LOCKLESS ALGORITHMS

Lockless Algorithms

e CAS based algorithms
e stack
e order linked list

* memory management (hazard pointers)

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

: \\“\

Rva

LOCKLESS ALGORITHMS

Obstruction, Lock and Wait Free Methods

* obstruction free — method guaranteed to complete in some bounded number of
program steps if no other thread executes any steps during that same interval [easiest]

* Jock free —a method M is said to be lock free if some thread is guaranteed to make
progress in some bounded number of M's program steps

* wait free — if method M is guaranteed to complete in some bounded number of its own
program steps - bound need not be statically known [hardest]

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

LOCKLESS ALGORITHMS

Obstruction, Lock and Wait Free Methods...

a lock based solution is not obstruction free, if a thread sleeps holding the lock then NO
other thread cannot make progress

» solutions based on CAS or LL/SC are normally lock free; the only way to prevent CAS
succeeding is if some other CAS succeeds meaning that some other thread is making
progress; solution may NOT be wait free as a particular thread's CAS may never succeed

» wait free solutions often based on helper functions, if a thread finds itself "blocked" by
another thread, it completes the action on behalf of the other thread first [unblocks the
blockage!]; implementations often idempotent as many threads may try to perform the
same action which must only be effectively executed once.

* linearization point — instruction where method takes effect [eg. marking a node when
removing node from concurrent CAS based ordered linked list]

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 3

LOCKLESS ALGORITHMS

Lockless Stack

Node *top = NULL; //top of stack Node* pop() {
Node *o, *n;
void push(Node *n) { do {
do { o = top; // copy pointer
Node *o =top; // copy pointer if (0 == NULL)
n->next = o; return NULL;
} while (CAS(&top, o, n) == 0); n = o->next;
} } while (CAS(&top, o, n) == 0);
return o;
}

e CASreturns 1 if successful
* threads can push and pop nodes “concurrently”

» what can possibly go wrong? algorithm suffers from the ABA problem

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

‘\\.‘

LOCKLESS ALGORITHMS

Lockless Stack

* imagine the following stack and execution interleave...

a

top

b

|

next

[

[

next

next

next

i

* thread 0 executes pop(), but gets pre-empted after executing n = o->next [n = b]

* thread 1 now pops node a from stack and then pushes nodes x and a, REUSING node a

b

top

| top [—>

Y

next

I

next

[

next

i

next

[

next

N

next

[

next

[

next

H

* thread O is then rescheduled and executes its CAS which will succeed!

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

LOCKLESS ALGORITHMS

Lockless Stack

e CAS succeeds, BUT stack is left in the following state

_)
t —>
- next —’_> next next —’_> next —’_> next —||I

* node a returned, but "two nodes popped from stack"
» called the ABA problem because top is assigned A, then B and then A again
= the different A is not detected

» the Trieber [1986] stack uses a sequence count embedded in the top-of-stack pointer
to avoid the ABA problem [counted pointer]

* needs a double length CAS - DCAS [IA32 - cmpxchg8b, x64 - cmpxchgl6b]

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

LOCKLESS ALGORITHMS

cmpxchg8b (IA32) / cmpxchgl6b (x64)

Operation

IF (64-Bit Mode and OperandSize = 64)
THEN
TEMP128 & DEST
IF (RDX:RAX = TEMP128)
THEN
ZF¢ 1
DEST < RCX:RBX;
ELSE
ZF & 0;
RDX:RAX < TEMP128;
DEST < TEMP128;
Fl;
Fl
ELSE
TEMP64 & DEST;
IF (EDX:EAX = TEMP64)
THEN
ZF ¢ 1;
DEST < ECX:EBX;
ELSE
ZF & 0;
EDX:EAX < TEMP64;
DEST < TEMP64;
Fl;
Fl;
Fl;

DCAS(a, e, n)

a typically in a register rsi or rdi
rdx:rax = e
rex:rbx =n

DCAS(a, e, n)

a typically in a register esi or edi
edx:eax = e
ecx:ebx =n

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

LOCKLESS ALGORITHMS

Trieber Lockless Stack
<Node*, int>top; // Node* and count Node* pop() {
do {
void push(Node *n) { <0, ¢> =top; // take atomic copy
do { if (0 == NULL)
<0, c>=top; //take atomic copy return NULL;
n->next = o; n = o->hext;
} while (CAS(&top, o, n) == 0); } while (DCAS(&top, <o, ¢>, <n, c+1>) == 0);
} return o;

* pseudo C/C++
e count incremented each time a node popped from stack
e count wrap around is potentially a problem

* DCAS not necessary in push, CAS used instead
» original push code works with an ABA sequence - it doesn’t matter if the first Node has
changed as always pushing on to front of stack

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 8

LOCKLESS ALGORITHMS

Trieber Lockless Stack...

