
1

On queue provisioning, network efficiency and the
Transmission Control Protocol

R. N. Shorten, D.J.Leith,
Hamilton Institute, NUI Maynooth, Ireland.

{robert.shorten, doug.leith}@nuim.ie

Abstract— In this paper we propose a sender side modification
to TCP to accommodate small network buffers. We exploit the
fact that the manner in which network buffers are provisioned
is intimately related to the manner in which TCP operates.
However, rather than designing buffers to accommodate the
TCP AIMD algorithm, as is the traditional approach in networ k
design, we suggest simple modifications to the AIMD algorithm to
accommodate buffers of any size in the network. We demonstrate
that networks with small buffers can be designed that transport
TCP traffic in an efficient manner while retaining fairness and
friendliness with standard TCP traffic.

I. I NTRODUCTION

A key issue in the design of internet routers is that of buffer
sizing. Router buffers are usually sized with two primary
objectives in mind.

(i) Accommodating short-term packet bursts.Due to the
nature of transport protocols such as TCP, internet traffic
tends to be bursty. Should too many packets arrive
in a sufficiently short interval of time then the egress
link lacks the capacity to process all of the packets
immediately. The first job of the router buffer is to
mitigate packet loss due to bursts by accommodating
these packets in a queue until they can be serviced.

(ii) Ensuring AIMD throughput efficiency.Most network traf-
fic is carried by the TCP. The AIMD congestion control
algorithm used by TCP reduces the number of packets
in flight by half on detecting network congestion. If
network queues are too small, this backoff action will
cause them to empty with a corresponding reduction in
link utilisation.

Router buffers are designed with both of these objectives in
mind; the buffer size should be large enough to accommodate
typical packet bursts in the network, and should be chosen to
so that the buffer does not empty for significant periods of time
when TCP responds to network congestion. The typical rule of
thumb in the design of router buffers is to provision the buffer
to be equal to the bandwidth of the link served by the router
(measured in packets per second) multiplied by the average
round trip time of the flows utilising the router (RTTav.): the
Delay-Bandwidth Product(DBP). While provisioning network
buffers in this manner has served the networking community
well in the past, it is generally accepted that buffers in future
routers are unlikely to be provisioned in this manner. For
example, strong arguments are given in [1] to suggest that

queues provisioned according to the DBP rule may result in
unacceptable large absolute variations in the queueing delay
in high delay-bandwidth networks, and may be very difficult
to realise physically.

An alternative strategy to the DBP rule for buffer provi-
sioning is to exploit statistical multiplexing effects of packets
arriving at network buffers to justify arguments in favour
of smaller buffer sizes; see the recent papers [1], [?], [?]
and the references therein for a summary of work in this
direction. Roughly speaking, these papers all suggest thatone
may expoloit statistical multiplexing of TCP flows to enable
deployment of much smaller router buffers than that suggested
by the DBP rule (without adversely affecting link utilisation).
While approaches of this type are of merit, and certainly
provide key insights into the behaviour of networks, they are
crucially dependent upon the assumptions that (i) the buffer
of interest serves a large number of flows at any instant of
time and (ii) only a small proportion of flows perform an
AIMD backoff in response to network congestion (i.e. flows
are not synchronised). If these assumptions do not hold then
provisioning network buffers in this manner will lead to poor
utilisation of the bottleneck link bandwidth. This is illustrated,
for example, in Figure 1 which shows link utilisation versus
buffer size for a single TCP flow and for 100 TCP flows.
With a single flow, when congestion occurs the flow reduces
the number of packets in flight by half. When the queue size is
small, this leads to the queue emptying for a significant period
of time before the probing action of the AIMD congestion
control leads to it filling again. Hence, link utilisation is
lowered. With 100 flows, at any given congestion event on
average only a relatively small proportion of flows will backoff
and hence the likelihood of the queue completely emptying is
less. This statistical multiplexing of flow backoffs means that
link utilisation is on average higher.

The example in Figure 1 also indirectly highlights a further
fundamental issue. In this example all flows are long-lived
and the number of flows is constant over the life of each
experiment, but in practice a network can be expected to
contain flows with a broad mix of connection sizes and where
flows frequently start/stop. In such a rapidly changing packet-
switched environment, it is far from straightforward to define,
or to measure, the ”number of flows” at any instant. Further,
the traffic mix can be expected to change significantly over
time e.g. over the course of a day. It is unclear how buffer
sizing rules based on the number of long-lived flows might be
applied in such environments.

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
75

80

85

90

95

100

queue size (relative to DBP)

lin
k

ut
ili

sa
tio

n
(%

)

100 flows
1 flow

Fig. 1. Link utilisation vs buffer size and number of TCP flows(NS
simulation: bandwidth 100Mb, average delay 80ms).

These observations suggest that one must either dynamically
adjust the router buffer size to regulate utilisation (as suggested
in [?]) or adjust the end-to-end protocols themselves so as to
ensure high network utilisation (irrespective of the levelof
flow synchronisation, or the number of flows traversing the
link). In this paper we explore the latter of these alternatives.
We suggest modifications to the TCP AIMD algorithm to
address the buffer-provisioning problem in a way that retains
the benefits of statistical multiplexing when many flows share
a link while also achieving good link utilisation with small
numbers of flows. We exploit the fact that the manner in
which network buffers are provisioned is intimately related
to the manner in which TCP operates. However, rather than
designing buffers to accommodate the TCP AIMD algorithm,
we suggest simple modifications to the AIMD algorithm to
accommodate buffers in the network. We shall see that with
only minor modifications to the AIMD algorithm, networks
with small buffers can be designed that transport TCP traffic
in an efficient manner.

Our paper is structured as follows. We begin the discussion
by reviewing the origins of the DBP rule and by discussing
the relationship between queue provisioning and throughput
through the link served by the buffer. We then revisit the DBP
rule and suggest an alternative strategy to maintain high link
utilisation through the bottleneck link. As discussed above
our proposal involves suggesting minor modifications to the
standard TCP algorithm and we discuss the relevant imple-
mentation issues, including presenting a number of network
measurements that demonstrate the efficacy of the proposed
algorithm in real networks. We also examine the effect of these
modifications on the fairness, friendliness and convergence
rate of networks carrying TCP traffic. Finally, our conclusions
are summarised in Section 8.

