Lockless Algorithms

- CAS based algorithms
- stack
- order linked list
- memory management (hazard pointers)

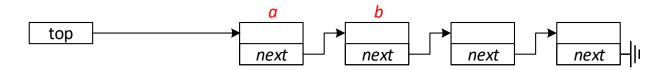
Obstruction, Lock and Wait Free Methods

- obstruction free method guaranteed to complete in some bounded number of program steps if no other thread executes any steps during that same interval [easiest]
- lock free a method M is said to be lock free if some thread is guaranteed to make progress in some bounded number of M's program steps
- wait free if method M is guaranteed to complete in some bounded number of its own program steps - bound need not be statically known [hardest]

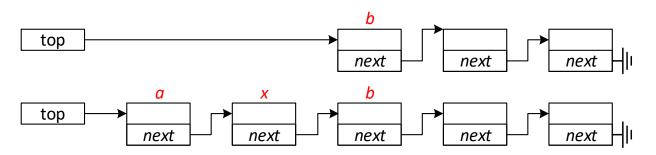
Obstruction, Lock and Wait Free Methods...

- a lock based solution is not obstruction free, if a thread sleeps holding the lock then NO other thread cannot make progress
- solutions based on CAS or LL/SC are normally lock free; the only way to prevent CAS succeeding is if some other CAS succeeds meaning that some other thread is making progress; solution may NOT be wait free as a particular thread's CAS may never succeed
- wait free solutions often based on helper functions, if a thread finds itself "blocked" by another thread, it completes the action on behalf of the other thread first [unblocks the blockage!]; implementations often idempotent as many threads may try to perform the same action which must only be effectively executed once.
- linearization point instruction where method takes effect [eg. marking a node when removing node from concurrent CAS based ordered linked list]

Lockless Stack

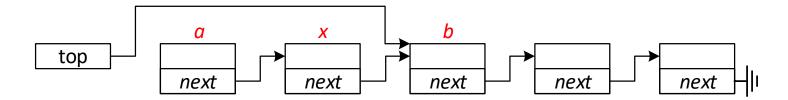

```
Node *top = NULL; // top of stack
void push(Node *n) {
    do {
        Node *o = top; // copy pointer
        n->next = o;
    } while (CAS(&top, o, n) == 0);
}
```

```
Node* pop() {
    Node *o, *n;
    do {
        o = top; // copy pointer
        if (o == NULL)
            return NULL;
        n = o->next;
    } while (CAS(&top, o, n) == 0);
    return o;
}
```


- CAS returns 1 if successful
- threads can push and pop nodes "concurrently"
- what can possibly go wrong? algorithm suffers from the ABA problem

Lockless Stack

• imagine the following stack and execution interleave...


- thread 0 executes pop(), but gets <u>pre-empted</u> after executing n = o->next [n = b]
- thread 1 now pops node *a* from stack and <u>then</u> pushes nodes *x* and *a*, **REUSING** node *a*

• thread 0 is then rescheduled and executes its CAS which will succeed!

Lockless Stack

• CAS succeeds, BUT stack is left in the following state

- node *a* returned, but "two nodes popped from stack"
- called the ABA problem because top is assigned A, then B and then A again
 - the different A is not detected
- the Trieber [1986] stack uses a sequence count embedded in the top-of-stack pointer to avoid the ABA problem [counted pointer]
- needs a double length CAS DCAS [IA32 cmpxchg8b, x64 cmpxchg16b]

cmpxchg8b (IA32) / cmpxchg16b (x64)

Operation

```
IF (64-Bit Mode and OperandSize = 64)
  THEN
     TEMP128 ← DEST
     IF (RDX:RAX = TEMP128)
       THEN
          ZF \leftarrow 1;
          DEST \leftarrow RCX:RBX;
        FLSE
          ZF \leftarrow 0:
          RDX:RAX \leftarrow TEMP128;
          DEST \leftarrow TEMP128;
          FI;
     FI
  ELSE
     TEMP64 \leftarrow DEST;
     IF (EDX:EAX = TEMP64)
        THEN
          ZF \leftarrow 1;
          DEST \leftarrow ECX:EBX;
       ELSE
          ZF \leftarrow 0;
          EDX:EAX \leftarrow TEMP64;
          DEST \leftarrow TEMP64;
          FI;
     FI;
FI;
```

DCAS(a, e, n)

a typically in a register rsi or rdi rdx:rax = e rcx:rbx = n

DCAS(a, e, n)

a typically in a register esi or edi edx:eax = e ecx:ebx = n

Trieber Lockless Stack

```
<Node*, int> top; // Node* and count

void push(Node *n) {

    do {

        <o, c> = top; // take atomic copy

        n->next = o;

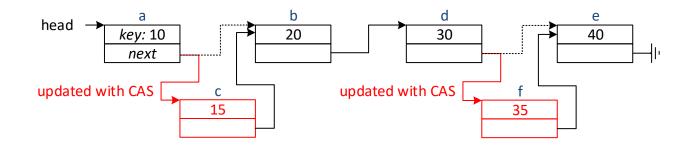
    } while (CAS(&top, o, n) == 0);

}
```

```
Node* pop() {
    do {
        <o, c> = top; // take atomic copy
        if (o == NULL)
            return NULL;
        n = o->next;
    } while (DCAS(&top, <o, c>, <n, c+1>) == 0);
    return o;
```

- pseudo C/C++
- count incremented each time a node popped from stack
- count wrap around is potentially a problem
- DCAS not necessary in push, CAS used instead
- original push code works with an ABA sequence it doesn't matter if the first Node has changed as always pushing on to front of stack

Trieber Lockless Stack...

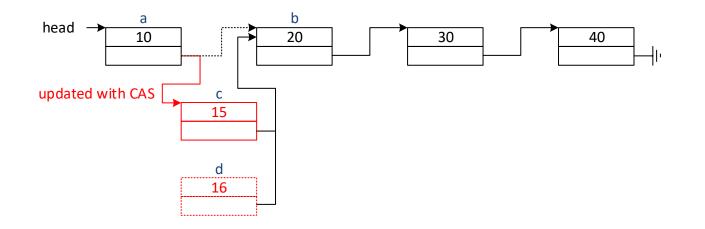

- lockless, but not much concurrency as access to top is a serious bottleneck
- is algorithm obstruction, lock or wait free?
- lock free since a thread could be in an endless loop trying to push a Node on to stack, BUT for its CAS to fail another thread must be making progress
- ABA problem will not occur if algorithm implemented using LL/SC why? overwrite of top always detected
- alternatively, don't reuse node until threads don't have and cannot get a pointer to the node [discussed later in lockless ordered list implementation]

Lockless List

- ordered linked list or set
 - add(key)
 - remove(key)
- support concurrent *add(key)* and *remove(key)* operations
- would like number of operations per second to increase linearly with the number of threads
- need to consider memory management
 - if memory allocation / dealloction [new, delete, malloc and free] NOT lockless it could be a bottleneck
- can be hard to reason about an algorithm that works on a list which is concurrently being modified by other threads
- quite a challenge

Using CAS to add nodes

• use CAS to add nodes 15 and 35

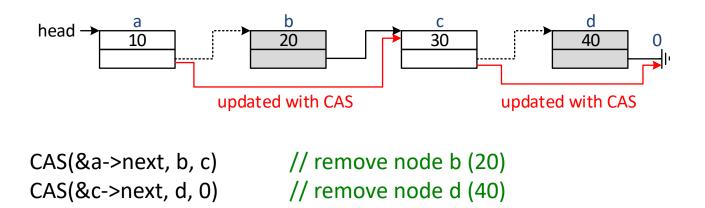

• search for insertion point, initialise next pointer and then execute CAS with correct parameters to insert node into list

CAS(&a->next, b, c); // add node c between a and b CAS(&d->next, e, f); // add node f between d and e

• disjoint-access parallelism

Using CAS to add nodes...