* |ockless, but not much concurrency as access to top is a serious
bottleneck

e is algorithm obstruction, lock or wait free?

* |ock free since a thread could be in an endless loop trying to push a Node
on to stack, BUT for its CAS to fail another thread must be making
progress

* ABA problem will not occur if algorithm implemented using LL/SC — why?
overwrite of top always detected

« alternatively, don’t reuse node until threads don’t have and cannot get a
pointer to the node [discussed later in lockless ordered list
implementation]

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

LOCKLESS ALGORITHMS

Lockless List

e ordered linked list or set
= add(key)
= remove(key)

e support concurrent add(key) and remove(key) operations

* would like number of operations per second to increase linearly with the number of
threads

* need to consider memory management

= if memory allocation / dealloction [new, delete, malloc and free] NOT lockless it
could be a bottleneck

e can be hard to reason about an algorithm that works on a list which is concurrently
being modified by other threads

e quite a challenge

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

10

LOCKLESS ALGORITHMS

Using CAS to add nodes

e use CAS to add nodes 15 and 35

head —» a = b - d -~ e
| key: 10 20 T 30 40
next —|I'
updated with CAS | _ C updated with CAS | _ f
15 35

» search for insertion point, initialise next pointer and then execute CAS with correct
parameters to insert node into list

CAS(&a->next, b, c); // add node c between aand b
CAS(&d->next, e, f); // add node f between d and e

» disjoint-access parallelism

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

LOCKLESS ALGORITHMS

Using CAS to add nodes...

e if 2 threads try to add nodes at the same position

head —» d » b >

10 |; 20 30 40
H

updated with CAS | _ C

A 4

CAS(&a->next, b, c) // first CAS executed will succeed...
CAS(&a->next, b, d) // and consequently second CAS executed will FAIL

* first CAS executed succeeds, second will fail as a->next I=b

 RETRY on failure, which means searching for insertion point AGAIN [costly if list long]
and, if key not found, set up and re-execute CAS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 12

‘\\.‘

LOCKLESS ALGORITHMS

Using CAS to remove nodes

* search for node and then execute CAS with correct parameters to remove node from list

e consider 2 threads removing non-adjacent nodes

head —» a e b - C e d
10 20 30 40 0
a r =] i
updated with CAS updated with CAS
CAS(&a->next, b, c) // remove node b (20)
CAS(&c->next, d, 0) // remove node d (40)

* disjoint access parallelism

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

13

LOCKLESS ALGORITHMS

Using CAS to remove nodes...

* if two threads try to remove the same node

- a o b = C .
head =>—5 T TTT20 S ET 40
CAS(&a->next, b, c)
CAS(&a->next, b, c)
* first CAS executed succeeds
head = El J b | > ¢ >
10 20 30 40
. Hr

 second CAS executed fails as a->next I= b

e RETRY on failure, which means searching AGAIN for node [which may not be found]

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

‘\\.‘

LOCKLESS ALGORITHMS

What can go wrong with remove?
* imagine removing node 20 and adding node 25 concurrently
> a . b o C R
head —r—g 20 30 40
Hr
d
25
CAS(&a->next, b, c); // remove 20
CAS(&b->next, c, d); // add 25
d C
head »——75 —® 30 I 40 i
b L d T NB: . . .
20 55 : same result if CAS instructions

executed in reverse order

e NOT what was intended!

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 15

LOCKLESS ALGORITHMS

o

What else can go wrong with remove?

* consider deleting adjacent nodes

head = - >
10 20 30 40
_||.