II. T HE DELAY-BANDWIDTH PRODUCT

RULE

AIMD congestion control operates a window based conges-
tion control strategy. Sourcei maintains an internal variable
cwndi (the congestion window size) which tracks the number
of sent unacknowledged packets that can be in transit at any

time, i.e. the number of packets in flight. On safe receipt of
data packets the destination sends acknowledgement (ACK)
packets to inform the source. When the window size is
exhausted, the source must wait for an ACK before sending
a new packet. Congestion control is achieved by dynamically
adapting the window size according to an additive-increase
multiplicative-decrease (AIMD) law. Roughly speaking, the
basic idea is for a source to probe the network for spare
capacity by increasing the rate at which packets are inserted
into the network, and to rapidly decrease the number of packets
transmitted through the network when congestion is detected
through the loss of data packets. In more detail, the source
incrementscwndi(t) by a fixed amountαi/cwndi(t) upon
receipt of each ACK. On detecting packet loss, the variable
cwndi(t) is reduced in multiplicative fashion toβicwndi(t).
Standard TCP uses the valuesαi = 1 andβi = 0.5.

While the basic function of congestion control is to regulate
network congestion, it is clearly desirable to also ensure that
the network flows, on aggregate, fully utilise the available
network resources. Consider, initially, a network with a single
bottleneck link (multiple bottlenecks will be considered later).
When the network experiences congestion the link buffer is
full and the network bottleneck is necessarily operating at
link capacity. The corresponding data throughput through the
bottleneck link is given by

R(k)− =

n∑

i=1

wi(k)

Ti + qmax

B

= B (1)

where k indexes the instant just before sources respond to
the k’th network congestion event andwi denotes the value
of cwndi when congestion is detected by each source.B is
the link capacity,qmax is the bottleneck buffer size,Ti is
the round-trip-time experienced by thei′th source when the
bottleneck queue is empty andTi + qmax/B is the round-trip
time when the queue is full. HereR(k)− denotes an event just
before packets are dropped due to overflow of the buffer, and
R(k)+ after each source has responded to thek’th congestion
event by reducing its number of packets in flight.

We let βi(k) = βi if flow i experiences a loss at thek’th
congestion event and otherwiseβi(k) = 1 (i.e. flow i does not
backoff). Then, following congestion, the data throughputis
given by

R(k)+ =

n∑

i=1

βi(k)wi(k)

Ti

(2)

under the assumption that the bottleneck buffer empties1. If
the sources backoff too much, data throughput will suffer as
the queue will empty for a period of time and thus the link will
operate below its maximum rate. A simple method to ensure
maximum throughput is to equate the ratesR(k)− andR(k)+.
This can be achieved by enforcing the following constraint,

βi ≥
Ti

Ti + qmax

B

=
RTTmin,i

RTTmax,i

. (3)

For a given choice ofβi one may seek to chooseqmax such
that R(k)+ = R(k)− for all k. Evidently, for the case of

1This assumption merely streamlines the presentation. If the queue does not
empty at thek’th congestion event, we have trivially thatR(k)+ = R(k)−

and link utilisation is 100%.

3

networks employing standard TCP, namelyβi = 0.5, it follows
qmax ≥ BTdi

. This is the origin of the DBP rule.

A. The DBP Rule & Statistical Multiplexing

The DBP rule is derived from consideration of link util-
isation in the worst case where all flows backoff at each
congestion event. While this situation applies when only a
single TCP flow is present, it also also occurs with many
flows provided that the flows are synchronised i.e. every flow
experiences a loss at every congestion event. When flows are
not synchronised, by definition only a proportion of flows
backoff at each congestion event. Thus on average more
packets remain in flight than in the synchronised case and
so the queue is less likely to empty. Consequently, under
unsynchronised conditions we expect that the link utilisation
will be strictly greater than under synchronisation (assuming
the queue is sized less than the BDP - otherwise the utilisation
is trivially always 100%). This behaviour can be seen, for
example, in Figure 3 which shows the link utilisation achieved
by two TCP flows as the round-trip time of the second flow is
varied. While the link utilisation varies in a complex manner
as the flows move in and out of synchronisation (this type of
behaviour is well known and associated with so-called phase
effects), it can be seen that the utilisation always respects the
synchronised case lower bound on efficiency that is marked
on the figure.

T
1

T
0

B, T

Fig. 2. Dumbbell topology.

0 5 10 15 20 25 30 35 40 45 50
85

90

95

100

T
2
 (ms)

lin
k

ut
ili

sa
tio

n
(%

)

Fig. 3. Link utilisation vs difference in round-trip times for two TCP
flows and a dumbbell topology. Solid line marks link utilisation with drop
synchronisation. (NS simulation, T̄ = 50ms, T1=1.2ms,B=10Mbs, queue
size scaled withT2 to maintain a constant provisioning ratio of 0.75).

Appenzelleret al [1] and others have observed that synchro-
nisation becomes rare as the number of competing TCP flows

increases. Thus, when there are many flows the opportunity
exists to use smaller queues with little loss in efficiency. This
behaviour is illustrated, for example, in Figure 4. In this figure
the minimum queue size to ensure 99.99% link utilisation is
plotted as the number of competing TCP flows is increased.
The ◦ markers denote results when the TCP flows all have
the same round-trip time and the delay-bandwidth product
is 85 packets. It can be seen that for up to 45 flows it is
necessary to size the queue at the delay-bandwidth product
owing to the presence of synchronisation. However, for larger
numbers of flows the queue size required rapidly falls to
around 50 packets. Note that in this example the provisioning
requirement does not fall below about 50 packets as the
number of flows is increased further. Figure 4 also illustrates
the corresponding behaviour when the flows have different
round-trip times. We can see that in this case large queues are
still necessary for small numbers of flows but that the queue
provisioning requirement quickly decreases and, indeed, falls
substantially below the 50 packet limit that was evident in the
same round-trip time case.