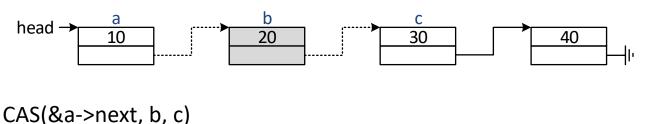
• if 2 threads try to add nodes at the same position



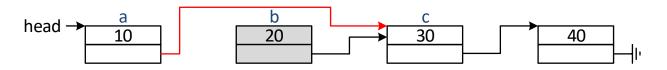
CAS(&a->next, b, c)// first CAS executed will succeed...CAS(&a->next, b, d)// and consequently second CAS executed will FAIL

- first CAS executed succeeds, second will fail as *a->next* != b
- <u>RETRY on failure</u>, which means searching for insertion point AGAIN [costly if list long] and, if key not found, set up and re-execute CAS

Using CAS to remove nodes

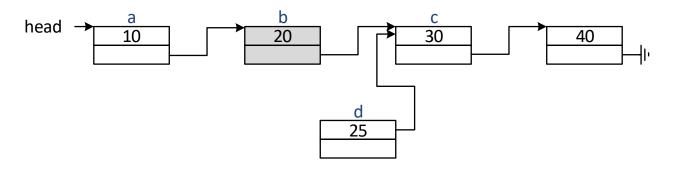

- search for node and then execute CAS with correct parameters to remove node from list
- consider 2 threads removing non-adjacent nodes

• disjoint access parallelism

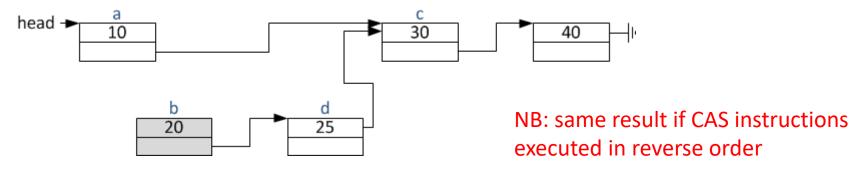

Using CAS to remove nodes...

• if two threads try to remove the same node

CAS(&a->next, b, c)

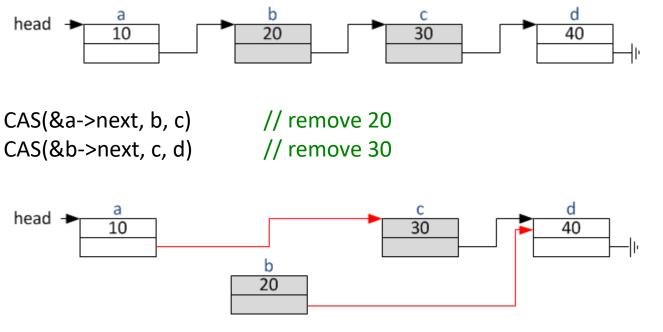

• first CAS executed succeeds

- second CAS executed fails as *a->next != b*
- <u>RETRY on failure</u>, which means searching AGAIN for node [which may not be found]


What can go wrong with remove?

imagine removing node 20 and adding node 25 concurrently •

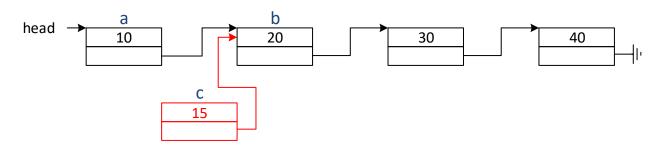
CAS(&a->next, b, c); // remove 20 CAS(&b->next, c, d);


// add 25

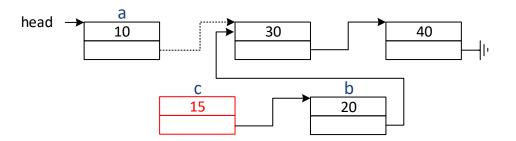
NOT what was intended! ٠

What else can go wrong with remove?

• consider deleting adjacent nodes

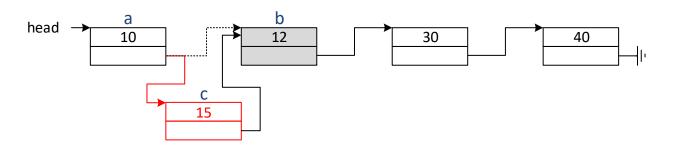


• AGAIN NOT what was intended


NB: similar result if CAS instructions executed in reverse order (nodes 20 and 30 swapped)

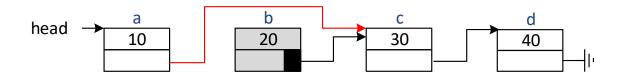
ABA Problem Again

 imagine <u>insertion</u> point found, BUT before CAS(&a->next, b, c) is executed, thread is preempted


• another thread <u>then</u> removes b from list

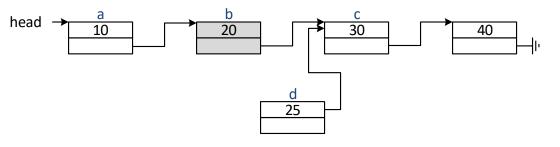
- if thread adding 15 resumes execution, the CAS fails which is OK in this case
- BUT need to consider an alternative interleave where node b is reused

ABA Problem Again...


 if the <u>memory</u> used by b is reused, for example by a thread adding key 12 to the list before thread adding 15 resumes...

- when the thread adding 15 to list resumes, its CAS will succeed and 15 will be added into the list at the wrong position
- this is the ABA problem again
- nodes cannot be reused if any thread has or can get a pointer to the node

Lockless List


- used ideas from <u>A Pragmatic Implementation of Non-Blocking Linked Lists</u>, Tim Harris [2001], but code from...
- <u>Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects</u>, Maged M. Michael [2004] [see Figure 9 in paper]
- initially ignore the ABA problem by not reusing nodes [will quickly run out of memory]
- two step removal eg. remove(20)

- (1) atomically mark node by setting LSB of next pointer [logically removes node]
- (2) remove node by updating next pointer using CAS
- avoids problem shown in slides <u>11</u> and <u>12</u> by detecting attempts to update the next field of a removed node

Revisit adding node [25] and removing node [20]?

• imagine adding node [25] and removing node [20] concurrently

(1) CAS(&b->next, c, d);

// add 25

<u>and</u>

- (3) CAS(&a->next, b, c); // remove b [20]
- if (1) executed first, (2) will fail as b->next != c
- if (2) executed first, (1) will fail as b->next != c
- if (3) fails, it means that a no longer points to b, BUT b is logically marked and can be removed later [OK for list to temporarily contain MARKED nodes]

Lockless List...