CAS(&a->next, b, c) // remove 20
CAS(&b->next, c, d) // remove 30
head a = = d
10 30 40
_||.
b
20

NB: similar result if CAS

e AGAIN NOT what was intended instructions executed in reverse
order (nodes 20 and 30 swapped)

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 16

LOCKLESS ALGORITHMS

ABA Problem Again

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

imagine insertion point found, BUT before CAS(&a->next, b, c) is executed, thread is pre-

empted

head

».

d

>

10

(@)

another thread then removes b from list

head

»

C

b A - A -
> 20 g 30 g 40
30 - 40

:

15

A 4

]

if thread adding 15 resumes execution, the CAS fails which is OK in this case
BUT need to consider an alternative interleave where node b is reused

17

LOCKLESS ALGORITHMS

ABA Problem Again...

e if the memory used by b is reused, for example by a thread adding key 12 to the list

before thread adding 15 resumes...

head —» R >

A 4

40

* when the thread adding 15 to list resumes, its CAS will succeed and 15 will be added

into the list at the wrong position

* this is the ABA problem again

* nodes cannot be reused if any thread has or can get a pointer to the node

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

18

LOCKLESS ALGORITHMS

o

Lockless List

used ideas from A Pragmatic Implementation of Non-Blocking Linked Lists, Tim Harris
[2001], but code from...

Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects, Maged M. Michael

[2004] [see Figure 9 in paper]
initially ignore the ABA problem by not reusing nodes [will quickly run out of memory]

two step removal eg. remove(20)

head —>r— 20 | 30 40 B
||

(1) atomically mark node by setting LSB of next pointer [logically removes node]
(2) remove node by updating next pointer using CAS

avoids problem shown in slides 11 and 12 by detecting attempts to update the next field
of a removed node

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 19

https://www.scss.tcd.ie/Jeremy.Jones/CS4021/Pragmatic Non-Blocking Linked Lists Harris.pdf
http://www.research.ibm.com/people/m/michael/ieeetpds-2004.pdf

LOCKLESS ALGORITHMS

Revisit adding node [25] and removing node [20]?

* imagine adding node [25] and removing node [20] concurrently

head —>r—; > 2% 35 40
I
d
25
(1) CAS(&b->next, c, d); // add 25
and

(2) if (CAS(&b->next, ¢, c+ 1) ==1) // MARK node b and then...
(3) CAS(&a->next, b, c); // remove b [20]

e if (1) executed first, (2) will fail as b->next I=c

* if (2) executed first, (1) will fail as b->next I=c

« if (3) fails, it means that a no longer points to b, BUT b is logically marked and can be
removed later [OK for list to temporarily contain MARKED nodes]

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

LOCKLESS ALGORITHMS

n"\"\‘?\
Rva

Lockless List...

* Fig9. from Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects, Maged M.
Michael [2004]

| structure NodeType { Key:KeyType: Next:*NodeType:}: Find(head:**NodeType:key:KeyType) : Boolean {
| // Per-thread private variables try_again:
| prev: #*NodeType; cur,next: *NodeType: 10: prev ¢~ head:
//hp0 and hp1 are private ptrs to 2 of the thread’s hazard ptrs. 11: curé *prev;
Integer arithmetic in lines 6, 17. and 19. 12: while (cur# null) {
13: *hp0 < cur;
Insert(head:**NodeType.node:*NodeType):Boolean { 14: if (*prev # cur) goto try_again;
I: key +- node”Key;: 15 next ¢ cur”Next;
while true { 16: i (next & 1) { // bitwise AND
2: if Find(head.key) return false; 1748 if «“CAS(prev.cur.next-1) goto try_again;
3: node”Next ¢ cur; 18: RetireNode(cur);
| 4: i CAS(prev.cur,node) return true; 19; cur ¢~ next-1:
} } else {
} 20; ckey + cur’Key:
21: if (*prev # cur) goto try_again:
| Delete(head: **NodeType.key:KeyType):Boolean { 22; il (ckey>key) return (ckey — key):
while true { 285 prev +— &cur . Nexi;
| 5: if +Find(head.key) return false; 24: tmp < hp0: hp0+ hpl; hpl < tmp: 7 all private
| 6: if =CAS(&cur:Next.next,next+1) continue: 25: cur <— next:
| 7: il CAS(prev.cur,next) RetiveNode(cur); clse Find(head key): 1
| 8 returnirue; }
} 26: return lalse:
} }
Search(head: **NodeType,key:KeyType):Boolean {
9: return Find{(head key);
}
Fig. 9. Lock-free list-based set with hazard pointers.

