
On Delay Performance of Throughput Optimal
Back-pressure Routing: Testbed Results

Venkataramana Badarla and Douglas J. Leith
Hamilton Institute, NUI Maynooth, Ireland

Abstract—Maximizing network throughput via back-pressure
routing is the subject of a considerable body of literature. It is
well known that back-pressure routing induces long delays and
this has motivated a number of proposals for improving the delay
performance. However, to our knowledge, no useful results are
available in the literature that characterize the delays induced
by packet re-ordering which is due not only to the nature of
back-pressure routing but also to the ubiquity of routing loops.
Therefore in this paper we provide a systematic evaluation of
basic back-pressure routing algorithm and two of its recently
proposed variants on an experimental testbed. This provides the
first direct comparison of delay performance. Our findings reveal
that even in simple network topologies these algorithms induce
extensive routing loops with associated high packet delay.

I. INTRODUCTION

Using dynamic multi-path routing, back-pressure routing
([1]-[3] and references therein) offers considerable gains in
throughput over conventional single-path routing algorithms.
Indeed, it guarantees to achieve the network capacity and so its
throughput performance cannot be bettered by any algorithm.
While maximizing network throughput, back-pressure routing
comes with no guarantee on network delay. Indeed certain
features of the back-pressure routing algorithm suggest that
long delays will be common. Firstly, back-pressure routing
uses queue buildup at nodes to create a “gradient” within
the network that guides routing. However, this may come at
the cost of increased queuing delay. Secondly, back-pressure
routing tends to explore all paths in a network, including paths
with loops and “dead-end” paths that cannot lead to the desired
destination. Hence, packets generally may not take the shortest
path to their destination, thereby leading to additional delay.

Unfortunately, analytic results on the delay performance of
these algorithms are difficult to establish and only relatively
weak qualitative or asymptotic bounds are available (e.g.
see [4], [5] and references therein). To our knowledge, there
are no useful theoretical, simulation, or experimental results
available that characterize the delays induced by packet re-
ordering which, as we will see in this paper, is a major factor
affecting the performance of current back-pressure routing
algorithms due not only to their multi-path nature but also
to the ubiquity of routing loops. Further, while back-pressure
algorithms offer substantial throughput performance gains, the
ease or otherwise with which this potential might be realized
in practical networks is currently unclear.

Therefore in this paper we provide a systematic evalua-
tion of basic back-pressure routing algorithm and two of its
recently proposed variants on an experimental testbed. This

provides the first direct comparison of delay performance. Our
findings reveal that even in simple network topologies these
algorithms induce extensive routing loops with associated high
packet delay.

II. BACK-PRESSURE ALGORITHMS

In this section we briefly review the basic back-pressure
algorithm and its variants.

A. Basic Back-pressure Algorithm
The basic back-pressure algorithm [2], [3] is detailed in

Algorithm 1. Each forwarding node in the network uses per
flow FIFO queuing and we let qf

n(t) denote the number of
packets queued for flow f at node n at time t. Roughly
speaking, whenever it has a transmission opportunity each
node n forwards a packet from the flow f∗ to the next hop
m∗(f∗) that jointly maximizes the utility

Uf
n,m(t) =

(

qf
n(t) − qf

m(t)
)

Rn,m

where Rn,m is the mean transmit rate of the link from node
n to node m.

Algorithm 1 Basic back-pressure algorithm
1: For each flow f and neighbor node m, node n com-

putes utility Uf
n,m(t) =

(

qf
n(t) − qf

m(t)
)

Rn,m, m∗(f) =

argmaxm Uf
n,m, f∗ = argmaxf

(

Uf
n,m∗(f)

)

(ties broken
arbitrarily).

2: If Uf∗

n,m∗(f∗) > 0, then node n schedules flow f∗

and forwards min(qf∗

n (t), Rn,m∗(f∗)) packets to neighbor
m∗(f∗).