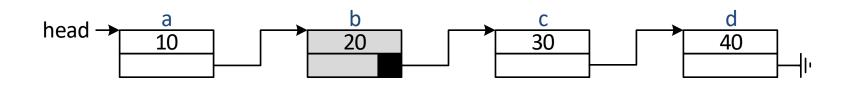
Fig 9. from <u>Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects</u>, Maged M. Michael [2004]

structure NodeType { Key:KeyType; Next:*NodeType;};	Find(head:**NodeType;key:KeyType) : Boolean {
// Per-thread private variables	try_again:
prev: **NodeType; cur,next: *NodeType;	10: $prev \leftarrow head;$
//hp0 and hp1 are private ptrs to 2 of the thread's hazard ptrs.	11: $cur \leftarrow *prev;$
// Integer arithmetic in lines 6, 17, and 19.	12: while $(cur \neq null)$ {
	13: $*hp0 \leftarrow cur;$
Insert(head:**NodeType,node:*NodeType):Boolean {	14: if (*prev \neq cur) goto try_again;
1: key \leftarrow node: Key;	15: $next \leftarrow cur?Next;$
while true {	16: if (next & 1) { // bitwise AND
2: if Find(head,key) return false;	 if ¬CAS(prev,cur,next-1) goto try_again;
3: $node$.Next $\leftarrow cur$;	18: RetireNode(cur);
4: if CAS(prev,cur,node) return true;	19: $cur \leftarrow next-1$;
}	} else {
}	20: $ckey \leftarrow cur$. Key;
	21: if (*prev \neq cur) goto try_again;
Delete(head:**NodeType,key:KeyType):Boolean {	22: if $(ckey \ge key)$ return $(ckey = key)$;
while true {	23: $prev \leftarrow \&cur^Next;$
5: if ¬Find(head,key) return false;	24: $tmp \leftarrow hp0; hp0 \leftarrow hp1; hp1 \leftarrow tmp; // all private$
6: if ¬CAS(&cur [^] Next,next,next+1) continue;	25: $cur \leftarrow next;$
7: if CAS(prev.cur,next) RetireNode(cur); clsc Find(head.kcy);	}
8: return true:	}
1	26: return false;
	}
Search(head:**NodeType,key:KeyType):Boolean {	
9: return Find(head,key);	
}	

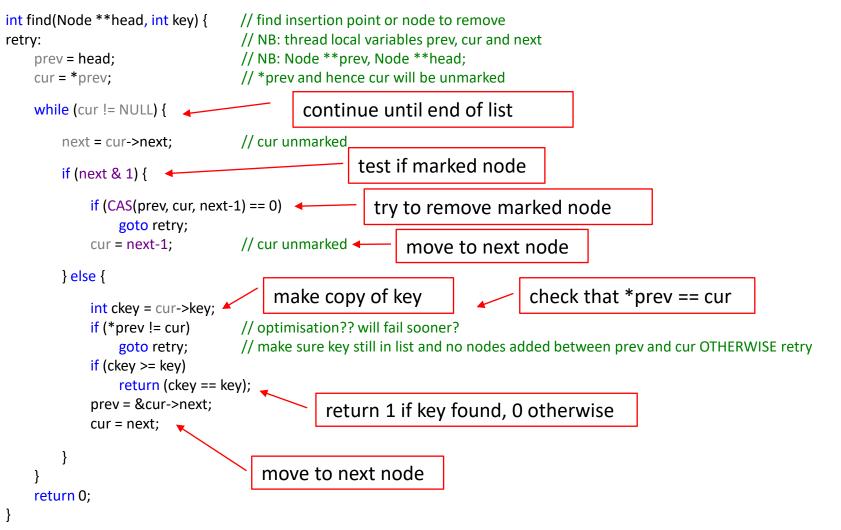
Lockless List...

- Node class
 - int key
 - Node *next
- List implemented using global variable *head* and functions *add, remove and find*
 - Node *head
 - int add(Node **head, Node*node)
 - int remove(Node **head, int key)
 - int find(Node **head, int key)
- per thread local variables
 - prev **Node
 - Node *cur
 - Node *next

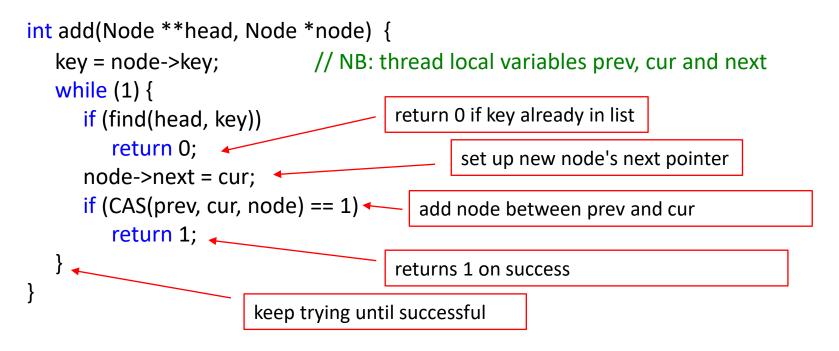
// head of list
// insert node
// remove node with key
// find with key


Lockless List...

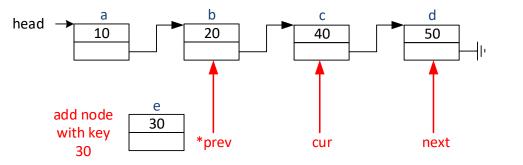
- MARKED node indicated by an ODD address in its next field
- OK as addresses normally aligned on at least a 4 byte boundary [2 or 3 LSBs normally 0]
- handle marked nodes as follows

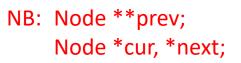

if (n->next & 1) ...// tests if node n MARKEDCAS(&n->next, v, v+1)// MARK node n (assumes node NOT MARKED)CAS(&n->next, v, v-1);// UNMARK node n (assumes node MARKED)

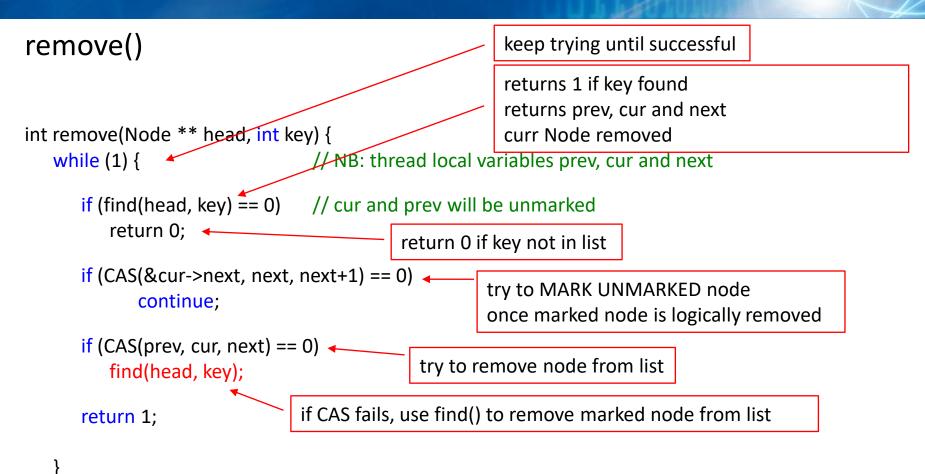
• <u>to atomically</u> mark node b [logically remove] use


CAS(&b->next, c, c + 1); // assumes node UNMARKED

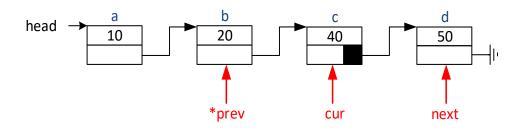
find()

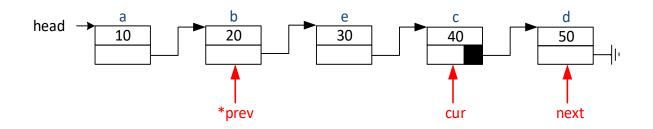



add()


add() ...