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 21

http://www.research.ibm.com/people/m/michael/ieeetpds-2004.pdf

LOCKLESS ALGORITHMS

Lockless List...

* Node class

* int key
* Node *next

* List implemented using global variable head and functions add, remove and find

* Node *head // head of list

* intadd(Node **head, Node*node) // insert node

* int remove(Node **head, int key) // remove node with key
* int find(Node **head, int key) // find with key

e per thread local variables
* prev **Node

e Node *cur
e Node *next

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

‘\\.‘

22

LOCKLESS ALGORITHMS

Lockless List...

« MARKED node indicated by an ODD address in its next field

‘\3.‘

* OK as addresses normally aligned on at least a 4 byte boundary [2 or 3 LSBs normally 0]

 handle marked nodes as follows

if (n->next & 1) ... // tests if node n MARKED
CAS(&n->next, v, v+1) // MARK node n (assumes node NOT MARKED)
CAS(&n->next, v, v-1); // UNMARK node n (assumes node MARKED)

* to atomically mark node b [logically remove] use

CAS(&b->next, c, c+1); //assumes node UNMARKED

a b C > d

head =3 > 20 | " 30 40

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

23

LOCKLESS ALGORITHMS
find()

int find(Node **head, int key) { // find insertion point or node to remove
retry: // NB: thread local variables prev, cur and next
prev = head; // NB: Node **prev, Node **head;
cur = *prev; // *prev and hence cur will be unmarked
while (cur I=NULL){ «—— | continue until end of list
next = cur->next; // cur unmarked

ifnext&1){ «———— | testif marked node

if (CAS(prev, cur, next-1) == 0) <— | try to remove marked node
goto retry;

cur = next-1; // cur unmarked <—| move to next nhode
}else{
mak fk heck that *prev == cur
int ckey = cur->key; / aKe copy of key « | Chec at “pre cu
if (*prev = cur) // optimisation?? will fail sooner?
goto retry; // make sure key still in list and no nodes added between prev and cur OTHERWISE retry

if (ckey >= key)
return (ckey == key);

prev = &cur->next; \

cur = next;
| \

} move to next node
return O;

return 1 if key found, 0 otherwise

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

n"\"\‘;
Rva

LOCKLESS ALGORITHMS

add()

int add(Node **head, Node *node) {
key = node->key; // NB: thread local variables prev, cur and next
while (1) {

if (find(head, key)) return O if key already in list
return 0; /

set up new node's next pointer
- . —
node->next = cur;

X 7%

if (CAS(prev, cur, node) == 1) +—| add node between prev and cur

return 1; \
}

\ returns 1 on success

keep trying until successful

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

25

LOCKLESS ALGORITHMS

add() ...

e add(key) calls the find() function

head —» a b C d
T 10 20 40 50
f f - NB: Node **prevy;

Node *cur, *next;
e
adfj node 30
with key

*prev cur next
30 P

find() returns thread local pointers such that the new node should be added between
*prev and cur

if CAS(prev, cur, node) succeeds, it must mean that prev still pointed to cur [nodes have
not been added between prev and cur]

 anode CANNOT be added by linking to a MARKED node [logically removed] thus
avoiding the problem discussed in slides 12 and 13

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 26

‘\\.‘

LOCKLESS ALGORITHMS

keep trying until successful

remove()

returns 1 if key found
returns prev, cur and next
curr Node removed

: thread local variables prev, cur and next

int remove(Node ** h
while (1) {

if (find(head, key) ==0) // cur and prev will be unmarked
return 0; <«

return O if key not in list

if (CAS(&cur->next, next, next+1) == 0) «——

: try to MARK UNMARKED node
continue;

once marked node is logically removed

if (CAS(prev, cur, next) ==0) «—
find(head, key); try to remove node from list

T~

return 1; if CAS fails, use find() to remove marked node from list

e calls find to remove marked node if CAS fails AND if find fails to remove the marked
node, it can be removed by future calls to find (in add and remove)

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 27

LOCKLESS ALGORITHMS

remove() ...

e assume initial search has returned *prev, cur and next AND cur has been MARKED
[logically removed]

a b C d

head —>r— 20 40 50
= N

*prev cur next

* imagine that before CAS(prev, cur, next) is executed to remove node, another thread
inserted a node between prev and cur

C
head —r—3 20 30 20 50
= NI

*prev cur next

* CAS(prey, cur, next) will FAIL

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 28

LOCKLESS ALGORITHMS

remove() ...