3: Otherwise node n takes no action at time t.

Observe that this back-pressure algorithm tends to transmit
packets to the neighbor(s) with the smallest queue and highest
link rate and intuitively the queue backlogs provide a “gradi-
ent” down which packets are routed. However, it commonly
occurs that qf

n(t) and qf
m(t) differ by only a small amount. The

routing “gradient” is then both small and rapidly fluctuating, in
which case routing loops can readily be induced. Furthermore,
observe that even when a neighbor has no connectivity to the
destination of a flow, packets will still be forwarded to this
neighbor until such time as a sufficiently large queue backlog
has developed to prevent further packets stop being forwarded
in that direction. However, all the packets already sent in that
direction will never reach the flow destination.

B. Back-pressure with Shadow Queues
In shadow-queue based back-pressure routing [6], each node

maintains a fictitious queue called a shadow queue, which
is just a counter, for each flow. Scheduling and forwarding
decisions are made based on shadow queue sizes q̃f

n(t) instead
of the real queue sizes qf

n(t). The shadow queues are updated
in a similar manner to the real queues but with a shadow
packet arrival rate that is slightly higher than the real packet
arrival rate. For example, if the real packet arrival rate of flow
f is λf then the shadow packet arrival rate is (1 + ε)λf ,
ε > 0. In order to ensure stability of the shadow queues,
the shadow arrival rate (1 + ε)λf must lie in the interior
of the network capacity region. Since the shadow queue size
always upper bounds the real queue size, it follows that the real
queue is also guaranteed to be stable. The advantage of this
approach is that build up of the shadow queues can take place
to provide a routing “gradient” for the back-pressure algorithm
without corresponding build up (and so packet delay) of the
real queues, but at the cost of reduced network capacity.

C. Min-Resource Routing
Min-resource routing is also proposed by [6]. Here, the

utility function Uf
n,m is modified to

Uf
n,m(t) =

(

qf
n(t) − qf

m(t) − M
)

Rn,m

where M ≥ 0 is a design parameter. With this change, the
differential in queue backlog at node n and neighbor m must
exceed M packets before packets for flow f will be forwarded
to m (since the utility function must be positive before a
link will be used). M = 0 recovers the basic back-pressure
algorithm. Larger values of M make forwarding decisions less
sensitive to small changes in queue occupancy, but this comes
at the cost of large queue sizes.

III. IMPLEMENTATION DETAILS AND EXPERIMENTAL
SETUP

We implemented the back-pressure algorithms as a Dynami-
cRouter element within the Click router framework in Linux.
The Click router [7] framework provides a modular architec-
ture that lies between the network layer and the device driver
layer and interacts with the network layer and the interface
device driver via the Click elements ToHost/FromHost and
ToDevice/FromDevice, respectively.

The back-pressure algorithms require each node to maintain
per-flow queues and to exchange messages with its one-hop
neighbors in order to share queue size information (required to
calculate the utilities Uf

n,m(t)). We implemented this message
passing via special packets called neighbor-update packets. A
node must also maintain the corresponding queue size infor-
mation at all of its one-hop neighbors. At each transmission
opportunity, the node uses this queue size information to
calculate the utilities Uf

n,m(t) and schedules transmission of a
packet from the flow f∗ to neighbor m∗(f∗) that maximizes
the utility.

As shown in Fig. 1, the DynamicRouter element has
3 input ports (for receiving packets) and 3 output ports

ToHost

Discard

From Device(eth0)

Discard

Discard

ReplyQuery
ARP ARP

ToDevice(eth1)ToHost

(0.0.0.0 ff:ff:ff:ff:ff:ff)
ARPResponder

Non−IP IP

Nbr−UpdateIP relay IP local

ToDevice(eth0)

IP Non−IP

ClassifierClassifier
Nbr−Update Other

pkts

Classifier

ToHost

From Host From Device(eth1)

DynamicRouter

1

1 2

3

3

2

Fig. 1. Packet flow-graph of Click router implementation. Notation:
Input (output) ports are represented by triangles (square boxes). A
connection between a shaded (empty) input and output port is called
a Push (Pull) connection. In a Push (Pull) connection it is the sending
element (receiving element) that initiates a packet transfer. The dotted
lines show the possible paths for the data packets. The packets of a
flow typically follow path 1 at source node, path 2 at intermediate
nodes, path 3 at destination node.