0 50 100 150
0

10

20

30

40

50

60

70

80

90

100

number of flows

qu
eu

e
si

ze
 (

pa
ck

et
s)

Fig. 4. Minimum queue size for 99.99% link utilisation vs number of TCP
flows. Dumbbell topology. Key:◦ flows have the same round-trip time (
T2=1.2ms);+ flows have different round-trip times (T2 uniformly distributed
in interval [0,30ms]). (NS simulation,T̄ = 50ms, T1=1.2ms,B=10Mbs).

In general, we expect that the actual reduction in queue size
that can be achieved while maintaining a required link utilisa-
tion depends in a complex manner on details of the network
and prevailing traffic conditions. Nevertheless, under some
simplifying assumptions (flow backoff’s are independent, in-
dividual flow congestion windows are uniformly distributed
about the same average size and there are sufficiently many
flows that the aggregate is normally distributed) Appenzeller
et al [1] shows that the queue size can be scaled as1/

√
n and

the utility of this result is confirmed by considerable empirical
evidence.

Note however that this reduction in queue size is crucially
dependent on (i) the presence of many flows and (ii) absence
of synchronisation. With few flows or when synchronisation
is prevalent, high link utilisation continues to require large
buffers provisioned in line with the DBP rule.

4

III. R EVISITING THE DELAY-BANDWIDTH PRODUCT RULE:
ADAPTIVE AIMD

The discussion in Section II illustrates a key property of
networks that are designed to carry TCP traffic: namely, that
queue provisioning is strongly coupled to the parameters of
the TCP AIMD algorithm. With reference to Equation (3),
efficient link utilisation is achieved whenR(k)+ = R(k)−

after each congestion event. As already discussed, one strategy
to achieve this goal is the DBP rule. The DBP rule is, however,
only one of many strategies that could be adopted to ensure
that Equation (3) is satisfied. In particular, for any given queue
sizeqmax one may simply set

βi =
RTTmin,i

RTTmax,i

(4)

for all i; thereby ensuring thatR(k)+ = R(k)− for all k. The
effect of this AIMD modification can be seen in Figure 5. In
this example the queue provisioning is less than the delay-
bandwidth product and the queue empties for a substantial
period following backoff by a factor of 0.5 (see the first
backoff event in the figure) with an associated reduction in
link utilisation. Once the flow adjusts its backoff factor tothe
level of buffer provisioning we can see that the queue now
just empties following a backoff event and the link continues
to operate at capacity as desired. With this approach, network
queues are provisioned to accommodate the level of packet
burstiness and to meet latency and jitter requirements, rather
than to accommodate the TCP AIMD parameters.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

time (s)

cwnd (packets)

queue occupancy (packets)

Fig. 5. Congestion window and queue occupancy time histories with adaptive
AIMD algorithm. The delay bandwidth product is 85 packets. (NS simulation,
bandwidth 10Mbs, RTT 100ms, queue 25 packets).

Adjustment of the flow backoff factorsβi can lead to
unfairness between competing flows. However, fairness can
be readily restored by making a corresponding adjustment of
the flow increase parametersαi. In a network of competing
TCP flows, in equilibrium the mean peak congestion window
of flow i is proportional to αi

λi(1−βi)RTTmin,i
[?], where λi

denotes the proportion of network congestion events at which
flow i experiences a packet drop (in the synchronised case

λi = 1 for all flows)2. AIMD flows with increase and decrease
parameters chosen such that the ratioαi/(1− βi) is the same
will be fair if they have the same round-trip time and the
same probabilityλi of experiencing a loss at congestion, see,
for example, Figure 6. Hence, we adjustαi according to

αi = 2(1 − βi) (5)

so thatαi is decreased asβi increases thereby maintaining
αi/(1−βi) = 2. A ratio of 2 is selected as this corresponds to
the ratio for standard TCP, whereαi = 1, βi = 0.5. In this way
we maintain backward compatibility and friendliness towards
legacy TCP flows (backward compatibility and support for
incremental rollout are discussed in detail later).

0 10 20 30 40 50
0

20

40

60

80

100

120

time (s)

cw
nd

 (
pa

ck
et

s)

α=1.5, β=0.25

α=1, β=0.5

Fig. 6. Example of window fairness between two TCP sources with different
increase and decrease parameters (NS simulation, network parameters: 10Mb
bottleneck link, 100ms delay, queue 40 packets.)

Comment: Different RTTs. It is interesting to note that
the proposed scheme elegantly deals with the situation where
competing flows have different round-trip times. In this
situation, with standard TCP for 100% utilisation the DBP
rule requires the buffer to be sized according to the largest
round-trip time. Of course, it is probably preferable to use
instead an average round-trip time in order to avoid excessive
queueing delay for those flows with short round-trip times,
albeit at the price of reduced link utilisation. In contrast, with
the adaptive scheme the buffer size is selected independently
of the round-trip times of the flows and decision making
is instead located at the network edges where each flow is
individually responsible for adjusting its own backoff factor
appropriately. In this way we avoid the trade-off between
high link utilisation for flows with long round-trip times
and low queueing latency for flows with short round-trip times.

Comment: Constraining β variations. Increasing
the backoff factor β to improve efficiency decreases
responsiveness (as measured by number of congestion epochs
before convergence). Conversely, decreasing the backoff
factor increases responsiveness but decreases efficiency,at
least when queues are small. This issue is discussed in

2Note thatλi here is quite different from the loss event probabilityp that
is used in the Padye square root formula [2].