* since node is logically removed, there is NO requirement to ensure that the node is
removed from the linked list immediately

e BUT by calling find() again, any MARKED node(s) up to and including key will be
removed

* NOT calling find() here, simply means that the MARKED node will remain in list until
= anode isinserted after key
OR

= anode after or including key is removed

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 29

LOCKLESS ALGORITHMS

What still needs to be done?

e current solution avoids the ABA problem by NOT re-using nodes

* there is no code for freeing or reusing nodes

* ONLY a partial solution without memory management
= garbage collection [supported by Java, but not yet by C++]
= reference counting [perhaps by using smart pointers, reported to be slow]
= method proposed by Harris [section 6 of paper]

= hazard pointers [Michael]

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

o

30

LOCKLESS ALGORITHMS

Deferred Freeing of Nodes [Harris]

see end of section 6 in Harris paper

each node has an additional (1) /ink so that node can be added to a per thread retireQ
or reuseQ and (2) a timestamp

before starting an add or remove operation, each thread obtains a global timestamp
and saves it in a global ts array indexed by the thread number [best if each timestamp
is stored in its own cache line]

can use clock() or the __ rdtsc() intrinsic or ... to obtain timestamp

a remove operation retires the node by adding it to a per thread retireQ and sets the
node's timestamp by reading its global timestamp

when a thread needs a node and the reuseQ is empty, it can traverse the retireQ and
transfer nodes to the reuseQ if their timestamp is less than the minimum ts of any
thread because this means that NO thread can still have a reference to the node

allows nodes to be recycled

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 31

LOCKLESS ALGORITHMS

Deferred Freeing of Nodes... timestamp
global
retireQ —» ts
key array
next /
123 128 128 130 131 thread0 | 129
link —|I|
retireTail 4 thread 1 130

reuseQ —® empty

thread 2 132

retired nodes added to end of per thread retireQ

thread 3 130

e if thread needs a node and reuseQ empty, try to transfer nodes from retireQ to reuseQ
* in example, minimum thread tsis 129

e can transfer all nodes in retireQ with ts < 129 to per thread reuseQ [first three nodes]

* allocate nodes from reuseQ and ONLY call new if reuseQ empty

 why is alink needed? why not use next?

= thread may need to follow next in order to traverse node even when on retireQ

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 32

LOCKLESS ALGORITHMS

Deferred Freeing of Nodes...

* memory management algorithm is NOT obstruction free

* if athread pre-empted, its global timestamp will NOT change [stuck]
» per thread timestamp also stuck if thread never calls add() or remove()!

= jf thread not running for 20ms, then 20ms worth of removed nodes will be added
to the retireQs before they can be transferred to the reuseQs

= can result in many allocated nodes, especially when threads > CPUs

e also need to make sure algorithm works when some threads are producers and others
are consumers

®= nodes added to consumer reuseQs needed by producers
= need to free nodes on reuseQ so nodes can be reused by producers
= nodes recirculated

* implementation simplified by using per thread Qs

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 33

LOCKLESS ALGORITHMS

Hazard Pointers

 Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects

e with an ordered linked list, two active pointers are used to traverse the list during a find
operation [number of active pointers depends on algorithm]

e corresponds to the prev and cur pointers

head >Oj>10j>20j>30j>40_|ll

[

prev cur
hazard pointers

e at each step, copy prev and cur into an array of per thread hazard pointers

* ideais not to reuse or free nodes if they have hazard pointers pointing to them

e once a node has been removed from list, no thread is able to get a pointer to the node
unless it has a pointer to it already

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 34

http://www.research.ibm.com/people/m/michael/ieeetpds-2004.pdf

LOCKLESS ALGORITHMS

Hazard Pointers...