(for transmitting packets). It receives locally generated IP
packets passed down from the network layer, neighbor-update
packets that are received from the neighbors, and IP packets
received from neighbors, on its first, second, and third input
ports, respectively. Whenever the ToDevice element, which
sends the packets to the network card, gets scheduled it
sends a request for a packet to the DynamicRouter element.
In response, the DynamicRouter uses the back-pressure
algorithm to select a packet to send to one of its neighbors
and delivers this packet to the ToDevice element. Note
that once a forwarding decision is made, DynamicRouter
fills the MAC address of the corresponding next-hop node
into the destination MAC address field in the ethernet
header of the packet. IP packets either generated by the
local host (and so passed via the FromHost element) or
received from neighboring nodes (and so passed via the
FromDevice element) are handed off to DynamicRouter for
processing. Packets which are to be forwarded are stored in
the appropriate per flow queue. Packets for which the current
node is the destination are stored in a re-assembly buffer if
they arrive out-of-order, otherwise they are handed over via
the second output port (ToHost) to the local host. In order to
help the destination to resolve packet re-ordering, source node
assign a sequence number to each packet which is stored in
a special header DR header located between transport and
IP header. The DynamicRouter element also runs a timer
to periodically generate neighbor-update packets. To avoid
interference between neighbor-update packet and data packet
transmissions, the neighbor-update packets are transmitted
on a separate network interface. Note that as a node can

10

5 71 2 3 4 6 8 92 Mbps 2 Mbps
2 Mbps

2 Mbps
2 Mbps

2 Mbps
1 Mbps

1 Mbps2 Mbps

SRC
2 Mbps

DEST

(a) Network with 2 paths

2 3 4 5

8 7 69

1

DEST

SRC

4 Mbps4 Mbps4 Mbps4 Mbps

4 Mbps

4 Mbps 4 Mbps 4 Mbps

4 Mbps4 Mbps

4 Mbps 4 Mbps 4 Mbps4 Mbps

1 Mbps

10

1 Mbps 1 Mbps 1 Mbps

(b) Network with 4 paths

Fig. 2. Network topologies. SRC and DEST denote flow’s source and destination
nodes, resp.

learn the MAC addresses of its neighbors from the received
neighbor-update packets, there is no explicit ARP request and
response messaging required here.

Hardware and Software Configuration: We conducted our
experiments on a testbed constructed from 10 Soekris net5501
embedded Linux boxes. These boxes run Linux 2.6.24.7 and
have a 433MHz CPU, 256MB RAM, and four 100Mbps
ethernet ports. As the link rates in the scenarios (see Fig 2)
that we consider are less than the 100Mbps physical rate,
we included a delay component within the DynamicRouter
element which introduces a specified minimum delay between
packets delivered to the ToDevice element, thereby allowing
lower link rates to be emulated in a controlled manner.
The MTU is taken as 1400 Bytes and the interval between
neighbor-update packet transmissions is set to 1 millisecond.

IV. PERFORMANCE EVALUATION

It is important to emphasize that our goal is not to achieve
exhaustive testing, which is in any case impossible due to the
large number of network topologies, device configurations and
traffic mixes that exist in modern networks. Instead we seek to
define a small number of benchmark tests that are amenable
to systematic, reproducible testing and which exercise the
core functionality of the routing algorithms. As we will see,
relatively simple network configurations are already sufficient
to uncover a number of basic issues with existing back-
pressure algorithms.

