
1

Coronavirus Contact Tracing App Privacy: What
Data Is Shared By The Singapore OpenTrace App?

Douglas J. Leith, Stephen Farrell
School of Computer Science & Statistics,

Trinity College Dublin, Ireland
28th April 2020

Abstract—We report on measurements of the actual data trans-
mitted to backend servers by the Singapore OpenTrace app, with
a view to evaluating impacts on user privacy. We have three
main findings: 1) The OpenTrace app uses Google’s Firebase
service to store and manage user data. This means that there
are two main parties involved in handling data transmitted from
the app, namely Google and the health authority operating the
OpenTrace app itself. We find that OpenTrace’s use of Firebase
Analytics telemetry means the data sent by OpenTrace potentially
allows the (IP-based) location of user handsets to be tracked
by Google over time. We therefore recommend that OpenTrace
be modified to disable use of Firebase Analytics. 2) OpenTrace
also currently requires users to supply a phone number to use
the app and uses the Firebase Authentication service to validate
and store the entered phone number. The decision to ask for
user phone numbers (or other identifiers) presumably reflects
a desire for contact tracers to proactively call contacts of a
person that has tested positive. Alternative designs make those
contacts aware of the positive test, but leave it to the contact
to initiate action. This may indicate a direct trade-off between
privacy and the effectiveness of contact tracing. If storage of
phone numbers is judged necessary we recommend changing
OpenTrace to avoid use of Firebase Authentication for this. And
finally, 3) the reversible encryption used in OpenTrace relies on
a single long-term secret key stored in a Google Cloud service
and so is vulnerable to disclosure of this secret key.

I. INTRODUCTION

There is currently a great deal of interest in the use of mobile
apps to facilitate Covid-19 contact tracing. More efficient and
scalable contact tracing might for example, allow the lockdown
measures currently in place in many countries to be relaxed
more quickly.

Ensuring that contact tracing apps maintain user privacy has
been widely flagged as being a major concern. Bluetooth-
based proximity detection approaches are appealing from a
privacy viewpoint since they avoid the need to record or share
user location. However, care is needed in the implementation
of these approaches to ensure that privacy goals are actually
achieved. In addition, independent evaluation of developed
apps is important both to verify privacy claims and to build
confidence in users that the apps are indeed safe to use. In this
report we take a first step in this direction. We measure the
actual data transmitted to backend servers by the Singapore
TraceTogether/OpenTrace app with a view to evaluating user
privacy.

Mobile apps are already being used in several countries to
assist with management of Covid-19 infections. Most of these
apps are either used to control the movement of people or to
assist people to make an initial self-evaluation of their health

based on observed symptoms, rather than for contact tracing.
A notable example of the former is the Chinese Health Code
app [1], and an example of latter is the Spanish self-evaluation
app [2]. It is worth noting that some countries use centralised
tracking of mobile phone location, which avoids the need for a
specialised app, to control movement of people, e.g. Taiwan’s
“electronic fence” [3]. In South Korea information on locations
visited by infected people are made publicly available and
this has prompted the development of apps that display this
information e.g. the Corona 100m app [4].

In contrast, in the initial stages of the Covid-19 outbreak
the Singapore government developed the TraceTogether app
[5] and used this to directly assist with contact tracing. The
TraceTogether app uses Bluetooth to broadcast beacons while
also logging the signal strength of beacons received from
neighbouring handsets. Since received signal strength is a
rough indicator of proximity, when a person is detected as
being infected the data logged on their phone can be used
to identify other people that the person was potentially close
in the time preceding discovery of their infection. In Europe
Bluetooth-based approaches for contract tracing have also
been proposed, e.g. Decentralised Privacy-Preserving Prox-
imity Tracing (DP-3T) [6], while Apple and Google have
formed a partnership to develop a contract tracing API based
on Bluetooth [7]. However, these initiatives are currently at
a relatively early stage whereas the Singapore TraceTogether
app is already deployed and operational, plus an open source
version, referred to as OpenTrace, has now been released [8].
TraceTogether/OpenTrace is therefore currently the focus of
much interest.

This work is solely based on the open-source OpenTrace app
and the installable app from the Google Play store without
any involvement of the developers of the app or any health
authority.

The results of our study can be summarised as follows.

We find that the OpenTrace app uses Google’s Firebase service
to store and manage user data. This means that there are two
main parties involved in handling data shared by the app,
namely Google (who operate the Firebase service) and the
health authority (or other agency) operating the OpenTrace
app itself. As owner of Firebase, Google has access to all
data transmitted by the app via Firebase but filters what data
is made available to the operator of OpenTrace e.g. to present
only aggregate statistics.

The OpenTrace app regularly sends telemetry data to the

2

Firebase Analytics service. This data is tagged with persistent
identifiers linked to the mobile handset so that messages from
the same handset can be linked together. Further, messages
also necessarily include the handset IP address (or the IP
address of the upstream gateway), which can be used as
a rough proxy for location using existing geoIP services.
Note that the Firebase Analytics documentation [9] states that
“Analytics derives location data from users’ IP addresses”.
Hence, the data sent by the handset potentially allows its
location to be tracked over time. Many studies have shown that
location data linked over time can be used to de-anonymise:
this is unsurprising since, for example, knowledge of the work
and home locations of a user can be inferred from such
location data (based on where the user mostly spends time
during the day and evening), and when combined with other
data this information can quickly become quite revealing [10],
[11].