• add(key) calls the find() function


- find() returns thread local pointers such that the new node should be added between *prev and cur
- if CAS(prev, cur, node) succeeds, it must mean that prev still pointed to cur [nodes have not been added between prev and cur]
- a node CANNOT be added by linking to a MARKED node [logically removed] thus avoiding the problem discussed in slides <u>12</u> and <u>13</u>


• calls find to remove marked node if CAS fails AND if find fails to remove the marked node, it can be removed by future calls to find (in add and remove)

remove() ...

 assume initial search has returned *prev, cur and next <u>AND</u> cur has been MARKED [logically removed]

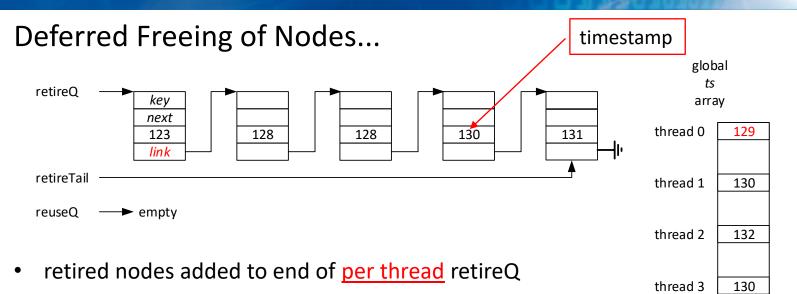
 imagine that before CAS(prev, cur, next) is executed to remove node, another thread inserted a node between prev and cur

• CAS(prev, cur, next) will FAIL

remove() ...

- since node is logically removed, there is NO requirement to ensure that the node is removed from the linked list immediately
- BUT by calling find() again, any MARKED node(s) up to and including key will be removed
- NOT calling find() here, simply means that the MARKED node will remain in list until
 - a node is inserted after key

OR

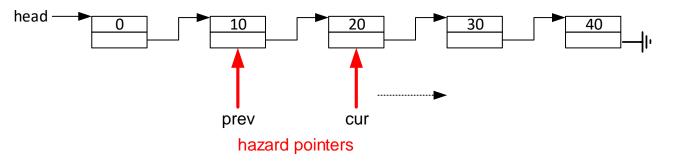

a node after or including key is removed

What still needs to be done?

- current solution avoids the ABA problem by NOT re-using nodes
- there is no code for freeing or reusing nodes
- ONLY a partial solution without memory management
 - garbage collection [supported by Java, but not yet by C++]
 - reference counting [perhaps by using smart pointers, reported to be slow]
 - method proposed by Harris [section 6 of paper]
 - hazard pointers [Michael]

Deferred Freeing of Nodes [Harris]

- see end of section 6 in Harris paper
- each node has an additional (1) *link* so that node can be added to a <u>per thread</u> retireQ or reuseQ and (2) a timestamp
- before starting an add or remove operation, each thread obtains a global timestamp and saves it in a global *ts* array indexed by the thread number [best if each timestamp is stored in its own cache line]
- can use clock() or the ___rdtsc() intrinsic or ... to obtain timestamp
- a remove operation retires the node by adding it to a per thread retireQ and sets the node's timestamp by reading its global timestamp
- when a thread needs a node and the reuseQ is empty, it can traverse the *retireQ* and transfer nodes to the reuseQ if their *timestamp* is less than the minimum *ts* of any thread because this means that NO thread can still have a reference to the node
- allows nodes to be recycled

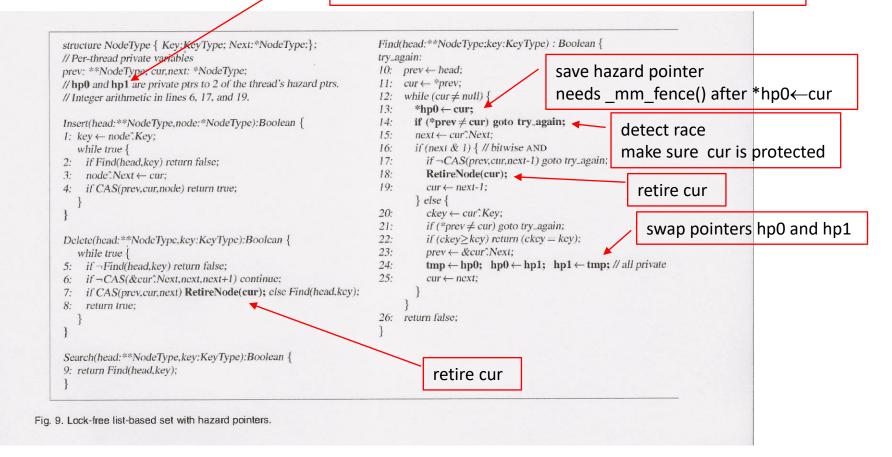

- if thread needs a node and reuseQ empty, try to transfer nodes from retireQ to reuseQ
- in example, minimum thread *ts* is 129
- can transfer all nodes in retireQ with *ts* < 129 to per thread reuseQ [first three nodes]
- allocate nodes from reuseQ and ONLY call new if reuseQ empty
- why is a *link* needed? why not use *next*?
 - thread may need to follow next in order to traverse node even when on retireQ

Deferred Freeing of Nodes...

- memory management algorithm is <u>NOT</u> obstruction free
- if a thread pre-empted, its global *timestamp* will NOT change [*stuck*]
- per thread *timestamp* also *stuck* if thread never calls add() or remove()!
 - if thread not running for 20ms, then 20ms worth of removed nodes will be added to the retireQs before they can be transferred to the reuseQs
 - can result in many allocated nodes, especially when threads > CPUs
- also need to make sure algorithm works when some threads are producers and others are consumers
 - nodes added to consumer reuseQs needed by producers
 - need to <u>free</u> nodes on reuseQ so nodes can be reused by producers
 - nodes recirculated
- implementation simplified by using per thread Qs

Hazard Pointers

- Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects
- with an ordered linked list, two active pointers are used to traverse the list during a find operation [number of active pointers depends on algorithm]
- corresponds to the prev and cur pointers


- at each step, copy prev and cur into an array of <u>per thread</u> hazard pointers
- idea is not to reuse or free nodes if they have hazard pointers pointing to them
- once a node has been removed from list, no thread is able to get a pointer to the node unless it has a pointer to it already

Hazard Pointers...