We consider the following performance metrics.
a) Packet delay This is computed at the sender as the differ-
ence between the time ts(p) when a packet p is transmitted and
the time thl

d (p) when the packet is delivered to the application
layer at the receiver. As the source and destination clocks will
not be perfectly synchronized, we compute thl

d (p) as follows.
The source node sends ts in the header of each transmitted
packet. The receiver echos this ts value to the sender in a
small 8 byte packet sent via a dedicated ethernet port operating

at 100Mbps and connected by a cross-over cable. Since the
transmit time of an 8 byte packet at 100Mbps is approximately
0.6µs, the time thl

d (p) can be accurately estimated as the time
when this echo packet arrives at the source and the packet
delay is then calculated as thl

d (p) − ts(p).
The packet delay can break down into a component due

to network delay (the time between when a packet leaves the
source and when it arrives at the destination) and a component
due to reassembly delay (the time between when a packet
enters the reassembly queue at the receiver and when it is
delivered in order to the application layer).
b) Throughput This is computed at the receiver as X/T
where X is the amount of data received over a time period T ,
where T = 500s.
c) Buffer Requirements We measure the average occupancy
of every per-flow queue at every node, with packet-level
timing granularity. Also the average re-assembly queue size
at destination nodes.

Each experiment is conducted for 5 different runs, with each
run being of 500 seconds duration. Results are plotted with
95% confidence intervals marked.

V. RESULTS

In this section we present performance measurements over
the topologies shown in Fig. 2 for the three algorithms (i.e.,
basic back-pressure algorithm (BP), the basic algorithm aug-
mented with shadow queues (SQ), the min-resource algorithm
(MR)) discussed in Section II. The topologies are intentionally
kept simple, so that we can have a rough understanding on the
minimum delay, however they require routing along multiple
paths to achieve the network capacity and also they can induce
implicit routing loops. The results shown here are for a UDP
Poisson traffic, which is generated by mgen utility. Note
that we ran shadow-queue and min-resource algorithms for
different values of their respective tuning parameters ε and M,
and presented here the results with the best values for ε and M.
Selecting a large value for ε in shadow-queue based routing
leads to improved delay performance, however at the cost of
reduced network capacity. Selection of a good value for M
in min-resource routing is heavily dependent on the network
topology and offered load. A Large value (small value) for M
causes poor delay performance at lighter loads (higher loads).
Hence there is no unique value for M that best works at all
offered loads for a flow. Due to space constraint, the parameter
tuning plots are not shown here.

A. First Topology
We begin by considering the network topology shown in

Fig. 2(a). Fig. 3(a) shows the mean measured packet delay
(and also network delay) vs offered load. We can make number
of observations from this results. 1. The total delay is much
higher (almost x 3 times) than the network delay at most
of the offered loads, which shows the severity (and also the
significance) of packet reordering on the delay performance of
the algorithms. 2. For both basic back-pressure and shadow-
queue algorithms first the delay (both network and total

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.2 0.6 1 1.4 1.8 2

D
el

ay
 in

 s
ec

on
ds

Arrival rate (λ) in Mbps

Total delay, MR with M=1
Total delay, BP

Total delay, SQ with ε=3%

Network delay, MR with M=1
Network delay, BP

Network delay, SQ with ε=3%

(a) Mean total and network delays

 0

 20

 40

 60

 80

 100

 120

0.2 0.6 1 1.4 1.8 2

M
ea

n
no

. o
f b

ac
kl

og
ge

d
pk

ts
 in

 re
as

se
m

bl
y

bu
ffe

r

Arrival rate (λ) in Mbps

BP
SQ with ε=3%

MR with M=1

(b) Mean reassembly queue at receiver

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

0.2 0.6 1 1.4 1.8 2

M
ea

n
bu

ffe
r o

cc
up

an
cy

 (i
n

pa
ck

et
s)