The Firebase Analytics documentation states that “Thresh-
olds are applied to prevent anyone viewing a report from
inferring the demographics, interests, or location of individual
users” [9]. Assuming this is effective (note that the effec-
tiveness of de-anonymisation methods is far from clear when
applied to location data over time), then the health authority
operating the OpenTrace app cannot infer individual user
locations. The primary privacy concern therefore lies with
the holding of rough location data by Google itself. It is
worth noting that when location history can be inferred from
collected data then even if this inference is not made by the
organisation that collects the data it may be made by other
parties with whom data is shared. This includes commercial
partners (who may correlate this with other data in their
possession) and state agencies, as well as disclosure via data
breaches.

In light of this, and since the potential use of a contract
tracing app for large-scale tracking of the population is one
of the main privacy concerns highlighted in the media, we
recommend disabling use of Firebase Analytics in OpenTrace
to avoid this regular transmission of messages to Google.

OpenTrace requires users to enter their phone number in order
to use the app, and this number is stored on Firebase and visi-
ble to the health authority. It is relatively easy to link a phone
number to a users real identity (indeed in some jurisdictions ID
must be presented when buying a sim [12]) and so this creates
an immediate privacy concern. The BlueTrace white paper [13]
notes that storage of user phone numbers is optional and push
notifications can be used instead. The decision as to whether
to ask for user phone numbers (or other identifiers) therefore
really depends on the requirements of the health authority for
effectively managing contact tracing. For example, due to the
approximate nature of proximity tracking via Bluetooth it is
likely that OpenTrace data will be only one of many sources of
information used in contact tracing and combining data from
different sources may require the use of an identifier such as
a phone number. The result may be a direct trade-off between
privacy and the effectiveness of contact tracing.

Assuming that recording of phone numbers, or similar iden-
tifiers, is judged to be necessary then OpenTrace uses the

Firebase Authentication service for this purpose. This use of
Firebase Authentication creates an obvious potential conflict
of interest for Google whose primary business is advertising
based on collection of user personal data. In addition, the
data held by Google need not be stored in the country where
the app users are located. In particular, the Firebase privacy
documentation [14] states that the Firebase Authentication
service used by OpenTrace always processes its data in US
data centres. Bearing in mind that a successful contact tracing
app would be used by a large fraction of the population in
a country, use of Firebase Authentication potentially means
that their phone numbers may then be available to US state
agencies. Such considerations suggest that it might be worth
considering changing OpenTrace to make use of backend
infrastructure that avoids outsourcing storage of user phone
numbers to Google.

II. THREAT MODEL: WHAT DO WE MEAN BY PRIVACY?
It is important to note that transmission of user data to backend
servers is not intrinsically a privacy intrusion. For example, it
can be useful to share details of the user device model/version
and the locale/country of the device and this carries few
privacy risks if this data is common to many users since
the data itself cannot then be easily linked back to a specific
user [15], [16].

Issues arise, however, when data can be tied to a specific
user. One common way that this can happen is when an app
generates a long randomised string when first installed/started
and then transmits this alongside other data. The randomised
string then acts as an identifier of the app instance (since no
other apps share the same string value) and when the same
identifier is used across multiple transmissions it allows these
transmissions to be tied together across time.

Linking a sequence of transmissions to an app instance does
not explicitly reveal the user’s real-world identity. However,
the data can often be readily de-anonymised. One way that
this can occur is if the app directly asks for user details (e.g.
phone number, facebook login). But it can also occur indirectly
using the fact that transmissions by an app always include the
IP address of the user device (or more likely of an upstream
NAT gateway). As already noted, the IP address acts as a rough
proxy for user location via existing geoIP services and many
studies have shown that location data linked over time can be
used to de-anonymise. A pertinent factor here is the frequency
with which updates are sent e.g. logging an IP address location
once a day has much less potential to be revealing than logging
one every few minutes.

With these concerns in mind, two of the main questions that
we try to answer in the present study are (i) What explicit
identifying data does the app directly request and (ii) Does
the data that the app transmits to backend servers potentially
allow tracking of the IP address of app instance over time.

III. MEASUREMENT SETUP

A. Viewing Content Of Encrypted Web Connections
All of the network connections we are interested in are
encrypted. To inspect the content of a connection we route

3

Fig. 1. Measurement setup. The mobile handset is configured to access the
internet using a WiFi access point hosted on a laptop, use of cellular/mobile
data is disabled. The laptop also has a wired internet connection. When an
app on the handset starts a new web connection the laptop pretends to be the
destination server so that it can decrypt the traffic. It then creates an onward
connection to the actual target server and acts as an intermediary relaying
requests and their replies between the handset app and the target server while
logging the traffic.

handset traffic via a WiFi access point (AP) that we control.
We configure this AP to use mitmdump [17] as a proxy
and adjust the firewall settings to redirect all WiFi traffic to
mitmdump so that the proxying is transparent to the handset.
In brief, when the OpenTrace app starts a new web connection
the mitmdump proxy pretends to be the destination server
and presents a fake certificate for the target server. This
allows mitmdump to decrypt the traffic. It then creates an
onward connection to the actual target server and acts as an
intermediary relaying requests and their replies between the
app and the target server while logging the traffic. The setup
is illustrated schematically in Figure 1.