5

detail in Section?? below. Note that large queues resolve
the tradeoff between efficiency and responsiveness in favour
of using a small backoff factor. However, when queues are
small the situation is less clear. One approach is to restrict
the backoff factor to an interval[0.5, βmax]. The value
selected forβmax then reflects the preferred compromise
between efficiency and responsiveness. We suggest that
a reasonable choice forβmax in current networks might
be 0.8 for the following two reasons: (i) a backoff factor
of 0.8 ensures 100% link utilisation with queues sized at
only 25% of the delay-bandwidth product which is already
a fairly large reduction in the buffering requirement, and
(ii) a backoff factor of 0.8 corresponds to a convergence
time of 7 congestion epochs for 80% convergence and 12
congestion epochs for 95% convergence and so the slow
down in responsiveness is relatively small. While this value
is used in the rest of this paper, other choices of backoff limit
are certainly possible and the final choice is left as future work.

Comment: Implementation. We note that the feasibility
of obtaining reliable measurements of instantaneous RTT is
an open question and do not propose use of this quantity.
Minimum and maximum RTT are, however, relatively
straightforward to estimate and this is discussed in more
detail later. We note also that the proposed adaptive AIMD
approach remains entirely within the well studied AIMD
paradigm: the only change proposed is to the AIMD
parameters used.

IV. A DAPTIVE AIMD PERFORMANCE

A. Single Bottleneck

We begin by considering the case of a single network
bottleneck. By design, the adaptive AIMD scheme ensures
full link utilisation across a wide range of queue provisioning
levels (see Figure 7). In particular, for 100% utilisation under
synchronised operation we require the queue size to be at least
25% of the delay-bandwidth product when the backoff factor
is constrained to be less thanβmax = 0.8.

As noted previously, this is a worst case bound on queue
size. When flows are unsynchronised, the opportunity exists
to use smaller queues with little loss in efficiency. This is
illustrated, for example, in Figure 8. In this figure the queue
sizes for 98% and 99.5% link utilisation are plotted as a
function of number of flows for both the standard TCP AIMD
algorithm and the adaptive AIMD algorithm proposed here.
The results are for a network topology with a single bottleneck
link and round-trip times distributed in the range 80-250ms. It
can be seen that there is a substantial reduction in the queue
provisioning requirement when the adaptive AIMD algorithm
is used. Also evident is the approximate1/

√
n dependence of

queue size noted by [1]. We have obtained similar results over
a wide range of network conditions although space restrictions
mean that we cannot include them here.

The foregoing results relate to link utilisation. Figure 9
illustrates the impact of the adaptive algorithm on the network
loss rate. This figure plots loss rate as the proportion of
standard to adaptive TCP flows is varied. It can be seen that

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

queue size (packets)

lin
k

ut
ili

za
tio

n
(%

)

standard TCP
adaptive backoff
adaptive backoff, 0.8 clamp
theory

Fig. 7. Efficiency of TCP vs queue size. Results shown are for asingle
TCP flow, or multiple synchronised flows. The solid line is thetheoretical
efficiency curve given by Equation (??) in the Appendix. (NS simulation:
bandwidth 100Mb, RTT 40ms).

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

number of flows

qu
eu

e
si

ze
 (

pa
ck

et
s)

standard TCP 98.0%
standard TCP 99.5%
adaptive backoff 98.0%
adaptive backoff 99.5%

Fig. 8. Link utilisation vs queue size and number of flows. (bandwidth
155Mbs, delay 80-250ms). The solid line indicates a1/

√
n curve correspond-

ing to the 98% case with adaptive backoff.

the loss rate, measured as the proportion of sent packets that
are dropped, falls as the number of adaptive flows is increased.
This can be understood by noting that the adaptive algorithm
adjusts the flow increase and decrease parameters in a co-
ordinated manner that maintains the same congestion epoch
duration, and thus number of packet losses, as standard TCP
when flows are synchronised. The increased throughput with
the adaptive algorithm means, however, that theproportion
of packets lost falls compared with standard TCP. Thus, the
adaptive algorithm protocol serves not only to increase link
utilisation, but also the network goodput as well.

B. Mix of Connection Lengths

Real network paths typically contain TCP flows with a
wide mix of connection sizes. We can expect this to reduce
the benefits of adaptive AIMD as flows that complete before
exiting slow-start gain no benefit from adapting their AIMD
backoff factor. Further, it is possible that the presence of
many flows in slow-start may increase the burstiness of traffic

6

0 5 10 15 20 25
86

88

90

92

94

96

98

100

number of adaptive flows

lin
k

ut
ili

sa
tio

n
(%

)

0 5 10 15 20 25
5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2
x 10

−4

lo
ss

/th
ro

ug
hp

ut

number of adaptive flows

Fig. 9. Utilisation and loss rate as function of number of adaptive and
conventional TCP flows (out of 25 flows in total, remaining flows are
conventional TCP flows).NS simulation, 155Mb bottleneck link, 40ms delay,
queue 25 packets.

arrivals. Recall that queue sizing is determined both by the
AIMD backoff characteristics and by the level of burstiness.
Figure 10 plots the queue size required for 98.0% and 99.5%
utilisation on a 155Mbs link with a mix of round-trip times
and a mix of long-lived flows and web traffic. Web traffic con-
nection sizes are generated according to a Pareto distribution,
with exponentially distributed inter-arrival times between web
sessions. Web traffic is bi-directional and the overall number
of web sessions is chosen such that the mean number of
web sessions active at any time is approximately equal to
the number of long-lived connections. Comparing Figure 10
with Figure 8, we can see that the trends are similar; that is,
that the required buffer size tends to decrease as the number
of flows is increased and that the adaptive backoff scheme
supports significant reductions in buffer size, compared with
standard TCP, particularly when there are smaller numbers of
flows. Observe that the overall size of buffer required is rather
larger than that in Figure 8 when no web traffic is present.
This is perhaps unsurprising – we attribute this differenceto
the presence of web flows persistently operating in slow-start
mode resulting in both an increased level of packet burstiness
and an increased packet loss rate for long-lived flows.