BP
Shadow qlen in SQ with ε = 3%

Real qlen in SQ with ε = 3%
MR with M=1

(c) Mean buffer at intermediate nodes

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

%
 o

f P
ac

ke
ts

(c
um

m
. d

is
tri

bu
tio

n)

Number of hops

MR with M=1,λ=1.4Mbps
SQ with ε=3%,λ=1.4Mbps

BP,λ=1.4Mbps

(d) Hop count distrib. at λ=1.4Mbps

Fig. 3. Performance of the algorithms over the topology shown in Fig. 2(a).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

0.2 0.6 1 1.4 1.8 2

Th
tp

ug
hp

ut
 in

 M
bp

s

Arrival rate (λ) in Mbps

BP
SQ with ε=3%

MR with M=1

Fig. 4. (a)-(e) and (f)-(i) show the performance of the algorithms over the
topology in Fig. 2(a) and Fig. 2(b), respectively.

delay) decreases and then increases with offered load. This
is expected as at lighter loads packets are routed where
ever excess network capacity is available, thus causing high
packet reordering, and at higher loads the increased delays are

associated with both reordering and queuing delays. 3. The
delay trends of basic back-pressure and shadow-queue routing
are almost same at lighter and moderate loads. However, as
ε > 0 becomes significant at moderate to high loads, shadow-
queue routing shows improved delay performance over back-
pressure routing. 4. The min-resource routing shows the least
delays among the algorithms considered. 5. For all algorithms
the delays remain large at high offered loads.

Figs. 3(b) and (c) give insight into the buffer sizing require-
ments of the algorithms considered. Fig. 3(b) plots the mean
number of packets in the reassembly buffer at the receiver. The
reassembly buffer is used to ensure in-order delivery of packets
to the application layer and so its occupancy is dependent
on the amount of packet re-ordering. It can be seen that the
reassembly buffer requirements for the basic back-pressure
and shadow-queue algorithms are high, with on average more
than 100 packets buffered at the destination at an offered load
of 1.9Mbps. Fig. 3(c) shows the mean buffer occupancy at
forwarding nodes. Observe that, as expected the queue length
with the basic back-pressure algorithm and the shadow queue
length with shadow-queue algorithm are essentially the same
at low to moderate loads, and at moderate to high offered loads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0.4 1.2 2 2.8 3.6 4

D
el

ay
 in

 s
ec

on
ds

Arrival rate (λ) in Mbps

Total delay, MR with M=3
Total delay, BP

Total delay, SQ with ε=3%

Network delay, BP
Network delay, SQ with ε=3%

Network delay, MR with M=3

(a) Mean total and network delays, For MR, at λ=0.4Mbps, these
delays are 36s and 0.64s, resp.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0.4 1.2 2 2.8 3.6 4

M
ea

n
no

. o
f b

ac
kl

og
ge

d
pk

ts
 in

 re
as

se
m

bl
y

bu
ffe

r

Arrival rate (λ) in Mbps

BP
SQ with ε=3%

MR with M=3

(b) Mean reassembly queue at receiver

 0

 5

 10

 15

 20

 25

 30

0.4 1.2 2 2.8 3.6 4

M
ea

n
bu

ffe
r o

cc
up

an
cy

 (i
n

pa
ck

et
s)

BP
Shadow qlen in SQ with ε = 3%

Real qlen in SQ with ε = 3%
MR with M=3

(c) Mean buffer at intermediate nodes

 0

 10

 20

 30

 40

 50

 60

 70

0.4 1.2 2 2.8 3.6

H
op

 le
ng

th

Arrival rate (λ) in Mbps

BP
SQ with ε = 3%

MR with M=3

(d) Mean number of hops traversed

Fig. 5. Performance of the algorithms over the topology shown in Fig. 2(b).

(as ε > 0 becomes significant) the shadow queues grow faster
than the queues in basic back-pressure routing. Also can be
observed that, with the shadow-queue algorithm the real queue
lengths are smaller than the shadow queue lengths.