- maintain a global array of <u>per thread hazard pointers</u> [best if each thread saves its hazard pointers in its own cache line(s)]
- use a per thread retireQ and reuseQ as in previous example
- a thread retires a node by adding it to its retireQ
- when the length of its retireQ is >= 2*nthreads*HAZARDSPERTHREAD
 - take a local snapshot of ALL hazard pointers and store in a local array
 - optionally sort hazard pointers [in local array]
 - for each node on its retireQ, <u>if</u> address of node doesn't match any of the hazard pointers in the local array <u>then</u> transfer to reuseQ [at least half of the nodes should be transferred]
 - allows nodes to be recycled
- only need to call new if per thread reuseQ is empty
- can delete nodes instead of placing them on reuseQ

Lockless List...

hp0, hp1 are pointers to the locations where the two hazard pointers are stored [*hp0 = *hp1 = 0]

hazard pointers used to protect prev and cur

Lockless List...

- detect race make sure cur is protected
- between cur being assigned [cur = ...] and protected by hazard pointer [*hp0 = cur], cur could be moved to the retireQ or reuseQ, reused or even freed
- most straightforward way to make sure cur is protected by hazard pointer is to check that it is still in the list [*prev == cur]
- if cur is reused between cur = ... and *hp0 = cur <u>AND</u> *prev == cur, it is of NO consequence because at this particular point in the algorithm a comparison has not been made with cur->key
- if cur is freed between cur = ... and *hp0 = cur, accessing the node pointed to by cur could be result in a invalid memory access
- the _mm_fence() is to make sure that the hazard pointer is visible to ALL other threads thus protecting cur

Baseline Performance Single Threaded Ordered List

C:\V	Vindows\system	n32\cmd	l.exe								. O <mark>X</mark>
LOCKT	YP=0 ALIGNE	ED NOF 6 mode 4 K 8 4 K 8 4 K 8	P=1000 M 1 94 st 3 N 64 3 N 64 3 N 64 4 N 1024	NSECONDS=2 Lepping 3 4 4 4	bit) 64 bit ex PREFILL USETS Intel(R) Xeon(XALLOC size	of(Node)=10	5	AM=64GB 27-No	v-2015 09:04:	24
	maxKey	nt	pft	rt	ops	ops/s	vmUse	memUse			
	16 64 256 1024 4096 16384 65536 262144 1048576		$\begin{array}{c} & & & \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.01 \end{array}$	2.00 2.00 2.00 2.00 2.00 2.00 2.02 2.00 2.15 3.22	5000 51335000 51392000 5193920000 5193920000 5193920000 5193920000 51939200000000000000000000000000000000000	40647176 24329335 9691154 2208395 242015 33730 12468 3258 621	2.42MB 2.42MB 2.42MB 2.42MB 2.42MB 2.42MB 2.42MB 4.42MB 10.43MB 34.48MB	3.76MB 3.77MB 3.77MB 3.80MB 3.89MB 4.27MB 5.77MB 11.78MB 35.83MB			
16/1/ 64/1/ 256/1 1024/ 4096/ 16384 65536 26214	y, nt, rt, 2001/81335(2001/486830 /2001/1939] 1/2001/4419 /1/2004/4850 /1/2016/680 /1/2016/680 /1/2005/25(4/1/2148/77 76/1/3217/20	000 000 2000 9000 000 000 000 000	per thre	ead							
Press	key to qu	it			III						

- ALIGNED: each node in its own cache line
- PREFILL: list prefilled with odd integers for quick start up
- 50% add random key and 50% remove random key
- decreasing ops/s as list length increases [average list length maxKey/2]

Lockless list with Hazard Pointers

node needs a link field as it can effectively be in list and on retireQ simultaneously