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

1400

1600

1800

number of long−lived flows

qu
eu

e
si

ze
 (

pa
ck

et
s)

standard TCP 98.0%
standard TCP 99.5%
adaptive backoff 98.0%
adaptive backoff 99.5%

Fig. 10. Link utilisation vs queue size and number of flows fora mix of
long-lived flows and web traffic. (bandwidth 155Mbs, delay 80-250ms).

C. Impact of Reverse Path Traffic

It is well known that reverse-path traffic can increase the
burstiness of the forward path TCP stream as a result of ACK
compression and ACK losses. Increased burstiness typically
increases the likelihood of packet losses when small queues
are used, and may thus constrain the minimum queue size that
can be used. We note, however, that the cost of a back-off event
due to a reverse-path induced network burst is dependent on
the amount by which a flow releases bandwidth after a loss
event. In the presence of small buffers, the adaptive AIMD
algorithm acts to decrease aggressiveness and to increase the
back-off factors of network flows. Thus, we expect to see an
improvement in network performance, compared to standard
TCP, on links with small queues and reverse path traffic.

We present two sets of experimental results to illustrate the
performance of the proposed adaptive algorithm in networks
in which there is reverse path queuing, see Figures 11-
12. These plots show link utilisation and loss rate as the
proportion of standard to adaptive TCP flows is varied. Figure
11 shows results for 10 long-lived reverse path flows, while
Figure 12 shows the corresponding results with 20 long-lived
reverse path flows. We note that long-lived, rather than short-
lived, reverse path traffic is the most demanding case as it
creates sustained queueing on the reverse path, leading to
persistent ACK compression and substantial ACK losses for
the forward path flows. It can be seen that the adaptive AIMD
flows achieve both significantly improved link utilisation (e.g.
increasing utilisation from 55% to 79% with 20 reverse flows)
and reduced loss rate (by approximately 50%) compared to
standard TCP flows.

D. Multiple bottlenecks

It may occur that packets are queued at multiple queues,
e.g. at the ingress and egress access links along a path or, as
considered in the previous section, due to reverse path traffic.
Considering initially the worst case (from a link utilisation
viewpoint) situation where flows are synchronised, it is easy to
see that the proposed adaptive backoff strategy can be readily

7

0 5 10 15 20 25
70

72

74

76

78

80

82

84

86

88

90

number of adaptive flows

lin
k

ut
ili

sa
tio

n
(%

)

0 5 10 15 20 25
6

7

8

9

10
x 10

−4

lo
ss

/th
ro

ug
hp

ut

number of adaptive flows

Fig. 11. Utilisation and loss as function of number of adaptive and conven-
tional TCP flows (out of 25 flows in total, remaining flows are conventional
TCP flows)with reverse path flows (10 long-lived TCP connections). NS
simulation, 155Mb bottleneck link, 40ms delay, queue 125 packets.

extended to ensure high link utilisation at the congested links
in multiple bottleneck topologies. At congestion we have that

R(k)− =

n∑

i=1

wi(k)∑m

j=1(Ti + qj(k)/Bj)
= B (6)

wherem is the number of links at which packets are queued,
qj(k) is the queue occupancy of thej such link andBj the
bandwidth. Selecting the backoff factor as

βi(k) =
Ti

Ti +
∑m

j=1 qj(k)/Bj

=
RTTmin,i

RTTmax,i

(7)

then after backoff,

R(k)+ =

n∑

i

Ti

Ti +
∑m

j=1 qj(k)/Bj

wi(k)

Ti

= B (8)

That is, the TCP flows adapt their backoff factors to just
empty all of the queues that they see along the end-to-end path.

Comment: Number of Bottlenecks. Note that this
analysis encompasses situations where different flows may
see different numbers of backlogged queues along their

0 5 10 15 20 25
55

60

65

70

75

80

number of adaptive flows

lin
k

ut
ili

sa
tio

n
(%

)

0 5 10 15 20 25
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

−3

lo
ss

/th
ro

ug
hp

ut

number of adaptive flows

Fig. 12. Utilisation as function of number of adaptive and conventional
TCP flows (out of 25 flows in total, remaining flows are conventional
TCP flows)with reverse path flows (20 long-lived TCP connections). NS
simulation, 155Mb bottleneck link, 40ms delay, queue 125 packets.

respective network paths.

Comment: Reverse-path Queueing.Note also that since
RTT measures the two-way delay along a path it includes
the effect of reverse path queueing. In terms of adjusting
flow backoff factors, we consider reverse path queueing to be
simply a multiple bottleneck situation. By using a value of
RTTmax that reflects reverse path queueing, our algorithm
will correctly adapt flow backoff factors to empty both the
forward and reverse path queues.

Comment: Variation in Bottleneck Number. The analysis
also extends to situations where, for example as flows start and
stop, the number of bottleneck links may vary - see example
below. To implement the backoff calculation in (7), we use
RTTmin,i/RTTmax,i as before. Increases in the number of
bottleneck links generally lead to an increase in round-trip
time and this will be immediately reflected in the value of
RTTmax,i. To capture changes that lead to a reduction in the
round-trip time, we add exponentially fading memory to our
estimate ofRTTmax,i, namely at each congestion event we

8

reset ourRTTmax,i estimate according to

RTTmax,i = RTTmin,i + a(RTTmax,i − RTTmin,i)(9)

with a < 1. We have not found the performance of the
algorithm to be especially sensitive to the value ofa used and
suggest that a reasonable value ofa = 7/8, which corresponds
to the fading memory already used in the smoothed RTT
calculation in TCP.

For example, consider the two bottleneck topology shown
in Figure 13. Flow 1’s fair share of the 100Mbs link is approx-
imately 50Mbs but owing to the 40Mbs link it cannot achieve
this. Hence, when only flow 1 is active, there exists a single
bottleneck with packets queueing at the 40Mbs hop. When
flow 2 becomes active, flow 1 continues to be constrained to
40Mbs throughput (with packets queueing at the 40Mbs link)
while flow 2 obtains 60Mbs bandwidth on the 100Mbs link
(with flow 2 packets queueing at this link, along with flow 1
packets that are in transit). When a packet drop occurs, the
round-trip time of flow 1 isT1 + q1/B1 + q2/B2 while that
of flow 2 is T2 + q2/B2 and the flow backoff factors adapt to
just empty all of the queues in the network, see Figure 14.

