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Abstract—We study the impact of perturbations on the con-
vergence of the subgradient method for the dual problem in
constrained convex optimisation. Perturbations are likely to be
present in practical implementations of the subgradient method
and can affect either the computation of a subgradient, the
update of the dual variables, or both. In the context of networks,
perturbations can be related to the exchange of network informa-
tion, time varying channel conditions, discrete actions, etc. The
analysis presented in this paper is general, and establishes the
conditions under which the objective function will converge to
the optimum asymptotically. With an example, we illustrate how
the analysis can be applied to network flow problems where the
intensity of the flows that arrive in the system changes over time.

I. INTRODUCTION

Lagrange duality plays a prominent role in constrained con-

vex optimisation and in modelling many interesting problems

in networking. One of the appealing features of formulating

the dual problem is that the dual variables (i.e. Lagrange mul-

tipliers) can be identified with physical or real quantities. For

instance, in economics Lagrange multipliers can be identified

with prices [1], in communication networks with scaled queue

occupancies [2], and in electrical networks with potentials [3].

Identifying physical quantities with Lagrange multipliers can

provide a useful insight in many practical problems [4], but

can also allow some typically thought non-convex problems

to be cast as convex optimisations [5].

In this paper, we study the impact of perturbations on the

convergence of the subgradient method for the dual problem

in constrained convex optimisation. One of the motivations

for considering perturbations in the subgradient method is

that in practical implementations the update of the dual

variables (prices, queues, potentials), or the computation of

a subgradient of the dual function, might be affected by noise

or have errors. These perturbations can be used to encompass a

wide range of important problems currently being discussed in

the community, including asynchronous subgradient updates,

distributed or parallel dual variables updates, discrete actions,

actions with costs, etc. Perturbations can also be used to model

important problems in networking, e.g. network resource allo-

cation problems where the amount of resources that needs to

be allocated changes or fluctuates over time. Note that this

is actually the case in real communication networks since

the load or capacity of the system changes depending on the
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number of users in the system, users’ demand of bandwidth,

channel conditions, etc.

Multiple perturbations can be present in the subgradient

method, and they do not need to be independent. In fact, by

correlating perturbations it is possible to model interesting

problems such as expensive multipliers communication or

expensive subgradient updates. For example, in communi-

cations networks the exchange of network state information

(Lagrange multipliers) consumes resources (bandwidth), but

at the same time controls the accuracy with which the optimi-

sation problem can be solved. A similar problem appears in

high-performance computing where a subgradient update (i.e.

the selection of a new action or a change of configuration)

consumes CPU resources, and so affects the amount of CPU

time that can be allocated to tasks or jobs.

A. Related Work

Subgradient methods for solving nondifferentiable problems

have been studied extensively under various step size rules by

Polyak [6], Ermoliev [7] and Shor [8], or more recently by

Bertsekas [9] and Nedić [10]. Approximate solutions to convex

problems under an averaging scheme have been studied by

Nedić in [11] and [12]. The work in [11] assumes that the

dual function can be computed efficiently, and the work in

[12] considers a sequence of primal-dual subgradient updates.

See the related work in [11] for a good reference on primal

averaging schemes. Perturbations regarding the inexact com-

putation of the subgradient are not new and have been treated

in previous work in terms of ǫ-subgradients [9], approximate

Lagrange multipliers [13], or deterministic noise [14].

II. PRELIMINARIES

A. Notation

Vectors and matrices are written, respectively, in lower

and upper case, and all vectors are in column form. Since

we usually work with sequences we will use subscript to

indicate an element in a sequence, and parenthesis to indicate

an element in a vector. For example, for a sequence {xk}
of vectors from R

n we have that xk = [xk(1), . . . , xk(n)]
T

where xk(j), j = 1, . . . , n is the j’th component of the k’th

vector in the sequence. For two points x, y ∈ R
n we write

x ≻ y when the x(j) > y(j) for all j = 1, . . . , n, and x � y
when x(j) ≥ y(j). Finally, we will use [·]+ to denote the

projection of a vector x ∈ R
n onto the nonnegative orthant,

i.e. [x]+ = [max{0, x(1)}, . . . ,max{0, x(n)}]T .
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B. Convex Optimisation