* maintain a global array of per thread hazard pointers [best if each thread saves its
hazard pointers in its own cache line(s)]

* use a per thread retireQ and reuseQ as in previous example

* athread retires a node by adding it to its retireQ

* when the length of its retireQ is >= 2*nthreads*HAZARDSPERTHREAD

take a local snapshot of ALL hazard pointers and store in a local array

optionally sort hazard pointers [in local array]

for each node on its retireQ, if address of node doesn’t match any of the hazard
pointers in the local array then transfer to reuseQ [at least half of the nodes should
be transferred]

allows nodes to be recycled

* only need to call new if per thread reuseQ is empty

e can delete nodes instead of placing them on reuseQ

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 35

LOCKLESS ALGORITHMS

Lockless List...

N
—

hpO, hp1 are pointers to the locations where the two hazard
pointers are stored [*hp0 = *hpl = 0]

structure NodeType { Key; K6y Type: Next:*NodeType:}:

Find(head: **NodeType:key:KeyType) : Boolean {

| // Per-thread private vg fbles try_again:
| prev: **NodeTypercur, next: 3’":\":)dc'!}*;)c: 10: prev <~ head: save hazard pointer
| #/hp0 and hp1 are private ptrs to 2 of the thread’s hazard pirs, 11: curé *prev;
| #Integer arithmetic in lines 6, 17. and 19. 12: while (cur# null}/ n GEdS mm fe nce() after tk h pO(—CU r
§ 13; *hp0 < cur; = =
| Insert(head:**NodeType.node:*NodeType):Boolean 14: if (*prev # cur) goto try_again;
| 1 key ¢~ nodeKey: : I { 15 nu\l‘:«»- L'uf‘.l\"cw:g < deteCt race
1 while true { 16: il (next & 1) { // bitwise AND :
[Find(head.key) return false; 17 if «CAS(prev.cur.next-1) goto try_again; make sure cur is prOteCtEd

3: node’Next ¢ cur: 18: RetireNode(cur); q—
| 4: il CAS(prev.cur,node) return true; 19:; cur ¢ next-1: reti re cur

} } else {
} 20; ckey + cur’Key:
21: if (*prey # cur) goto try_again: H

Delete(head:**Nodce Type.key:KeyType):Boolean { 22: il (ckey>key) return (ckey — key): / el ol [pel nters h po and h P 1
5 while true { 28: prev +— &cur . Next;
| 5 if ~Find(head.key) return false: 24: tmp < hp0: hp0+ hpl; hpl < tmp: 7 all private
| 6: if =CAS(&curNext,next,next+1) continue: 25: cur ¢— next:

7: il CAS(prev.cur,next) RetireNode{cur): clsc Find(head.key): }

8. rewurn true; }

} 26: return lalse:

}

Search(head:**NodeType,key:KeyType):Boolean {
9: return Find(head key);

}

}

retire cur

Fig. 9. Lock-free list-based set with hazard pointers.

* hazard pointers used to protect prev and cur

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

36

LOCKLESS ALGORITHMS

Lockless List...

detect race

 detectrace «— :
make sure cur is protected

* between cur being assigned [cur = ...] and protected by hazard pointer [*hpO = cur], cur
could be moved to the retireQ or reuseQ, reused or even freed

* most straightforward way to make sure cur is protected by hazard pointer is to check
that it is still in the list [*prev == cur]

 if curisreused between cur = ... and *hpO = cur AND *prev == cur, it is of NO
conseguence because at this particular point in the algorithm a comparison has not
been made with cur->key

* if curis freed between cur = ... and *hpO = cur, accessing the node pointed to by cur
could be result in a invalid memory access

« the _mm_fence() is to make sure that the hazard pointer is visible to ALL other threads
thus protecting cur

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18 37

LOCKLESS ALGORITHMS

Baseline Performance Single Threaded Ordered List

ZINFANDEL Windows 7 Professional .
LOCK ALIGNED NOP=1000 NSECONDS=2 PREFILL USETSXALLOC sizeof(Node)=
6 model 94 stepping 3 Intel(R) Xeon(R) CPU E3-1270 v5 @ 3.60GHz
K 8 64

ops
335000
3000

P B B Bl D B

o el Ll el il

HERRE R

2
_.4

0.
4.48ue

/ 1
2000 6 3

L =

rt, ops
335000

2000
9000
000
000
000
000
2000

Bl C\Windows\system32\cmd.exe |ﬂ|éj

 ALIGNED: each node in its own cache line

e PREFILL: list prefilled with odd integers for quick start up

* 50% add random key and 50% remove random key

» decreasing ops/s as list length increases [average list length maxKey/2]