 4
0Mbs

1.5
ms

100Mbs

10ms

Fig. 13. Two bottleneck topology.

22 23 24 25 26 27 28 29 30 31 32 33
0

20

40

60

80

100

120

time (s)

cwnd
1
 (packets)

cwnd
2
 (packets)

q
1
 (packets)

q
2
 (packets)

Fig. 14. Example of backoff adjustment with cross-flow from 25s-30s (NS
simulation, 2 hop topology of Figure 13, hop 1: 40Mbs, 1.5ms delay, queue
30 packets, hop 2:100Mbs, 10ms delay, queue 80 packets.)

E. Support for incremental rollout

Incremental rollout requires (i) backward compatibility with
legacy flows i.e. TCP friendliness, and (ii) that any proposed
change to TCP yields worthwhile benefits without requiring
requiring universal adoption or a “big bang” rollout. As noted
previously, the proposed adaptive AIMD algorithm adjusts its

AIMD increase and decrease parameters in a co-ordinated
manner that ensures backward compatibility with legacy TCP
flows. This is illustrated in Figure 15, where in a network
of 25 flows the proportion of standard and adaptive AIMD
flows is varied. It can be seen that the ratio of the mean peak
congestion windows of the standard and adaptive flows always
stays close to unity. Figure 9 shows the corresponding impact
on link utilisation. For the proposed adaptive AIMD algorithm,
we can see that there is a strictly increasing gain in efficiency
as the number of adaptive flows is increased. That is, there
is an efficiency gain even if only a small percentage of flows
utilise the adaptive algorithm.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ra
tio

 o
f m

ea
n

pe
ak

 c
w

nd

number of adaptive flows

Fig. 15. Fairness of adaptive and conventional TCP flows vs number of adap-
tive AIMD flows (out of 25 flows in total, remaining flows are conventional
TCP flows).NS simulation, 155Mb bottleneck link, 120ms delay, queue 125
packets. Network includes background web traffic of approximately 1% link
bandwidth.

F. Experimental results

In addition to NS-2 simulation tests, we have implemented
the adaptive AIMD algorithm in Linux and evaluated its per-
formance on an instrumented test-bed network. This network
consisted of six Linux Xeon 2.8HGz servers with PCI-X
Intel Pro 1000 NICs and a similarly specified router running
FreeBSD 4.8 and using DummyNet to emulate specified net-
work propagation delays. TCP traffic is generated using iperf.
Table I presents a sample of the results we have obtained on
this test-bed network for a range of network conditions, queue
sizes and number of flows. The reported throughput values are
averages taken over 10 minute test runs. The results obtained
are in excellent agreement with the theoretical analysis and
simulation results presented earlier.

We have also carried out a number of tests over production
networks. The range of network conditions and paths available
to us over production networks is less flexible than in the test-
bed network and measurements are more limited - for example,
we cannot alter router queue sizes or control/measure other
traffic sources. We have carried out tests on paths between
servers located at the Hamilton Institute (Maynooth, Ireland),

9

at CERN (Geneva, Switzerland) and Lawrence-Berkeley Na-
tional Lab (San Francisco, U.S.). In these tests the bottleneck is
a 20Mbs link located in Ireland. Results are shown in Table II
for different numbers of flows. It can be seen that, in line with
our analysis, with adaptive AIMD the aggregate throughput
achieved is largely independent of the number of flows. For
reference, the corresponding results for standard TCP are also
presented. Throughput is consistently lower than with adaptive
backoff owing to under-buffering at the bottleneck link.

Link Queue No. Link utilisation (%)
Provisioning of

(% BDP) Flows Standard With
TCP Adaptive

Backoff
20Mbs, 25 1 86.35 96.20
150ms 4 10 88.30 94.95

2 25 73.90 83.30
2 50 83.75 89.45

40Mbs, 25 1 86.30 96.30
75ms 4 10 88.13 95.05

2 25 67.80 77.00
2 50 80.23 87.63

200Mbs, 15 1 85.26 95.58
25ms 8 10 89.91 96.08

6 25 90.13 96.49
4 50 90.98 94.49

TABLE I

EXPERIMENTAL MEASUREMENTS OF LINK UTILISATION VERSUS NUMBER

OF FLOWS FOR BOTH STANDARDTCPAND TCPWITH ADAPTIVE BACKOFF

OVER A RANGE OF NETWORK CONDITIONS.

Path No. Throughput (Mbs)
Flows Standard With

TCP Adaptive
Backoff

HI-CERN 1 15.0 19.2
(delay 5 17.4 19.1
30ms) 10 18.1 19.2

25 18.9 19.2
HI-LBL 1 15.0 18.5
(delay 5 15.7 18.9
152ms) 10 16.8 19.2

25 17.7 19.2

TABLE II

EXPERIMENTAL MEASUREMENTS OF FLOW THROUGHPUT VERSUS

NUMBER OF FLOWS FOR BOTH STANDARDTCPAND TCPWITH ADAPTIVE

BACKOFF OVER PATHS IN THEINTERNET.

V. I MPLEMENTATION

The proposed adaptive AIMD algorithm requires that each
TCP flow estimateRTTmin,i andRTTmax,i. While the fea-
sibility of obtaining reliable measurements of instantaneous
RTT remains an open question, minimum and maximum RTT
are relatively straightforward to estimate and this is discussed
in more detail in this section.