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	256K L 6 8192K L 6	4 K 4 K 4 K 1	4 N 1024	4				rela	ative sp	peed up			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	maxKey							nMalloc					reuse
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	0.00	2.00	20879000	10434282	[1.00]		2.39MB	3.72MB	7	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											7	13	173
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16						[1.96]				8	26	995
	16										7	135	2611
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16						[2.48]				9		3519
64160.002.00357000017841079[4.76]1324617.57MB4.72MB2766112525610.002.0021070001052973[1.00]1672.51MB3.84MB129125620.002.0068080003402298[3.23]24525.52MB4.00MB133202225680.002.00121660006076923[5.77]39939.54MB4.12MB13413637256160.002.00123280006157842[5.85]855417.56MB4.43MB11461778102410.002.00534000266866[1.00]5722.51MB3.86MB4992102420.002.00804000400977[1.51]10033.51MB3.90MB511844102440.002.001428000712930[2.67]19155.52MB3.96MB4984613102480.002.0032280001608370[6.04]540717.56MB4.22MB52648643409610.002.0132280001608370[6.04]540717.56MB4.22MB52648643409610.002.0132280001608370[6.04]540717.56MB4.22MB205992409640.002.017	64										28		2
	64										29		221
64160.002.00357000017841079[4.76]1324617.57MB4.72MB2766112525610.002.0021070001052973[1.00]1672.51MB3.84MB129125620.002.0068080003402298[3.23]24525.52MB4.00MB133202225680.002.00121660006076923[5.77]39939.54MB4.12MB13413637256160.002.00123280006157842[5.85]855417.56MB4.43MB11461778102410.002.00534000266866[1.00]5722.51MB3.86MB4992102420.002.00804000400977[1.51]10033.51MB3.90MB511844102440.002.001428000712930[2.67]19155.52MB3.96MB4984613102480.002.0032280001608370[6.04]540717.56MB4.22MB52648643409610.002.0132280001608370[6.04]540717.56MB4.22MB52648643409610.002.0132280001608370[6.04]540717.56MB4.22MB205992409640.002.017	64										28	36	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	64	8									26	137	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	64										27		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	256			2.00			[1.00]				129		5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	256						[1.82]				146		84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	256												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	256											136	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							[5.85]				114		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1024												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1024						[1.51]						48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1024	4									498	46	13/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												112	282
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							[1.00]						
4096 8 0.00 2.01 726000 361014 [5.72] 3818 9.53MB 4.10MB 2057 154 16 4096 16 0.00 2.03 762000 375739 [6.00] 4725 17.55MB 4.19MB 2019 413 221 16384 1 0.00 2.04 29000 14201 [1.00] 8254 2.51MB 4.3MB 8142 2 1 16384 2 0.00 2.06 54000 26175 [1.86] 8346 3.51MB 4.34MB 8080 12 2 16384 4 0.00 2.07 96000 4644 [3.31] 8580 5.52MB 4.37MB 8037 31 5 16384 8 0.00 2.08 174000 83493 [6.00] 9040 9.53MB 4.41MB 8135 127 7 16384 16 0.00 2.14 176000 82127 [6.07] 9970 17.55MB 4.50MB 8101 425 14 65536 1 0.00	4096												
4096 16 0.00 2.03 762000 375739 [6.00] 4725 17.55MB 4.19MB 2019 413 22 16384 1 0.00 2.04 29000 14201 [1.00] 8254 2.51MB 4.33MB 8142 2 1 16384 2 0.00 2.06 54000 26175 [1.86] 8346 3.51MB 4.34MB 8080 12 2 16384 4 0.00 2.07 96000 46444 [3.31] 8580 5.52MB 4.37MB 8037 31 5 16384 8 0.00 2.08 174000 83493 [6.00] 9040 9.53MB 4.41MB 8135 127 7 16384 16 0.00 2.14 176000 82127 [6.07] 9970 17.55MB 4.50MB 8101 425 14 65536 1 0.00 2.05 8000 3894 [1.00] 32833 4.51MB 5.84MB 32815 1 65536 2 0.00 2.17							3.23						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.00									154	160
16384 2 0.00 2.06 54000 26175 [1.86] 8346 3.51MB 4.34MB 8080 12 2 16384 4 0.00 2.07 96000 46444 [3.31] 8580 5.52MB 4.37MB 8037 31 5 16384 4 0.00 2.08 174000 83493 [6.00] 9040 9.53MB 4.41MB 8135 127 7 16384 16 0.00 2.14 176000 82127 [6.07] 9970 17.55MB 4.50MB 8101 425 14 65536 1 0.00 2.05 8000 3894 [1.00] 32833 4.51MB 5.84MB 32815 1 65536 2 0.00 2.04 28000 13705 [3.50] 32878 5.52MB 5.85MB 32792 8							[6.00]						
16384 4 0.00 2.07 96000 46444 [3.31] 8580 5.52MB 4.37MB 8037 31 5 16384 8 0.00 2.08 174000 83493 [6.00] 9040 9.53MB 4.41MB 8135 127 7 16384 16 0.00 2.14 176000 82127 [6.07] 9970 17.55MB 4.50MB 8101 425 144 65536 1 0.00 2.05 8000 3894 [1.00] 32833 4.51MB 5.84MB 32815 1 65536 2 0.00 2.17 16000 736 [2.00] 32878 5.52MB 5.85MB 32792 8 65536 4 0.00 2.04 28000 13705 [3.50] 33048 7.52MB 5.86MB 32875 29 1	16384												
16384 8 0.00 2.08 174000 83493 [6.00] 9040 9.53MB 4.41MB 8135 127 7 16384 16 0.00 2.14 176000 82127 [6.07] 9970 17.55MB 4.50MB 8101 425 14 65536 1 0.00 2.05 8000 3894 [1.00] 32833 4.51MB 5.84MB 32815 1 65536 2 0.00 2.17 16000 7363 [2.00] 32878 5.58MB 32792 8 65536 4 0.00 2.04 28000 13705 [3.50] 33048 7.52MB 5.66MB 32875 29 1												12	21
16384 16 0.00 2.14 176000 82127 [6.07] 9970 17.55MB 4.50MB 8101 425 14 65536 1 0.00 2.05 8000 3894 [1.00] 32833 4.51MB 5.84MB 32815 1 65536 2 0.00 2.17 16000 7363 [2.00] 32878 5.52MB 5.85MB 32792 8 65536 4 0.00 2.04 28000 13705 [33048 7.52MB 5.86MB 32875 29 1												127	
65536 1 0.00 2.05 8000 3894 [1.00] 32833 4.51MB 5.84MB 32815 1 65536 2 0.00 2.17 16000 7363 [2.00] 32878 5.52MB 5.85MB 32792 8 65536 4 0.00 2.04 28000 13705 [3.50] 33048 7.52MB 5.86MB 32875 29 1												127	
65536 2 0.00 2.17 16000 7363 2.00 32878 5.52MB 5.85MB 32792 8 65536 4 0.00 2.04 28000 13705 3.50 33048 7.52MB 5.86MB 32875 29 1													144
65536 4 0.00 2.04 28000 13705 [3.50] 33048 7.52MB 5.86MB 32875 29 14													/
				2.1/									
	65536	8	0.00	2.32	55000	23706	[6.88]	33491	11.54MB	5.91MB	32905	119	46

- good speed up with # threads [max speed up 7.63]
- BUT algorithm slow compared with baseline [64K 1 thread 12,468 : 3,894]
- 64K baseline 12,468, lockless 8 threads 23,706 [almost twice as fast]