The immediate difficulty encountered when using this setup
is that the app carries out checks on the authenticity of server
certificates received when starting a new connection and aborts
the connection when these checks fail. To circumvent these
checks we use a rooted phone and use Frida [18] to patch
the OpenTrace app and Google Play Services (which the app
uses to manage most of the connections it makes) on the
fly to replace the relevant Java certificate validation functions
with dummy functions that always report validation checks as
being passed. The bulk of the effort needed lies in deducing
which functions to patch since Google Play Services is closed-
source and obfuscated (decompiling the bytecode produces
Java with randomised class and variable names etc) plus it uses
customised certificate checking code (so standard unpinning
methods fail). Implementing the unpinning for OpenTrace is
therefore a fairly laborious manual process.

B. Hardware and Software Used

Mobile handset: Google Pixel 2 running Android 9. Rooted
using Magisk v19.1 and Magisk Manager v7.1.2 and running
Frida Server v12.5.2. Laptop: Apple Macbook running Mojav
10.14.6 running Frida 12.8.20 and mitmproxy v5.0.1. Using
a USB ethernet adapter the laptop is connected to a cable
modem and so to the internet. The laptop is configured
using its built in Internet Sharing function to operate as a
WiFi AP that routes wireless traffic over the wired con-
nection. The laptop firewall is then configured to redirect
received WiFi traffic to mitmproxy listening on port 8080
by adding the rule rdr pass on bridge100 inet
proto tcp to any port 80, 443 -> 127.0.0.1
port 8080. The handset is also connected to the laptop over

Fig. 2. Main screen displayed by OpenTrace following initial setup.

USB and this is used as a control channel (no data traffic is
routed over this connection) to install the OpenTrace app and
carry out dynamic patching using Frida. Namely, using the
adb shell the Frida server is started on the handset and then
controlled from the laptop via the Frida client.

C. Test Design
Test design is straightforward since the OpenTrace app sup-
ports only a single flow of user interaction. Namely, on
first startup a splash screen is briefly displayed and then an
information screen is shown that contains a single “I want to
help” button. On pressing this the user is taken to a second
screen which outlines how OpenTrace works and which has
a single button labelled “Great!!!”. On pressing this the user
is asked to enter their phone number and again there is only
a single button labelled “Get OTP”. The user is then taken
to a screen where they are asked to enter a 6-digit code
that has been texted to the supplied number. On pressing
the “Verify” button then if this code is valid the user is
taken through a couple of screens asking then to give the app
needed permissions (Bluetooth, location, disabling of battery
optimisation for the app, access to storage) and then arrives
at the main screen which is displayed thereafter, see Figure
2. This main screen has non-functioning buttons for help and
sharing of the app, plus a button that is only to be pressed
when the user has been confirmed as infected with Covid-19
and which uploads observed bluetooth data to the app backend
server hosted on Firebase.

Testing therefore consists of recording the data sent upon
installation and startup of the app, followed by navigation
through these screens until the main screen is reached. The
data sent by the app when left idle at the main screen (likely
the main mode of operation of the app) is also recorded. We
also tried to investigate the data sent upon pressing the upload
function but found that this functionality fails with an error.
Inspection of the code suggests that this upload functionality
is incomplete.

Although our primary interest is in the open source OpenTrace
app, this app is apparently derived from the closed-source
TraceTogether app used by the health service in Singapore.
We therefore also tried to collect data for the TraceTogether
app for comparison with that generated by the OpenTrace app.
The latest version (v1.6.1) of TraceTogether is restricted to
Singapore phone numbers, in our testing we therefore used an
earlier version (v1.0.33) without this restriction in our tests.

4

D. Finding Identifiers In Network Connections
Potential identifiers in network connections were extracted by
manual inspection. Basically any value present in network
messages that stays the same across messages is flagged as
a potential identifier. As we will see, almost all the values
of interest are associated with the Firebase API that is part
of Google Play Services. We therefore try to find more
information on the nature of observed values from Firebase
privacy policies and other public documents as well as by
comparing them against known software and device identifiers
e.g. the Google advertising identifer of the handset.

IV. GOOGLE FIREBASE

OpenTrace uses Google’s Firebase service to provide its server
backend. This means that there are at least two parties involved
in handling data shared by the app, namely Google (who
operate the Firebase service infrastructure) and the health
authority (or other agency) operating the OpenTrace app itself.
As owner of Firebase, Google has access to all data transmitted
by the app via Firebase but filters what data is made available
to the operator of OpenTrace e.g. to present only aggregate
statistics.