RTTmin is the speed-of-light round-trip propagation delay
along the path of a flow. We base our estimate ofRTTmin on
observing the minimum time elapsed between transmission of
a data packet and receipt of the corresponding acknowledge-
ment. This estimate is largely unaffected by variable factors
such as queueing delays and reverse path traffic as these

tend to increase the transit time for a packet and are there-
fore filtered out by taking the minimum. We have observed
instead that the main estimation issues are associated with
the impact of route changes. Route changes thatreducethe
speed-of-light delay will be correctly detected by observing the
minimum time elapsed between transmission of a data packet
and receipt of the corresponding acknowledgement. However,
routing changes thatincreasethe propagation delay will not
be detected by this approach and so the value ofRTTmin

estimated may be smaller than the actual propagation delay.
In this case the backoff factor used in the adaptive AIMD
algorithm is too small, leading to a reduction in efficiency for
that flow (at worst reverting to the conventional TCP backoff
factor of 0.5). While this might be resolved by adapting the
RTTmin estimator in a suitable manner, we argue that it is an
unnecessary complication since substantial increases in speed-
of-light delay during the lifetime of a flow seem fairly rare and
therefore the overall potential for efficiency loss is minor.

RTTmax estimates the sum of the propagation delay and
the maximum queueing delay along a path. The maximum of
the instantaneous RTT (measured using packet time stamps
in most modern implementations) frequently overestimates
RTTmax owing to delays introduced by delayed acking and
other short term increases in packet transit time (e.g. routing
table updatesetc may temporarily increase router forwarding
delay). Spurious short term increases in round-trip time can
be filtered out by using the maximum of thesmoothedRTT
instead of the instantaneous RTT. The smoothed round-trip
time is already used within the TCP timeout algorithm and
so is readily available. While seeking to filter out spurious
short-term increases, we do want our measurement to reflect
longer term changes in delay due, for example, to changes in
the number of bottleneck links, routing changes and so on.
Changes that lead to an increase in delay will be immediately
reflected in the value ofRTTmax. As discussed previously in
Section IV-D, changes that lead to a reduction in delay can be
tracked by adding a fading memory to theRTTmax estimate,
see Equation (9).

Our ability to effectively estimateRTTmin,i andRTTmax,i

in challenging network conditions is illustrated in Figure16.
Here, the flow of interest shares a link with bidirectional
web traffic. The web traffic, which is stochastic and bursty
in nature, creates complex variations in both forward and
reverse path queueing delays. It can be seen that the
adaptive backoff scheme nevertheless performs well, correctly
adjusting the backoff factor and rejecting the spurious delay
spikes generated by the web traffic. Further evidence of
the practicality of estimatingRTTmin,i and RTTmax,i is
provided by the experimental tests discussed in the previous
section. While limitations on the range of experiments that
we are able to perform mean that we cannotprove correct
performance under all conditions, the foregoing analysis
and results do provide good support of correct operation in
practical situations.

Comment: Smoothed RTT & Throughput. We note that
smoothed RTT reflects the average delay experienced by a
large number of packets. It is therefore closely related to the
achieved throughput sustained over several round-trip times,

10

from which we can see that substantial changes in this quantity
are rarely spurious. This also leads us to the possibility of
adapting the backoff factor based on throughput rather than
round-trip time measurements if so desired. For example, we
have that the backoff factor can be expressed as

βi(k + 1) = min
j

βi(j)
B−

i (j)

B+
i (j)

(10)

where B−

i (k) is the throughput of flowi immediately be-
fore the k’th congestion event,B+

i (k) the throughput of
flow i immediately after thek’th congestion event. Both
quantities are readily measured from packets ACK’ed over
a round-trip time. This avoids the need to measure the ratio
RTTmin,i/RTTmax,i directly.

4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

time (s)

cwnd (packets)

link throughput (Mbs)

queue occupancy (packets)

Fig. 16. Example of operation with bidirectional web trafficsharing link (NS
simulation, network parameters: 40Mb bottleneck link, 20ms delay, queue 30
packets, 10 web flows in each direction.)

VI. T HE COST OFADAPTIVE AIMD

It has been well documented that even small modifications
to the basic TCP algorithm can have a large impact on network
properties. In this section we consider the cost of our suggested
modifications to the standard TCP algorithm. In particular,
we consider the impact of our algorithm on the network
convergence rate. From [?] we have that:

(i) Convergence. Consider a network of AIMD flows
with drop-tail queues. For synchronised flows, the flow
congestion windows converge to a unique periodic cycle
at an exponential rate. In the case of unsynchronised
flows, the mean peak congestion window of each flow
converges exponentially to a unique equilibrium value.

(ii) Convergence rate. Convergence rate refers to the
rate at which the mean congestion windows of the
network flows converge to their equilibrium values,
e.g. following start up of a new flow. In the case of
synchronised flows, the convergence rate of the flow
congestion windows is bounded by the largest backoff
factor βmax = maxiβi in the network, with the 95%
rise time measured in congestion epochs bounded by
log 0.05/ logβmax (yielding a rise time of 4 congestion
epochs for a backoff factor of 0.5 and 10 congestion

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

time [s]

cw
nd

 [p
ac

ke
ts

]

Fig. 17. Illustration of TCP convergence rate (NS simulation, αi = 1,
βi = 0.5, dumb-bell with 10Mbs bottleneck bandwidth, 100ms propagation
delay, 40 packet queue).

epochs for a backoff factor of 0.75). See, for example,
Figure VI. When flows are unsynchronised, we work in
terms of themeanbackoff factorE[βi] = λi(1 − βi).
The convergence rate of the networkmeancongestion
windows is bounded by the largest mean backoff factor
βmax,E = maxiE[βi], with the 95% rise time bounded
by log 0.05/ logβmax,E.