Preview - lockless list using transactional memory (TSX)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ntel64 fam	Windows LIGNED C mily 6 m	7 Professi CONTAINS=0% model 94 st	onal (64 bit) ADD=50% REMO epping 3 Inte	64 bit exe VE=50% NOP=1 1(R) Xeon(R)	RELEASE t 00 NSECON CPU E3-1	sxList [RTM split IDS=2 MAXBACKOFF= 270 v5 @ 3.60GHz	t transact 16 NSPLIT=	tion + lo 64 NTAG=	ck based fall 4096 PREFILL	back path] NCPUS= STATS=0x01 TSXALLO	8 RAM=64GB C=0 sizeof	27-Nov-201 (Node)=16	L5 09:16:02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 I 32k 2 U 256k	K L 64 K K L 64 K	(8 N 64) (4 N 1024)					relat	tive s	peed up				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	axKey nt													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16 1													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.00	2.00	50285300		0.95]	1419			3.47MB	3.90MB 99.97%		2.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.00	47988400		0.91]	4933	4926					2.00	
6440.002.0033760700168719140.9135293501285.59MB4.14MB99.87%450972.0064160.002.0228139300139096880.751936393273617.63MB4.56MB99.63%1072202.00256100.002.001552880072021390.965211219861263.58MB4.05MB99.92%126232.0025620.002.001584820079201390.965211219861263.58MB4.14MB99.7%37872.0025680.002.001556800077801090.941563255141189.60MB4.29MB99.48%811452.00256160.002.001427960713623110.8617365723313217.64MB4.44MB99.45%287672.00102410.002.00246100014279500.68119261421505558MB4.04MB99.56%126212.00102440.002.00267690033767611<.61162991483507558MB4.04MB99.56%126212.00102440.002.00675690033767611<.61162991483507558MB4.04MB99.65%126212.00102440.002.0067569003377611<.611 <th< td=""><td></td><td></td><td>2.00</td><td>45648800</td><td></td><td></td><td>7960</td><td></td><td>10</td><td>9.52MB</td><td></td><td>103788</td><td>2.00</td><td></td></th<>			2.00	45648800			7960		10	9.52MB		103788	2.00	
6440.002.0033760700168719140.9135293501285.59MB4.14MB99.87%450972.0064160.002.0228139300139096880.751936393273617.63MB4.56MB99.63%1072202.00256100.002.001552880072021390.965211219861263.58MB4.05MB99.92%126232.0025620.002.001584820079201390.965211219861263.58MB4.14MB99.7%37872.0025680.002.001556800077801090.941563255141189.60MB4.29MB99.48%811452.00256160.002.001427960713623110.8617365723313217.64MB4.44MB99.45%287672.00102410.002.00246100014279500.68119261421505558MB4.04MB99.56%126212.00102440.002.00267690033767611<.61162991483507558MB4.04MB99.56%126212.00102440.002.00675690033767611<.61162991483507558MB4.04MB99.65%126212.00102440.002.0067569003377611<.611 <th< td=""><td></td><td></td><td>2.00</td><td></td><td></td><td>0.83</td><td></td><td></td><td>11</td><td></td><td></td><td></td><td></td><td></td></th<>			2.00			0.83			11					
6440.002.0033760700168719140.9135293501285.59MB4.14MB99.87%450972.0064160.002.0228139300139096880.75936393273617.63MB4.56MB99.63%1072202.0025610.002.00155288082607691.00164301342.57MB3.52MB1072202.0025620.002.001584820079201390.965211219861263.58MB4.14MB99.7%37872.0025640.002.001584820079201390.965211219861263.58MB4.14MB99.7%37872.0025680.002.001556800077801090.941563255141189.60MB4.29MB99.48%811452.00102410.002.004127960071362311<.001577465312.57MB3.95MB100.00%02.01102410.002.0024610014297570.6811996142150555MB4.04MB99.5%1272.00102440.002.002676900337676111.616299148350755MB4.04MB99.5%127872.00102440.002.00667690033776111.3725485132035 <th< td=""><td></td><td></td><td>2.00</td><td></td><td></td><td></td><td>53</td><td></td><td>29</td><td></td><td></td><td></td><td></td><td></td></th<>			2.00				53		29					
			2.00			0.94	1/83	1/50	33					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.00				3529		28			4509/		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.00				9363		36					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.02	16529800	8260769				134	2 57MB			2.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.00	15848200		0.961							2.00	
256 8 0.00 2.00 15568000 7780109 [0.94] 5632 5514 118 9.60M8 4.29M8 99.48% 81145 2.00 1024 1 0.00 2.00 4496800 207351 [1.00] 577 46 531 2.57M8 3.95M8 100.00% 0 2.01 1024 2 0.00 2.00 2861000 1427850 [0.68] 1926 1421 505 3.58M8 4.04M8 99.15% 29787 2.00 1024 0.00 2.00 3490400 1744327 [0.83] 1990 1483 534 9.60M8 4.17M8 99.15% 29787 2.00 1024 8 0.00 2.00 5676900 2837031 [1.35] 3732 3198 534 9.60M8 4.17M8 99.29% 48140 2.00 1024 16 0.00 2.00 6756900 336761 [1.100] 2145 75 2070 2.57M8 4.04M8 100.00 % 5 2.00 4096 0.00 2.00 </td <td></td> <td></td> <td>2.00</td> <td>16440200</td> <td>8215992</td> <td>0.991</td> <td>3526</td> <td></td> <td>125</td> <td></td> <td></td> <td>37872</td> <td></td> <td></td>			2.00	16440200	8215992	0.991	3526		125			37872		
256 16 0.00 2.00 14279600 7136231 [0.86] 7365 7233 132 17,64MB 4.44MB 99.45% 78673 2.00 1024 1 0.00 2.00 4196800 2097351 [1.00] 577 46 531 2.57MB 3.95MB 100% 0 2.01 1024 2 0.00 2.00 3490400 1744327 [0.68] 1926 1421 505 5.58MB 4.05MB 99.15% 29787 2.00 1024 8 0.00 2.00 5676900 237031 [1.35] 3732 3198 534 9.60MB 4.17MB 99.08% 52482 2.00 1024 16 0.00 2.00 6756900 336131 [1.61] 6299 5807 492 17.64MB 4.07MB 99.98% 48140 2.00 4096 1 0.00 2.00 6756900 336131 [1.37] 2548 513 2035 3.58MB 4.07MB 99.94% 10733 2.	256 8	0.00	2.00	15568000	7780109 [0.941	5632	5514	118	9.60MB		81145		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.00	14279600	7136231 [0.86]	7365	7233	132	17.64MB		78673	2.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.00		2097351 [577		531	2.57MB				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.00	2861000		0.68]	1926		505			12601	2.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.00	2.00				1990	1483	507	5.58MB	4.05MB 99.15%	29787		
4096 1 0.00 2.00 491100 245427 [1.00] 2145 75 2070 2.57MB 4.04MB 100.00% 5 2.00 4096 2 0.00 2.00 672600 336131 [1.37] 2548 513 2035 3.58MB 4.07MB 99.93% 491 2.00 4096 4 0.00 2.00 1253600 626486 [2.55] 3454 1392 2062 5.59MB 4.14MB 99.78% 2749 2.00 4096 8 0.00 2.00 2100700 1049825 [4.28 4887 2847 2040 9.60MB 4.25MB 99.49% 10733 2.00 16384 1 0.00 2.00 2059400 1028671 [4.139] 5066 3063 2003 16.61MB 4.29MB 99.49% 11465 2.00 16384 1 0.00 2.00 120800 60279 [1.73] 8139 154 8165 3.58MB 4.45MB 99.82% 381			2.00	56/6900			3/32		534		4.1/MB 99.08%	52482	2.00	