OpenTrace makes use of the Firebase Authentication, Firebase
Functions, Firebase Storage and Firebase Analytics (also re-
ferred to as Google Analytics for Firebase) services. The app
has hooks for Crashlytics and Firebase Remote Config, but
the version studied here does not make active use of these
two services.

The Firebase Authentication service is used on startup of the
app to record the phone number entered by the user and verify
it by texting a code which the user then enters into the app. The
phone numbers entered are recorded by Firebase and linked
to a Firebase identifier.

Firebase Functions allows the OpenTrace app to invoke exe-
cution of user defined Javascript functions on Google’s cloud
platform by sending requests to specified web addresses. The
OpenTrace app uses this service to generate tempIDs for
broadcast over bluetooth and for upload of logged tempIDs
upon the user becoming infected with Covid-19. Firebase
Storage is used to hold uploaded tempIDs. The tempIDs are
generated by reversible encryption (see below) using a key
stored in Google Cloud’s Secret Manager service and accessed
by the OpenTrace getTempIDs function hosted on Firebase
Functions.

Figure 3 shows an example of the Firebase Functions logging
visible to the operator of the OpenTrace app. This fine-grained
logging data shows individual function calls together with the
time and user making the call (the uid value is the user identfier
used by Firebase Authentication and so can be directly linked
to the users phone number).

The app is instrumented to record a variety of user events and
log these to the backend server using Firebase Analytics.

The Firebase privacy documentation [14] outlines some of
the information that is exchanged with Google during oper-
ation of the API. This privacy documentation does not state
what is logged by Firebase Storage but notes that Firebase

Fig. 3. Example of Firebase Functions logging visible to the operator of
the OpenTrace app. Observe that there is fine-grained logging of individual
function calls per user (the uid value in these logs is a unique identifier linked
to a users phone number). The tempIDs function is , for example, regularly
called by the OpenTrace app to refresh the set of tempIDs available for a
mobile handset to advertise on Bluetooth.

Fig. 4. Example of Firebase Analytics data visible to the operator of
the OpenTrace app. Observe that data is available on events occurinng per
individual device.

Authentication logs user phone numbers and IP addresses.
Also that Firebase Analytics makes use of a number of identi-
fiers including: (i) a user-resettable Mobile ad ID to “allow
developers and marketers to track activity for advertising
purposes. They’re also used to enhance serving and targeting
capabilities.” [19], (ii) an Android ID which is “a 64-bit
number (expressed as a hexadecimal string), unique to each
combination of app-signing key, user, and device” [20], (iii)
a InstanceID that ”provides a unique identifier for each app
instance” and ”Once an Instance ID is generated, the library
periodically sends information about the application and the
device where it’s running to the Firebase backend. ” [21] and
(iv) an Analytics App Instance ID that is “used to compute
user metrics throughout Analytics” [9]. The Firebase Analytics
documentation [9] states that “As long as you use the Firebase
SDK, you don’t need to write any additional code to collect
a number of user properties automatically”, including Age,
Gender, Interests, Language,Country plus a variety of device
information. It also states that “Analytics derives location data
from users’ IP addresses”.

Figure 4 shows an example of the data made available to the
operator of the OpenTrace app by Firebase Analytics. It can
be seen that per device event data is available showing for

5

example when OpenTrace is started on the device, when it is
viewed etc.

The data collected by Google during operation of its Firebase
services need not be stored in the same country as the user of
an app is located. The Firebase privacy documentation [14]
states that “Unless a service or feature offers data location
selection, Firebase may process and store your data anywhere
Google or its agents maintain facilities”. It also states “A few
Firebase services are only run from US data centers. As a
result, these services process data exclusively in the United
States” and it appears that these services include Firebase
Authentication, which OpenTrace uses to stores user phone
numbers.

It is important to note that only a filtered version of this data
collected by Google is made available to users of its backend
Firebase services. The Firebase Analytics documentation states
that “Thresholds are applied to prevent anyone viewing a
report from inferring the demographics, interests, or location
of individual users” [9].

V. CRYPTOGRAPHY

The tempIds used in OpenTrace are transmitted in Bluetooth
beacons and are an encrypted form of a Firebase user identifier
that can be linked to the user phone number using the
Firebase Authentication service, together with two timestamps
indicating the time interval during which the tempID is valid
(to mitigate replay attacks).

In OpenTrace encryption is based on a single long-term
symmetric secret that is stored in Google Cloud’s Secret
Manager service. The encryption is reversible so that the
user identifier and timestamps can be recovered from an
observed tempID given knowledge of this secret. When a
person is detected to be infected with Covid-19 the tempIDs in
beacons observed by the app on their phone can therefore be
decrypted by the health authority to obtain the phone numbers
of people who have been in proximity to the infected person.
However, this setup also means that if a data breach occurs
and the secret is disclosed then any recordings of tempIDs
observed in Bluetooth beacons can also be decrypted by third
parties. Alternative designs that ensure that only the tempIds
associated with a user testing positive for Covid-19 could be
decrypted would seem more desirable. It is also important
to add provision for key updates and other key management,
which is currently absent in OpenTrace.