We can also understand the severity of packet-reordering via
hop count results show in Fig. 3(d), which plots the cumulative
distribution of the number of hops traversed by a packet
as it travels from src to dest. Observe that at λ=1.4Mbps,
15-20% of the packets in all the algorithm traverse more
than 20 hops, and the maximum number of hops traversed
for all these algorithms is above 100 hops. Also can be
observed that both basic back-pressure and shadow-queue
routing algorithms show essentially same performance. Min-
resource routing shows slightly better performance over the
other two algorithms. We can note that even such mild gain in
hop count performance leads to significant gain in the delay
performance as can be seen in Fig. 3(a).

Fig. 4 shows the measured throughput for all the algorithms.
As all the algorithms are throughput optimal, it can be seen
that throughput attained is roughly same as the offered load.
This result demonstrates the potential for substantial through-

put gains via multi-path back-pressure routing.

B. Second Topology
We now present measurements for the topology in Fig. 2(b).

As expected, the throughput attained is same as that of the
offered load, however due to space constraint the plot not show
here.

Fig. 5(a) shows the measured total delay and network delay
performance vs offered load. We can identify a number of
qualitatively different features from the data for the previous
topology. 1. Packet delays with basic back-pressure routing is
significantly higher for this topology, and it ranges between
[1s,2.3s]. 2. For the basic back-pressure and shadow-queue
algorithms the delay is no longer increasing with offered
load. We can gain insight into this behavior from the re-
assembly delays (i.e., total delay - network delay). It can be
seen that at higher loads (above 2.8Mbps), the reassembly
decreases with offered load while the network delay increases.
That is, reordering decreases but queue backlogs within the
network increase. For the basic back-pressure and shadow-
queue algorithms, on balance the decrease in reassembly delay
is greater than the increase in network delay and so the

overall delay falls. 3. At low offered loads the delay with
the min-resource algorithm is significantly higher than that
of the basic back-pressure algorithm. This is true not only
for the overall delay but holds for both the reassembly delay
component and the network delay component. For example
at λ is 0.4Mbps, total, reassembly, network delays are 36s,
35.36s, and 0.64s resp. With regard to the network delay
component, we note that the min-resource algorithm subtracts
amount M from the queue occupancy to obtain the utility
function. At low offered loads this leads to an increase in mean
queue occupancy and so network delay. With regard to the
reassembly delay component, what appears to be happening is
that quasi-orphaned packets are common at low offered loads
- due, once again, to the need to build up queues larger than
M before packets can be forwarded.

Fig. 5(b) shows the mean reassembly queue occupancy
at the receiver. Observe that while basic back-pressure and
shadow-queue algorithms show high occupancy at high of-
fered loads (ranges between [200,400] packets, min-resource
routing shows very high occupancy at lighter loads (i.e.,
about 1600 packets). Fig. 5(c) presents the corresponding
queue occupancy results at forwarding nodes. The only notable
differences are 1. In shadow-queue based routing, real queue
lengths are much smaller than shadow queue lengths (which
reveals the fact that higher the difference, more the gain in
delay performance) 2. At low offered loads the mean buffer
occupancy with the min-resource algorithm is slightly higher
than the other routing algorithms.

Fig. 5(d) shows the mean number of hops traversed vs
offered loads. Observe that the number of hops traversed in
basic back-pressure and shadow-queue algorithms is decreas-
ing with offered load, and both show exactly same results at all
offered loads. This confirms that gains in delay performance
for shadow-queue algorithm is only from smaller real queues
over basic back-pressure algorithm (as can be witnessed in
Fig. 3(h)). We can also note that the packets in min-resource
routing traverse through smaller number of hops compared to
basic back-pressure and shadow-queue algorithms.

C. Multiple flows

We also have studied the performance of these algorithms
for multiple flows (i.e., 3 flows). We observed that delay trends
are same of those of single flow studies, however showing
much higher delays. The results are not shown due to space
issue.

