 30
head

40

15

a b

c

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 19

Lockless List

• used ideas from A Pragmatic Implementation of Non-Blocking Linked Lists, Tim Harris
[2001], but code from...

• Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects, Maged M. Michael
[2004] [see Figure 9 in paper]

• initially ignore the ABA problem by not reusing nodes [will quickly run out of memory]

• two step removal eg. remove(20)

(1) atomically mark node by setting LSB of next pointer [logically removes node]
(2) remove node by updating next pointer using CAS

• avoids problem shown in slides 11 and 12 by detecting attempts to update the next field
of a removed node

10 20 30
head

b ca
40
d

https://www.scss.tcd.ie/Jeremy.Jones/CS4021/Pragmatic Non-Blocking Linked Lists Harris.pdf
http://www.research.ibm.com/people/m/michael/ieeetpds-2004.pdf

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 20

Revisit adding node [25] and removing node [20]?

• imagine adding node [25] and removing node [20] concurrently

(1) CAS(&b->next, c, d); // add 25

and

(2) if (CAS(&b->next, c, c + 1) == 1) // MARK node b and then…
(3) CAS(&a->next, b, c); // remove b [20]

• if (1) executed first, (2) will fail as b->next != c
• if (2) executed first, (1) will fail as b->next != c
• if (3) fails, it means that a no longer points to b, BUT b is logically marked and can be

removed later [OK for list to temporarily contain MARKED nodes]

10 20 30head 40
b ca

25
d

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 21

Lockless List...

• Fig 9. from Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects, Maged M.
Michael [2004]

http://www.research.ibm.com/people/m/michael/ieeetpds-2004.pdf

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 22

Lockless List...

• Node class

• int key
• Node *next

• List implemented using global variable head and functions add, remove and find

• Node *head // head of list
• int add(Node **head, Node*node) // insert node
• int remove(Node **head, int key) // remove node with key
• int find(Node **head, int key) // find with key

• per thread local variables

• prev **Node
• Node *cur
• Node *next

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 23

Lockless List...

• MARKED node indicated by an ODD address in its next field
• OK as addresses normally aligned on at least a 4 byte boundary [2 or 3 LSBs normally 0]

• handle marked nodes as follows

if (n->next & 1) … // tests if node n MARKED
CAS(&n->next, v, v+1) // MARK node n (assumes node NOT MARKED)
CAS(&n->next, v, v-1); // UNMARK node n (assumes node MARKED)

• to atomically mark node b [logically remove] use

CAS(&b->next, c, c + 1); // assumes node UNMARKED

10 20 30head 40
b ca d

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 24

find()
int find(Node **head, int key) { // find insertion point or node to remove
retry: // NB: thread local variables prev, cur and next

prev = head; // NB: Node **prev, Node **head;
cur = *prev; // *prev and hence cur will be unmarked

while (cur != NULL) {

next = cur->next; // cur unmarked

if (next & 1) {

if (CAS(prev, cur, next-1) == 0)
goto retry;

cur = next-1; // cur unmarked

} else {

int ckey = cur->key;
if (*prev != cur) // optimisation?? will fail sooner?

goto retry; // make sure key still in list and no nodes added between prev and cur OTHERWISE retry
if (ckey >= key)

return (ckey == key);
prev = &cur->next;
cur = next;

}
}
return 0;

}

continue until end of list

make copy of key

try to remove marked node

return 1 if key found, 0 otherwise

check that *prev == cur

move to next node

test if marked node

move to next node

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 25

add()

int add(Node **head, Node *node) {

key = node->key; // NB: thread local variables prev, cur and next
while (1) {

if (find(head, key))
return 0;

node->next = cur;
if (CAS(prev, cur, node) == 1)

return 1;
}

}
returns 1 on success

return 0 if key already in list

keep trying until successful

set up new node's next pointer

add node between prev and cur

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 26

add() …

 add(key) calls the find() function

• find() returns thread local pointers such that the new node should be added between

*prev and cur

• if CAS(prev, cur, node) succeeds, it must mean that prev still pointed to cur [nodes have

not been added between prev and cur]