VI. MEASUREMENTS OF DATA TRANSMITTTED BY
OPENTRACE APP

A. Data Sent On Initial Startup

Upon installation and first startup the OpenTrace app makes
a number of network connections. Note that there has been
no interaction with the user beyond startup of the app, in
particular no user consent to sharing of information.

The app initialises Firebase upon first startup, which generates
the following POST request (standard/uninteresting parameter-
s/headers are omitted) :

Startup of app
• firebaseinstallations.googleapis.com (sends fid)
• settings.crashlytics.com
• app-measurement.com (sends app instance id, Google Advertising Id)

Entering phone number
• www.googleapis.com (sends phone number)

Entering 6-digit code
• www.googleapis.com (sends 6-digit code, receives)
• europe-west1-opentracetest-4167b.cloudfunctions (fetches tempIDs)

Agreeing to app permissions (bluetooth, location, battery)
Agreeing to app storage permission
• europe-west1-opentracetest-4167b.cloudfunctions (fetches tempIDs)

While idle
• app-measurement.com (app instance id, Google Advertising Id)

TABLE I
SUMMARY OF NETWORK CONNECTIONS MADE BY OPENTRACE IN

RESPONSE TO USER INTERACTIONS.

POST https://firebaseinstallations.googleapis.com/v1/
projects/opentracetest-4167b/installations
Parameters:

key=AIzaSyAB...
Headers:

X-Android-Cert: 2AE4BED9E4F0...
Request body:

{"appId": "1:195668253963:android:0e1d8...", <...>
"fid": "f4vnM2vqSLuOgcpB8FbDd_",<...> }

The value of the parameter “key” is hardwired into the app to
allow it to access Firebase, and so is the same for all instances
of the app. Similarly, the X-Android-Cert header is the SHA1
hash of the app and the “appId” is a Google app identifier
and both are the same for all instances of the app. The “key”
parameter and X-Android-Cert appear in many of the network
requests made by the app but to save space are omitted from
now on. The “fid” value appears to be the Firebase Instance ID,
discussed above. This uniquely identifies the current instance
of the app but is observed to change for a fresh install of the
app (i.e. deleting the app and then reinstalling). The response
to this request echoes the fid value and includes two tokens
which appear to be used to identify the current session.

Next, OpenTrace tries to fetch settings for Crashlytics:
GET https://settings.crashlytics.com/spi/v2/platforms/
android/apps/io.bluetrace.opentrace/settings
Parameters:

instance: da2618e19123d5...
display_version: 1.0.41-debug-b39f5...
icon_hash: 8229e07efb...

Headers:
X-CRASHLYTICS-DEVELOPER-TOKEN: 470fa2b4ae...
X-CRASHLYTICS-API-KEY: 129fa51a5bbee6...
X-CRASHLYTICS-INSTALLATION-ID: e8854e81...

The “instance” parameter differs from the fid, its value
is observed to changes upon a clean install of the app.
Similarly, the X-CRASHLYTICS-INSTALLATION-ID value
changes upon a clean install. These two values appear to
be used to identify the instance of Crashlytics (and so the
app). The “display version” parameter is the OpenTrace VER-
SION NAME value from BuildConfig.java in the app source
code and is the same for all copies of the app. Its not
clear what the X-CRASHLYTICS-DEVELOPER-TOKEN, X-
CRASHLYTICS-API-KEY and icon hash values are, but they
are observed to stay unchanged upon fresh install of the app

6

and so do not seem to be tied to the app instance. The response
to the request to settings.crashlytics.com is “403 Forbidden”
since Crashlytics has not been configured in the Firebase
server backend.

OpenTrace now makes its first call to Firebase Analytics:
GET https://app-measurement.com/config/app/1%3A195668253963
%3Aandroid%3A0e1d84bec59ca7e66e160e
Parameters:

app_instance_id: f67be0634d5102bcfe0352bc0bbeaded

POST https://app-measurement.com/a
<...>
\x02_o\x12\x04auto\x07\x03_et\x18\x01\x12\x02_e\x18\xd0\xa4\
xdb\x92\x9b. \x00\x1a\x14\x08\xd0\xa4\xdb\x92\x9b.\x12\
x04_fot \x80\x82\xfc\x93\x9b.\x1a\x0e\x08\xd0\xa4\xdb\x92\
x9b.\x12\x03_fi \x01\x1a\x0f\x08\xee\x9a\xdc\x92\x9b.\x12\
x04_lte \x01\x1a\x0e\x08\xef\x9a\xdc\x92\x9b.\x12\x03_se \
x01 \xec\x9a\xdc\x92\x9b.(\xd0\xa4\xdb\x92\x9b.0\xd0\xa4\xdb
\x92\x9b.B\x07androidJ\x019R\x07Pixel 2Z\x05en-us‘<j\
x0emanual_installr\x16io.bluetrace.opentrace\x82\x01\x191
.0.41-debug-b39f57f-F4D3\x88\x01\xa0\xac\x01\x90\x01\xf9\x8a
\x01\x9a\x01$1d2635f5-2af7-4fb3-86e...\xa0\x01\x00\xaa\x01
f67be0634d5102bcfe0352bc0bbeaded\xb0\x01\xda\x8f\xd6\xd8\xe4
\xe5\xa5\xf4\x8e\x01\xb8\x01\x01\xca\x01-1:195668253963:
android:0e1d84bec59ca7e66e160e\xe0\x01\x01\xf2\x01\x16
f4vnM2vqSLuOgcpB8FbDd_\xf8\x01)\x98\x02\x98\x9b\xbe\xa5\xfa\
xf8\xe8\x02\xa0\x02\x00\xe8\x02\xb2\xeb\x86\x0b\xf0\x02\x00