VI. RELATED WORK

In selecting the back-pressure algorithms to study, we have
tried to focus on algorithms suited to practical implementa-
tion on current hardware. We note that [8] proposes use of
a last-in-first-out (LIFO) queuing discipline to improve the
delay performance of back-pressure routing. This works by
sacrificing initial packets to create back-pressure, however
ignoring initial packets is not always/practically possible, and
so is not considered here. [9] considers improving delay

performance by maintaining separate queues for each loop-
free path. However, as the network size grows this results
in an exponential growth in the number of queues that must
be maintained by forwarding nodes and so we argue that it
is not suited to practical implementation. The work in [10]
proposes use of queue draining times, instead of queue length
in the utility equation of back-pressure routing. However,
this approach lacks stability guarantees in general network
topologies. In [11], the authors propose use of joint coding and
routing to improve the delay performance of the back-pressure
routing. Such coding can potentially be combined with any of
the back-pressure algorithms considered here, but our focus in
this paper is on the routing algorithms themselves.

VII. CONCLUSIONS

In this paper we present an experimental performance eval-
uation of recently proposed low-delay back-pressure routing
algorithms, providing the first direct comparison of delay
performance. We find that, while lowering delay relative to the
original back-pressure routing algorithm, the absolute value
of delay nevertheless remains large due to a tendency for the
algorithms to induce extensive routing loops. Apart from the
basic back-pressure algorithm, the other algorithms considered
involve design parameters that significantly affect performance
yet lack guidelines as to how they should be chosen. In
our tests we found that the appropriate value are strongly
dependent on the network and flow configuration. Motivated
by these observations, our future work includes enhancing
basic back-pressure routing with a machanism to adaptively
updating the design parameters for each flow by maintaining
a recent history of delay and throughput trends.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability Properties of Constrained
Queueing Systems and Scheduling for Maximum Throughput in Multi-
hop Radio Networks,” IEEE Trans. on Automatic Control, vol. 37, no.
12, pp. 1936-1949, 1992.

[2] A. L. Stolyar, “Maximizing Queueing Network Utility subject to Stabil-
ity: Greedy-Primal Dual Algorithm,” Queueing Systems, vol. 50, no.4,
pp. 401-457, 2005.

[3] M. J. Neely et al, “Fairness and Optimal Stochastic Control for Hetero-
geneous Networks,” in Proc. IEEE Infocom, 2005.

[4] G. R. Gupta and N. B. Shroff, “Delay Analysis for Multi-Hop Wireless
Networks”, in Proc. IEEE Infocom, 2009.

[5] Long B. Le, K. Jagannathan, and Eytan Modiano, “Delay Analysis of
Maximum Weight Scheduling in Wireless Ad hoc Networks,” in Proc.
Conference on Information Sciences and Systems, 2009.

[6] L. Bui, R. Srikant, and Alexander Stolyar, “Novel Architectures and
Algorithms for Delay Reduction in Back-pressure Scheduling and Rout-
ing”, in Proc IEEE Infocom Mini-Conference 2009.

[7] “The Click Modular Router Project”, http://read.cs.ucla.edu/click/
[8] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali, “Routing

without Routes: The Backpressure Collection Protocol”, accepted to
9th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN) 2010.

[9] L. Ying, S. Shakkottai, and A. Reddy. “On Combining Shortest-Path
and Back-Pressure Routing Over Multihop Wireless Networks”, in Proc.
IEEE Infocom, pp. 1674-1682, 2009.

[10] V. Subramanian, and D.J. Leith. “Draining Time based Scheduling
Algorithms”, in Proc. IEEE Conference on Decision and Control, pp.
1162-1167, 2007.

[11] V. Badarla, V. Subramanian, and D. J. Leigth, “Low-delay dynamic
routing using fountain codes”, IEEE Communications Letters, vol. 13,
no. 7, pp. 552-554, July 2009.