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

38

LOCKLESS ALGORITHMS

LOCkleSS IlSt Wlth Haza rd POinte rs node needs a link field as it can effectively be in

list and on retireQ simultaneously
=T

ER C:\Windows\system32icmd.exe =

ZTNFANDEL W1indow Profe ¢ s 5=8 R! (Nov-2015 08
IALTGNED NOP= lUUU NSECONDS

relative speed up

ops e nMalloc vmUs memUse
20879000
29301000

1
2
4
6
1
2
4
6
1
2
4
6
1
2
a
6
1
2
4

1

28000
55000
61000

Mo B oo n

[SYRVENETUEYT)

O

= good speed up with # threads [max speed up 7.63]
= BUT algorithm slow compared with baseline [64K 1 thread 12,468 : 3,894]
= 64K baseline 12,468, lockless 8 threads 23,706 [almost twice as fast]

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

39

LOCKLESS ALGORITHMS

Wind HE

ZINFANDEL Windows 7 Professional (64 bit) 64 b1t exe RELEASE tsxList [RTM split transaction + lock based fall back path] NCPUS=8 RAM=64GB 27-Nov-2015 09:16:02
METHOD=4 ALIGNED CONTAINS=0% ADD=50% REMOVE=50% NOP=100 NSECONDS=2 MAXBACKOFF=16 NSPLIT=64 NTAG=4096 PREFILL STATS=0x01 TSXALLOC=0 sizeof(Node)=16

Intel64 family 6 model 94 stepping 3 Intel(R) Xeon(R) CPU E3-1270 v5 @ 3.60GHz

L1 D 32K L 64K 8N 64

L1 T 32K L 64 K 8

2 U 256K L 64 K relative speed up

L3 U 8192K L 64
ops nMalloc nFree nlist memUse commit

52937200 26455372
50285300 25130084
47988400 23982208
45648800 22812993
44129300 22053623
36914300 18447926
34732300 17357471
33760700 16871914
30290100 15137481
28139300 13909688
16529800 8260769
15848200 7920139
16440200 8215992
15568000 7780109
14279600 7136231
4196800 2097351
2861000 1429785
3490400 1744327
5676900 2837031
6756900 3376761
491100 245427
672600 336131
1253600 626486
2100700 1049825
2059400 1028671
69700 34832
120800 60279
209800 104690
364600 181845
333900 166284
28800 14342
49100 24476
81100 40308
126500 62810
121700 60009

1419
4933
7960
9057
53
1783
3529
7378
9363
164
2112
3526

[y

=
[y

=
[y

=
[y

[
[

=

O 00 5 N 1= G100 s N 1 O 00 s I 14 O 00 o N = B0 €0 o N = Y 00 S 1 = O 00 s N 1
I

[=l=jalelelelelsls]s]lelelelslslelelelsslelolelelele ool o)l
[SLSESL S NENY S NENTEENENTEYSYNTEY SN NY Y NENY Y SN NN NS NE Y YN
ARMNHEBRBAWRHEAANHEEHEHOOHOOOOROOOOHOOO O
[E- N L NN NUEL K. YTV, FUTY NN W JUT) LT RV JT L. YV [V NNV JE, JUTY N
Lo = R R e e e e O R Rk R T g g e P S N S S Y S S Sy WY T

J
PP R R R R R R R R R R R R R B R D P R B B R P B R R R D R R B D R D

-
2=

32648

= good speed up with # threads [max speed up 5.22]
= algorithm almost as quick as baseline [64K 1 thread 12,468 : 14,324]
= 64K baseline 12,468, lockless 8 threads 62,810 [almost 5x faste

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

LOCKLESS ALGORITHMS

Learning Outcomes

* you are now able to:

explain the difference between obstruction, lock and wait free algorithms
= explain the operation of the Compare and Swap (CAS) instruction

= implement a lockless stack using CAS

= explain the ABA problem and some possible solutions

= implement a lockless ordered list using CAS

= assess the difficulty of adding memory management to a CAS based
concurrent algorithm

add memory management to a lockless algorithm using hazard pointers

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Nov-18

41