The first request appears to be asking about configuration
changes and the response is “304 Not Modified”. The sec-
ond request uploads information on events within the app
(see below for further discussion). Both requests contain an
app instance id value which acts to link them together (and
also subsequent analytics requests). The second request also
contains the Firebase fid value. In addition the second request
contains the device Google Advertising Id (1d2635f5-2af7-
4fb3-86e...) as reported by the Google/Ads section of the
handset Settings app. Unless manually reset by the user this
value persists indefinitely, including across fresh installs of
OpenTrace, and so essentially acts as a strong identifier of the
device and its user. The body of the second request contains a
number of other values. Some identify the version of the app,
and so are not sensitive, but the provenance of other values is
not known to the authors.

B. Data Sent Upon Phone Number Entry
After initial startup, navigation through the first two infor-
mation screens generates no network connections. At the this
screen the app asks the user to enter their phone number. Upon
doing this and pressing the button to proceed the following
network connections are made. The first connection sends the
phone number to Firebase:
POST https://www.googleapis.com/identitytoolkit/v3/
relyingparty/sendVerificationCode
Headers:

X-Goog-Spatula: CjYKFmlvLmJsdWV0cmFjZS5vc...
Request Body:

1: <phone number>

It is not clear how the X-Goog-Spatula value is generated but it
seems to consist, at least in part, of base64-encoded informa-
tion since base64-decoding yields “6?io.bluetrace.opentrace?
KuS+2eTwbmFXe/8epaO9wF8yVTE=” followed by addi-
tional binary data.

Firebase now texts a 6-digit code to the phone number entered
and the OpenTrace app asks the user to enter this code.
Entering the code generates the following network connection:

POST https://www.googleapis.com/identitytoolkit/v3/
relyingparty/verifyPhoneNumber
Headers:

X-Goog-Spatula: CjYKFmlvLmJsdWV0cmFjZS5vc...
Request body:

1: AM5PThB...
3: <6-digit code entered>

The X-Goog-Spatula header value is the same as for the
previous request and so can be used to link them together
(perhaps it’s a form of short session id). The AM5PThB...
value is from the response to the first request and presumably
encodes the 6-digit value in a way that the server can decode
so as to compare against the value entered by the user.

The response to a correct 6-digit code informs the app of
the user id value yEszgPWm... used by Firebase (which is
visible on the Firebase dashboard and directly linked to the
users phone number), together with a number of other values
including what seems to be a user identifier/authentication
token that is used in the body of the following request:
POST https://www.googleapis.com/identitytoolkit/v3/
relyingparty/getAccountInfo
Headers:

X-Goog-Spatula: CjYKFmlvLmJsdWV0cmFjZS5vc...
Request Body:

1: eyJhbGciOiJSUzI1NiIsI...

The response contains the phone number previously entered by
the user together with the user id value yEszgPWm... and some
timestamps (presumably associated with account creation etc).

At this point an account for the user has been successfully
created/authenticated on Firebase and OpenTrace now uses the
Firebase Functions service to request a batch of tempIDs:
POST https://europe-west1-opentracetest-4167b.cloudfunctions
.net/getTempIDs

to which the response is 14KB of json:
{"result": {"refreshTime": 1587878233, "status": "SUCCESS",

"tempIDs": [
{ "expiryTime": 1587835873,"startTime": 1587834973,

"tempID": "RQVK+en..." },
<...>

OpenTrace then makes a call to the getHandshakePin function
hosted by Firebase Functions:
POST https://europe-west1-opentracetest-4167b.cloudfunctions
.net/getHandshakePin

and the response contains the PIN that the health service
operating the app needs to present to the user in order to
confirm they should ask the app to upload the observed
tempIDs to Firebase Storage.

C. Data Sent When Permissions Are Granted
After phone number entry and verification, the app asks
the user for permission to use bluetooth, location and
to disable battery optimisation for OpenTrace. These in-
teractions do not generate any network connections. Fi-
nally OpenTrace asks for permission to access file storage
on the handset. When this is granted OpenTrace makes
a second call to https://europe-west1-opentracetest-4167b.
cloudfunctions.net/getTempIDs and receives a further batch of
tempIDs in response.