• a node CANNOT be added by linking to a MARKED node [logically removed] thus
avoiding the problem discussed in slides 12 and 13

20
b

40
c

30
e

*prev cur

add node
with key

30

10
head

a
50
d

next

NB: Node **prev;
Node *cur, *next;

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 27

remove()

int remove(Node ** head, int key) {
while (1) { // NB: thread local variables prev, cur and next

if (find(head, key) == 0) // cur and prev will be unmarked
return 0;

if (CAS(&cur->next, next, next+1) == 0)
continue;

if (CAS(prev, cur, next) == 0)
find(head, key);

return 1;

}
}

• calls find to remove marked node if CAS fails AND if find fails to remove the marked
node, it can be removed by future calls to find (in add and remove)

returns 1 if key found
returns prev, cur and next
curr Node removed

try to MARK UNMARKED node
once marked node is logically removed

return 0 if key not in list

keep trying until successful

if CAS fails, use find() to remove marked node from list

try to remove node from list

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 28

remove() …

• assume initial search has returned *prev, cur and next AND cur has been MARKED
[logically removed]

• imagine that before CAS(prev, cur, next) is executed to remove node, another thread
inserted a node between prev and cur

• CAS(prev, cur, next) will FAIL

20
b

40
c

*prev cur

10
head

a
50
d

next

20
b

40
c

*prev cur

10
head

a
50
d

next

30
e

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 29

remove() …

• since node is logically removed, there is NO requirement to ensure that the node is
removed from the linked list immediately

• BUT by calling find() again, any MARKED node(s) up to and including key will be
removed

• NOT calling find() here, simply means that the MARKED node will remain in list until

 a node is inserted after key

OR

 a node after or including key is removed

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 30

What still needs to be done?

• current solution avoids the ABA problem by NOT re-using nodes

• there is no code for freeing or reusing nodes

• ONLY a partial solution without memory management

 garbage collection [supported by Java, but not yet by C++]

 reference counting [perhaps by using smart pointers, reported to be slow]

 method proposed by Harris [section 6 of paper]

 hazard pointers [Michael]

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 31

Deferred Freeing of Nodes [Harris]

• see end of section 6 in Harris paper

• each node has an additional (1) link so that node can be added to a per thread retireQ
or reuseQ and (2) a timestamp

• before starting an add or remove operation, each thread obtains a global timestamp
and saves it in a global ts array indexed by the thread number [best if each timestamp
is stored in its own cache line]

• can use clock() or the __rdtsc() intrinsic or … to obtain timestamp

• a remove operation retires the node by adding it to a per thread retireQ and sets the
node's timestamp by reading its global timestamp

• when a thread needs a node and the reuseQ is empty, it can traverse the retireQ and
transfer nodes to the reuseQ if their timestamp is less than the minimum ts of any
thread because this means that NO thread can still have a reference to the node

• allows nodes to be recycled

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 32

Deferred Freeing of Nodes...

• retired nodes added to end of per thread retireQ

• if thread needs a node and reuseQ empty, try to transfer nodes from retireQ to reuseQ

• in example, minimum thread ts is 129

• can transfer all nodes in retireQ with ts < 129 to per thread reuseQ [first three nodes]

• allocate nodes from reuseQ and ONLY call new if reuseQ empty

• why is a link needed? why not use next?

 thread may need to follow next in order to traverse node even when on retireQ

128 128 130

retireQ

123
next

131

retireTail

reuseQ

thread 0 129

thread 1 130

132

130

thread 2

thread 3

global
ts

array

link

empty

key

timestamp

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 33

Deferred Freeing of Nodes...