4096 2 0.00 2.00 672600 336131 [1.37] 2548 513 2035 3.58MB 4.07MB 99.93% 491 2.00 4096 4 0.00 2.00 1253600 626486 [2.55] 3454 1392 2062 5.59MB 4.14MB 99.78% 2749 2.00 4096 8 0.00 2.00 2100700 1049825 [4.88] 4887 2847 2040 9.60MB 4.25MB 99.49% 10733 2.00 4096 16 0.00 2.00 2059400 1028671 [4.19] 5066 3063 2003 16.61MB 4.25MB 99.49% 10733 2.00 16384 1 0.00 2.00 120800 60279 [1.73] 8319 154 8165 3.58MB 4.43MB 99.96% 53 2.01 16384 0.00 2.00 120800 60279 [3.01] 8658 393 8265 5.59MB 4.46MB 99.96% 53 2.01 </td <td></td> <td></td> <td>2.00</td> <td>6/56900</td> <td></td> <td></td> <td>6299</td> <td></td> <td>492</td> <td>17.64MB</td> <td></td> <td></td> <td></td> <td></td>			2.00	6/56900			6299		492	17.64MB				
4096 4 0.00 2.00 1253600 626486 [2.55] 3454 1392 2062 5.59MB 4.14MB 99.78% 2749 2.00 4096 8 0.00 2.00 2100700 1049825 [4.18] 4887 2847 2040 9.60MB 4.25MB 99.49% 10733 2.00 16384 1 0.00 2.00 69700 34832 [1.00] 8323 99 8224 2.57MB 4.43MB 190.00% 1 2.01 16384 0.00 2.00 120800 60279 [1.73] 8319 154 8165 3.58MB 4.43MB 99.66% 53 2.01 16384 0.00 2.00 120800 104690 [3.01] 8558 393 8265 5.59MB 4.45MB 99.6% 53 2.01 16384 0.00 2.01 333900 166284 [4.77] 9518 1268 8250 17.63MB 4.51MB 99.58% 1515 2.01 16384 10.000 2.01 28800 14327 <t< td=""><td></td><td></td><td>2.00</td><td></td><td></td><td></td><td>2145</td><td></td><td>2070</td><td></td><td></td><td></td><td>2.00</td><td></td></t<>			2.00				2145		2070				2.00	
4096 8 0.00 2.00 2100700 1049825 [4.28] 4887 2847 2040 9.60MB 4.25MB 99.49% 10733 2.00 4096 16 0.00 2.00 2059400 1028671 [4.19] 5066 3063 2003 16.61MB 4.29MB 99.44% 11465 2.00 16384 1 0.00 2.00 120800 60279 [1.73] 8319 154 8165 3.58MB 4.43MB 90.96% 53 2.01 16384 4 0.00 2.00 120800 60279 [1.73] 8319 154 8165 3.58MB 4.43MB 99.96% 53 2.01 16384 4 0.00 2.00 120800 104690 3.01 8658 393 8265 5.59MB 4.46MB 99.82% 381 2.01 16384 16 0.00 2.01 333900 166284 [4.77] 9518 1268 8250 17.63MB 4.51MB 99.83% 1515 2.01 16384 16 0.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2340</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							2340							
4096 16 0.00 2.00 2059400 1028671 1 4.19 5066 3063 2003 16.61MB 4.29MB 99.44% 11465 2.00 16384 1 0.00 2.00 69700 3832 1 1.00 8323 99 8224 2.57MB 4.43MB 100.00% 1 2.01 16384 2 0.00 2.00 120800 60279 1.73 8319 154 8165 3.58MB 4.43MB 99.96% 53 2.01 16384 4 0.00 2.00 209800 104690 5.22 9274 1091 8183 9.59MB 4.46MB 99.82% 381 2.01 16384 6 0.00 2.01 333900 166284 4.77 9518 1268 8250 17.63MB 4.51MB 99.58% 1515 2.01 16384 16 0.00 2.01 28800 14342 1.000 32871 7 32864 4.58MB 5.93MB 100.00% 0 2.02 55356 2					1049825	4 281								
16384 1 0.00 2.00 69700 34832 1.00 8323 99 8224 2.57MB 4.43MB 100.00% 1 2.01 16384 2 0.00 2.00 120800 60279 1.73 8319 154 8165 3.58MB 4.43MB 99.96% 53 2.01 16384 0.00 2.00 209800 104690 3.01 8656 393 8265 5.59MB 4.45MB 99.58% 381 2.01 16384 8 0.00 2.00 364600 181845 5.22 9274 1091 8183 9.59MB 4.51MB 99.58% 1515 2.01 16384 16 0.00 2.01 333900 166284 [4.777] 9518 1268 8250 17.63MB 4.51MB 99.58% 1515 2.01 16384 16 0.00 2.01 28800 14342 [1.00] 32871 7 32864 4.53MB 5.93MB 19.948% 1743 2.01 55536 2 0.00 2.01												11465		
16384 2 0.00 2.00 120800 60279 [1.73] 8319 154 8165 3.58MB 4.43MB 99.96% 53 2.01 16384 4 0.00 2.00 209800 104690 [3.01] 8658 393 8265 5.59MB 4.46MB 99.82% 381 2.01 16384 8 0.00 2.00 364600 181845 [5.22] 9274 1091 8183 9.59MB 4.51MB 99.82% 1515 2.01 16384 16 0.00 2.01 333900 166284 [4.77] 9518 1268 8250 17.63MB 4.51MB 99.48% 1743 2.01 55536 0.00 2.01 28800 14342 [1.00] 32871 7 32864 4.58MB 5.93MB 90.948% 1743 2.01 55536 2 0.00 2.01 49100 24476 [1.71] 32834 149 32685 5.58MB 5.93MB 99.95% 27 2.01			2.00				8323							
16384 8 0.00 2.00 364600 181845 5.22 9274 1091 8183 9.59MB 4.51MB 99.58% 1515 2.01 16384 16 0.00 2.01 333900 166284 [4.77] 9518 1268 8250 17.63MB 4.57MB 99.58% 1515 2.01 65536 1 0.00 2.01 28800 14342 [1.00] 32871 7 732864 4.58MB 5.93MB 19.00% 0 2.02 65536 2 0.00 2.01 49100 24476 [1.71] 32834 149 32685 5.58MB 5.93MB 99.95% 27 2.01 65536 4 0.00 2.01 81100 40308 [2.81] 33017 266 32751 7.59MB 5.95MB 99.95% 27 2.02 65536 8 0.00 2.01 126500 62810 [4.38] 33415 644 32771 1.60MB 99.64% 510 2.02			2.00	120800	60279 [1.73]		154	8165	3.58MB	4.43MB 99.96%		2.01	
16384 16 0.00 2.01 333900 166284 [4.77] 9518 1268 8250 17.63MB 4.57MB 99.48% 1743 2.01 65536 1 0.00 2.01 28800 14342 [1.00] 32871 7 32864 4.58MB 5.93MB 100.00% 0 2.02 65536 2 0.00 2.01 49100 24476 [1.71] 32834 149 32685 5.58MB 5.93MB 99.95% 27 2.01 65536 4 0.00 2.01 81100 40308 [2.81] 33017 266 32751 7.59MB 5.95MB 99.84% 130 2.02 65536 8 0.00 2.01 126500 62810 [4.38] 33415 644 32771 11.60MB 6.00MB 99.60% 510 2.02					104690 [
65536 1 0.00 2.01 28800 14342 [1.00] 32871 7 32864 4.58MB 5.93MB 100.00% 0 2.02 65536 2 0.00 2.01 49100 24476 [1.71] 32834 149 32685 5.58MB 5.93MB 99.95% 27 2.01 65536 4 0.00 2.01 81100 40308 [2.81] 33017 266 32751 7.59MB 5.95MB 99.84% 130 2.02 65536 8 0.00 2.01 126500 62810 [4.38] 33415 644 32771 11.60MB 6.00MB 99.60% 510 2.02			2.00	364600		5.22]	9274			9.59MB	4.51MB 99.58%			
65536 2 0.00 2.01 49100 24476 1.71 32834 149 32685 5.58MB 5.93WB 99.95% 27 2.01 65536 4 0.00 2.01 81100 40308 2.81 33017 266 32751 7.59MB 5.95MB 99.84% 130 2.02 65536 8 0.00 2.01 126500 62810 4.38] 33415 644 32771 11.60MB 6.00MB 99.60% 510 2.02							9518	1268		17.63MB	4.57MB 99.48%		2.01	
65536 4 0.00 2.01 81100 40308 [2.81] 33017 266 32751 7.59MB 5.95MB 99.84% 130 2.02 65536 8 0.00 2.01 126500 62810 [4.38] 33415 644 32771 11.60MB 6.00MB 99.60% 510 2.02			2.01			1.00	32871	7						
65536 8 0.00 2.01 126500 62810 [4.38] 33415 644 32771 11.60MB 6.00MB 99.60% 510 2.02									32685					

- good speed up with # threads [max speed up 5.22]
- algorithm almost as quick as baseline [64K 1 thread 12,468 : 14,324]
- 64K baseline 12,468, lockless 8 threads 62,810 [almost 5x faster]

Learning Outcomes

- you are now able to:
 - explain the difference between obstruction, lock and wait free algorithms
 - explain the operation of the Compare and Swap (CAS) instruction
 - implement a lockless stack using CAS
 - explain the ABA problem and some possible solutions
 - implement a lockless ordered list using CAS
 - assess the difficulty of adding memory management to a CAS based concurrent algorithm
 - add memory management to a lockless algorithm using hazard pointers