7

D. Data Sent When Sitting Idle At Main Screen

Once startup of OpenTrace is complete it sits idle at a main
screen until the user, and it is in this mode of operation
that it spends the bulk of its time. Roughly once an hour
OpenTrace is observed to make a pair of connections to
Firebase Analytics. This is consistent with Firebase Analytics
documentation [22] which says that ”analytics data is batched
up and sent down when the client library sees that there’s any
local data that’s an hour old.” and ”on Android devices with
Play Services, this one hour timer is across all apps using
Firebase Analytics”.

The first connection of the pair:
GET https://app-measurement.com/config/app/1%3A195668253963
%3Aandroid%3A0e1d84bec59ca7e66e160e
Parameters:

app_instance_id: f67be0634d5102bcfe0352bc0bbeaded

appears to be checking for updates, to which the response is
304 Not Modified.

The second connection is also to app-measurement.com and
appears to send telemetry data logging user interactions with
the app. When configured for verbose logging Firebase writes
details of the uploaded data to the handset log, which can
inspected over the USB connection to the handset using the
“adb logcat” command. A typical entry log entry starts as
follows:

protocol_version: 1
platform: android
gmp_version: 22048
uploading_gmp_version: 17785
dynamite_version: 0
config_version: 1587452740341144
gmp_app_id: 1:195668253963:android:0e1d84...
admob_app_id:
app_id: io.bluetrace.opentrace
app_version: 1.0.41-debug-b39f57f-F4D3
app_version_major: 41
firebase_instance_id: f4vnM2vqSLuOgcpB8FbDd_
dev_cert_hash: -8149097300642920486
app_store: manual_install
upload_timestamp_millis: 1587823341351
start_timestamp_millis: 1587823321657
end_timestamp_millis: 1587823321670
previous_bundle_start_timestamp_millis: 1587822575641
previous_bundle_end_timestamp_millis: 1587822932936
app_instance_id: f67be0634d5102bcfe0352bc0bbeaded
resettable_device_id: 1d2635f5-2af7-4fb3-86e...
device_id:
ds_id:
limited_ad_tracking: false
os_version: 9
device_model: Pixel 2
user_default_language: en-us
time_zone_offset_minutes: 60
bundle_sequential_index: 14
service_upload: true
health_monitor:

Inspection of the message transmitted over the network to
Firebase shows a section of the following form:
\x07androidJ\x019R\x07Pixel 2Z\x05en-us‘<j\
x0emanual_installr\x16io.bluetrace.opentrace\x82\x01\x191
.0.41-debug-b39f57f-F4D3\x88\x01\xa0\xac\x01\x90\x01\xf9\x8a
\x01\x9a\x01$1d2635f5-2af7-4fb3-86e...\xa0\x01\x00\xaa\x01
f67be0634d5102bcfe0352bc0bbeaded\xb0\x01\xda\x8f\xd6\xd8\xe4
\xe5\xa5\xf4\x8e\x01\xb8\x01\x03\xca\x01-1:195668253963:
android:0e1d84...\xd0\x01\x89\xc7\xdb\x92\x9b.\xe0\x01\x01\
xf2\x01\x16f4vnM2vqSLuOgcpB8FbDd_\xf8\x01)\x98\x02\x98\x9b\
xbe\xa5\xfa\xf8\xe8\x02\xa0\x02\x00\xe8\x02\xb2\xeb\x86\x0b\
xf0\x02\x00

within which many of the values from the log can be identified,
including the firebase instance id, the app instance id, the re-
settable device id (the Google Advertising Id). Each handset
log entry also includes a sequence of user property values of
the form:

user_property {
set_timestamp_millis: 1587790361696
name: first_open_time(_fot)
string_value:
int_value: 1587790800000

}

followed by a sequence of event entries of the form
event {
name: user_engagement(_e)
timestamp_millis: 1587823321657
previous_timestamp_millis: 1587822932919
param {
name: firebase_event_origin(_o)
string_value: auto

}
<more param entries>

}

and these can also be identified within the body of the message
sent by OpenTrace to Firebase Analytics.

E. Data Sent By TraceTogether (v1.0.33)

We repeated the above measurements using the closed-source
TraceTogether app currently being used by the Singapore
government. In summary, we observed similar behaviour to
that seen with OpenTrace but with the following differences:

1) TraceTogether was not observed to download tempIDs
from Firebase following initial startup. Presumably these
are generated locally within the app, at least initially.

2) TraceTogether makes calls to asia-east2-govtech-tracer.
cloudfunctions.net/getBroadcastMessage i.e to a get-
BroadcastMessage function hosted on Firebase Functions
but which is not present in OpenTrace.

3) TraceTogether makes calls to firebaseremoteconfig.
googleapis.com and so presumably makes use of the
Firebase Remote Config service (as already noted, there
are hooks for this within OpenTrace, but these are not
activated).