• memory management algorithm is NOT obstruction free

• if a thread pre-empted, its global timestamp will NOT change [stuck]
• per thread timestamp also stuck if thread never calls add() or remove()!

 if thread not running for 20ms, then 20ms worth of removed nodes will be added
to the retireQs before they can be transferred to the reuseQs

 can result in many allocated nodes, especially when threads > CPUs

• also need to make sure algorithm works when some threads are producers and others
are consumers

 nodes added to consumer reuseQs needed by producers
 need to free nodes on reuseQ so nodes can be reused by producers
 nodes recirculated

• implementation simplified by using per thread Qs

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 34

Hazard Pointers

• Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects

• with an ordered linked list, two active pointers are used to traverse the list during a find
operation [number of active pointers depends on algorithm]

• corresponds to the prev and cur pointers

• at each step, copy prev and cur into an array of per thread hazard pointers

• idea is not to reuse or free nodes if they have hazard pointers pointing to them

• once a node has been removed from list, no thread is able to get a pointer to the node
unless it has a pointer to it already

head 0

hazard pointers

prev cur

10 20 30 40

http://www.research.ibm.com/people/m/michael/ieeetpds-2004.pdf

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 35

Hazard Pointers…

• maintain a global array of per thread hazard pointers [best if each thread saves its
hazard pointers in its own cache line(s)]

• use a per thread retireQ and reuseQ as in previous example

• a thread retires a node by adding it to its retireQ

• when the length of its retireQ is >= 2*nthreads*HAZARDSPERTHREAD

 take a local snapshot of ALL hazard pointers and store in a local array
 optionally sort hazard pointers [in local array]
 for each node on its retireQ, if address of node doesn’t match any of the hazard

pointers in the local array then transfer to reuseQ [at least half of the nodes should
be transferred]

 allows nodes to be recycled

• only need to call new if per thread reuseQ is empty

• can delete nodes instead of placing them on reuseQ

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 36

Lockless List...

• hazard pointers used to protect prev and cur

hp0, hp1 are pointers to the locations where the two hazard
pointers are stored [*hp0 = *hp1 = 0]

save hazard pointer
needs _mm_fence() after *hp0cur

swap pointers hp0 and hp1

retire cur

detect race
make sure cur is protected

retire cur

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 37

Lockless List...

• detect race

• between cur being assigned [cur = …] and protected by hazard pointer [*hp0 = cur], cur
could be moved to the retireQ or reuseQ, reused or even freed

• most straightforward way to make sure cur is protected by hazard pointer is to check
that it is still in the list [*prev == cur]

• if cur is reused between cur = … and *hp0 = cur AND *prev == cur, it is of NO
consequence because at this particular point in the algorithm a comparison has not
been made with cur->key

• if cur is freed between cur = … and *hp0 = cur, accessing the node pointed to by cur
could be result in a invalid memory access

• the _mm_fence() is to make sure that the hazard pointer is visible to ALL other threads
thus protecting cur

detect race
make sure cur is protected

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 38

Baseline Performance Single Threaded Ordered List

• ALIGNED: each node in its own cache line
• PREFILL: list prefilled with odd integers for quick start up
• 50% add random key and 50% remove random key
• decreasing ops/s as list length increases [average list length maxKey/2]

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 39

Lockless list with Hazard Pointers

 good speed up with # threads [max speed up 7.63]
 BUT algorithm slow compared with baseline [64K 1 thread 12,468 : 3,894]
 64K baseline 12,468, lockless 8 threads 23,706 [almost twice as fast]

relative speed up

node needs a link field as it can effectively be in
list and on retireQ simultaneously

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 40

Preview - lockless list using transactional memory (TSX)

 good speed up with # threads [max speed up 5.22]
 algorithm almost as quick as baseline [64K 1 thread 12,468 : 14,324]
 64K baseline 12,468, lockless 8 threads 62,810 [almost 5x faster]

relative speed up

LOCKLESS ALGORITHMS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 41

Learning Outcomes

• you are now able to:

 explain the difference between obstruction, lock and wait free algorithms

 explain the operation of the Compare and Swap (CAS) instruction

 implement a lockless stack using CAS

 explain the ABA problem and some possible solutions

 implement a lockless ordered list using CAS

 assess the difficulty of adding memory management to a CAS based
concurrent algorithm

 add memory management to a lockless algorithm using hazard pointers