These analytic results indicate that congestion control strate-
gies that reduce the AIMD backoff factors to achieve high
utilisation of network resources can result in slowing of the
rate of convergence of the network to its equilibrium. A
backoff factor of 0.75 has a 95% rise time of 10 congestion
epochs compared with a rise time of only 4 congestion epochs
when the backoff factor is 0.5. For example, see Figure 18.
Note that this analysis focusses on the congestion avoidance
behaviour and ignores the impact of slow start which would
tend to accelerate convergence following start-up of a new
flow, although slow start would have little impact on the
convergence time following a cross-flow disturbance. For the
delay-bandwidth products commonly encountered in current
networks, the impact on convergence time of increasing the
backoff factor to 0.8 is felt to be minor. Hence, while a
mode switch might be included to accelerate convergence, this
does not seem necessary on low to medium delay-bandwidth
product paths. In contrast, on high delay-bandwidth paths,such
as transatlantic multi-gigabit speed paths, it is well known that
the current AIMD algorithms suffer from slow convergence
and our adaptive AIMD algorithm would obviously suffer
similarly. A number of proposals exist that seek to improve
performance in high delay-bandwidth product environments
and, although these are outside the scope of the present paper,
we do note that any proposed changes compatible with the
existing TCP AIMD algorithm would also be compatible with
the adaptive AIMD algorithm.

VII. SCOPE OF OUR RESULTS AND FUTURE WORK

The analysis and results we present here encompass a wide
range of network conditions including, in particular, paths

11

45 50 55 60 65 70 75 80

0

20

40

60

80

100

time (s)

cw
nd

 (
pa

ck
et

s)

Fig. 18. Illustrating slower responsiveness with larger backoff factors: flow
starting at 50s has backoff factor of 0.5, flow starting at 65shas backoff
factor of 0.75. NS simulation, 10Mb bottleneck link, 80ms delay, queue size
40 packets.

with both single and multiple bottlenecks (the number of
which may change over time), a mix of long-lived flows and
web traffic, and competing flows with a range of different
round-trip times. Issues which are not considered in this
paper and are left as future work include link utilisation with
active queueing disciplines (we justify our focus on drop-tail
queueing by noting that it remains the prevalent queueing
discipline in modern networks) and the impact of wireless
links on utilisation.

VIII. R ELATED WORK

One of the first mentions of the DBP rule seems to be in
an RFC by Jacobsonet al [3] although it is also implicit in
the original Jacobson TCP paper [4]; subsequent simulation
studies include the work by Villamizar and Song [5]. The
role of statistical multiplexing in allowing small buffersis
discussed in detail in the recent paper by Appenzelleret al [1]
and the reader is referred to the references therein for details
of other work on this topic.

The idea of modifying the TCP congestion control to
improve throughput efficiency is not new and dates back
at least to the work of Brakmoet al on TCP Vegas [6].
More recent work includes FAST TCP[7]. In both of these
approaches the TCP transmission rate is adapted in responseto
changes in round-trip delay with the aim of maintaining queue
occupancy at a small, but non-zero, value thereby improving
link utilisation while also avoiding the packet drops associated
with the probing action of AIMD congestion control. However,
this involves a paradigm change in congestion control with a
shift from use of packet drops as an indicator of congestion
to use of delay as a congestion indicator. In the present paper,
our aim is instead to remain within the well tested AIMD
paradigm.

The idea of adapting AIMD parameters to reflect prevailing
network conditions or achieve certain goals is also not new
and a wide body of work exists on this topic [?], [?], [?],

[?], [?] The body of work most related to our proposal was
developed in the context of wireless networks and error-
prone links by Gerla and his co-authors [8]. They consider a
TCP variant denoted TCP-Westwood that proposes modifying
the AIMD backoff factor using an on-line estimate of the
bandwidth available on a path. However, the strategy presented
in the present paper differs from TCP-Westwood not only in
the manner in which the AIMD backoff factor is adjusted
(e.g. we make no attempt to estimate the per-flow packet
rate of the bottleneck link and our adaptation scheme does
not require complex adaptive filtering strategies) but alsoin
our adjustment of the AIMD increase parameter according to
αi = 2(1 − βi) in order to maintain network fairness and
friendliness.

IX. CONCLUDING REMARKS

In this paper we present a new approach to the buffer-
provisioning problem that retains the benefits of statistical
multiplexing when many flows share a link while also achiev-
ing good link utilisation with small numbers of flows. We
exploit the fact that the manner in which network buffers
are provisioned is intimately related to the manner in which
TCP operates. However, rather than designing buffers to
accommodate the TCP AIMD algorithm, we suggest simple
modifications to the AIMD algorithm to accommodate buffers
in the network. We demonstrate that with only minor modifi-
cations to the AIMD algorithm, networks with small buffers
can be designed that transport TCP traffic in a very efficient
manner.

We argue that the benefits of modifying TCP according
to the proposed adaptive AIMD algorithm are compelling:
namely, a nearly complete decoupling of network provision-
ing from the details of the TCP AIMD congestion control
algorithm. This is achieved without any negative impact on
link utilisation or network fairness properties and results in
lower network loss rates, and reduced sensitivity to reverse
path queuing.

X. ACKNOWLEDGEMENTS

This work was supported by Science Foundation Ire-
land grants 00/PI.1/C067 and 04/IN3/I460. The assistance of
Baruch Even in collecting the experimental results presented
is gratefully acknowledged.

REFERENCES

[1] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in Proc. ACM SIGCOMM 2004, 2004.

[2] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modelling TCP through-
put: A simple model and its empirical validation,” inProc. SIGCOMM
1998, 1998.

[3] V. Jacobson, R. Braden, and L. Zhang, “TCP extensions forhigh-speed
paths,” in IETF RFC 1185, 1990.

[4] V. Jacobson, “Congestion avoidance and control,” inProceedings of ACM
SIGCOMM 1988, 1988.

[5] C. Villamizar and C. Song, “High performance TCP in ANSNET,” ACM
Computer Communications Review, vol. 24, no. 5, pp. 45–60, 1994.

[6] L. Brakmo, S. O’Malley, and L. Peterson, “New techniquesfor congestion
detection and avoidance,” inProc. ACM SIGCOMM 1994, pp. 24–35,
1994.

[7] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, Architecture,
Algorithms, Performance.” Caltech CS Report CaltechCSTR:2003:010,
2003.

12

[8] C.Casetti, M.Gerla, S.Mascolo, M.Sanadidi, and R.Wang, “TCP west-
wood: Bandwidth estimation for enhanced transport over wireless links.”
Proc. ACM Mobicom, 2001.