VII. SUMMARY AND CONCLUSIONS

We have carried out an initial measurement studfy of the
OpenTrace app and of a version of the related closed-source
TraceTogether app deployed in Singapore. We find that the
use of Google’s Firebase Analytics service means the data
sent by OpenTrace potentially allows the (IP-based) location
of user handsets to be tracked by Google over time. We also
find that OpenTrace stores user phone numbers in the Firebase
Authentication service. This use of Firebase Authentication
creates an obvious potential conflict of interest for Google
whose primary business is advertising based on collection of
user personal data. In addition, the Firebase Authentication
service processes its data in US data centres even if users
are located in other countries. Lastly, we note that OpenTrace
irelies on a single long-term secret key stored in a Google
Cloud service and so is vulnerable to disclosure of this secret

8

key. We plan to further investigate this and similar apps for
privacy, security and efficacy in the coming weeks but would
stongly recommend that anyone planning on using an app
based on OpenTrace address these significant issues before
deployment.

REFERENCES

[1] “In Coronavirus Fight, China Gives Citizens a Color Code,
With Red Flags, New York Times,” 1 March, 2020.
[Online]. Available: https://www.nytimes.com/2020/03/01/business/
china-coronavirus-surveillance.html

[2] “CoronaMadrid Covid-19 App,” Accessed 26 April, 2020. [Online].
Available: https://www.coronamadrid.com/

[3] “Coronavirus: Under surveillance and confined at home in Taiwan,
BBC News,” 24 March, 2020. [Online]. Available: https://www.nytimes.
com/2020/03/01/business/china-coronavirus-surveillance.html

[4] “Coronavirus mobile apps are surging in popularity in South Korea,
CNN,” 28 Feb, 2020. [Online]. Available: https://edition.cnn.com/2020/
02/28/tech/korea-coronavirus-tracking-apps/index.html

[5] “TraceTogether App Website,” Accessed 26 April, 2020. [Online].
Available: https://www.tracetogether.gov.sg/

[6] “Decentralised Privacy-Preserving Proximity Tracing (DP-3T) Demo
App,” Accessed 26 April, 2020. [Online]. Available: https://github.com/
DP-3T/dp3t-app-android

[7] “Apple and Google partner on COVID-19 con-
tact tracing technology,” 10 April, 2020. [On-
line]. Available: https://www.apple.com/newsroom/2020/04/
apple-and-google-partner-on-covid-19-contact-tracing-technology/

[8] “OpenTrace Source Code,” Accessed 26 April, 2020. [Online].
Available: https://github.com/OpenTrace-community

[9] “Firebase Help: Automatically collected user properties,” Accessed
26 April 2020. [Online]. Available: https://support.google.com/firebase/
answer/6317486

[10] G. P. and P. K, “On the Anonymity of Home/Work Location Pairs,” in
Pervasive Computing, 2009.

[11] M. Srivatsa and M. Hicks, “Deanonymizing mobility traces: Using social
network as a side-channel,” in Proceedings of the 2012 ACM conference
on Computer and communications security, 2012, pp. 628–637.

[12] “The Mandatory Registration of Prepaid SIM Card Users, GSMA
White Paper,” Nov 2013. [Online]. Available: https://www.gsma.
com/publicpolicy/wp-content/uploads/2013/11/GSMA White-Paper
Mandatory-Registration-of-Prepaid-SIM-Users 32pgWEBv3.pdf

[13] “BlueTrace: A privacy-preserving protocol for community-
driven contact tracing across borders,” 9 April,
2020. [Online]. Available: ttps://bluetrace.io/static/bluetrace
whitepaper-938063656596c104632def383eb33b3c.pdf

[14] “Privacy and Security in Firebase,” 27 Nov 2019. [Online]. Available:
https://firebase.google.com/support/privacy

[15] L. Sweeney, “k-anonymity: A model for protecting privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 05, pp. 557–570, 2002.

[16] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam,
“l-diversity: Privacy beyond k-anonymity,” ACM Transactions on Knowl-
edge Discovery from Data (TKDD), vol. 1, no. 1, pp. 3–es, 2007.

[17] A. Cortesi, M. Hils, T. Kriechbaumer, and contributors, “mitmproxy: A
free and open source interactive HTTPS proxy (v5.01),” 2020. [Online].
Available: https://mitmproxy.org/

[18] “Frida: Dynamic instrumentation toolkit for developers, reverse-
engineers, and security researchers,” Accessed 26 April 2020. [Online].
Available: https://frida.re/

[19] “Google Ad Manager Help: About mobile advertising IDs,” Accessed 26
April 2020. [Online]. Available: https://support.google.com/admanager/
answer/6274238

[20] “Android Reference Guide: Android Id,” Accessed 26 April 2020.
[Online]. Available: https://developer.android.com/reference/android/
provider/Settings.Secure.html#ANDROID ID

[21] “Firebase Reference Guide: FirebaseInstanceId,” Accessed 26 April
2020. [Online]. Available: https://firebase.google.com/docs/reference/
android/com/google/firebase/iid/FirebaseInstanceId

[22] “Firebase Blog: “How Long Does it Take for My
Firebase Analytics Data to Show Up?”,” Accessed 26 April
2020. [Online]. Available: https://firebase.googleblog.com/2016/11/
how-long-does-it-take-for-my-firebase-analytics-data-to-show-up.html