Consider the following convex optimisation problem P in

standard form:

minimise
x∈X

f(x)

subject to gj(x) ≤ 0 j = 1, . . . ,m
(1)

where f, gj : X → R are convex functions and X is a

convex subset from R
n. We will assume that set X0 := {x ∈

X | gj(x) ≤ 0, j = 1, . . . ,m} 6= ∅, and so problem P
is feasible. Also, and using standard notation, we will define

f⋆ := minx∈X0
f(x) and x⋆ ∈ argminx∈X0

f(x).
The Lagrangian of problem P is given by

L(x, λ) = f(x) + λT g(x),

where g(x) = [g1(x), . . . , gm(x)]T and λ ∈ R
m
+ , and the

Lagrange dual function is

q(λ) := inf
x∈X

L(x, λ).

The following assumptions are key in our work.

Assumption 1 (Bounded Set). X is convex and bounded.

Assumption 2 (Slater Condition). relint(X0) is non-empty,

i.e. there exists a point x ∈ X such that gj(x) < 0 for all

j = 1, . . . ,m.

Assumption 1 ensures that the dual function is Lipschitz

continuous, and Assumption 2 that strong duality holds.

Namely, the solution of the Lagrange dual problem PD,

maximise
λ�0

q(λ) (2)

coincides with the solution of the primal problem P . That is,

maxλ�0 q(λ) =: q(λ⋆) = f⋆ where λ⋆ ∈ argmaxλ�0 q(λ).
Another consequence of Assumption 2 is that the set of dual

optima is bounded.

The following lemma is a straightforward derivation of [11,

Lemma 1].

Lemma 1 (Bounded Dual Set). Suppose Assumption 2 holds,

i.e. there exists a point x̄ ∈ X such that g(x̄) ≺ 0. Then,

λ⋆(j) ≤
f(x̄)− f⋆

gj(x̄)
j = 1, . . . ,m.

Proof: Observe that since x̄ is a feasible point we must

have that f⋆ := infx∈X0
f(x) ≤ f(x̄). Further, since λ⋆ � 0

and g(x̄) ≺ 0 then λ⋆(j)gj(x̄) ≤ 0 for all j = 1, . . . ,m.

Hence, we have that λ⋆(j)gj(x̄) ≤ 0 ≤ f(x̄) − f⋆ and the

stated result follows.

One of the consequence of Lemma 1 is that there exists a

constant λ⋄ ≥ 0 such that

max
λ∈Λ(λ⋄)

q(λ) = max
λ∈R

m
+

q(λ) = f⋆, (3)

where Λ(λ⋄) := {λ ∈ R
m
+ | λj ≤ λ⋄, j = 1, . . . ,m} is a

bounded set.

C. Classic Subgradient Method

Problem PD is an unconstrained concave maximisation

problem that can be solved using the subgradient method. In

short, the subgradient method for the Lagrange dual problem

consists of the following update:

λk+1 = [λk + αk∂q(λk)]
+, (4)

where λ1 ∈ R
m
+ , αk > 0 is a step size, and ∂q(λk) is a

subgradient of q at λk . In this work we will make use of a

constant step size and so have αk = α for all k. Recall that a

subgradient of q at λk is g(xk), where

xk ∈ argmin
x∈X

L(x, λk), (5)

i.e. xk is a solution of the unconstrained convex optimisation

problem minx∈X L(x, λk).

III. OPTIMISATION WITH PERTURBATIONS

A. Perturbed Problem

Consider convex optimisation problem

minimise
x∈X

f(x)

subject to g(x) � 0
(6)

where g : Rn → R
m, and the following δ-perturbed version

of problem (6)

minimise
x∈X

f(x)

subject to g(x) + δ � 0
(7)

where δ ∈ R
m is an unknown perturbation in the constraints.

Even though perturbation δ is not known we will assume

that problem (7) is feasible, and that the Slater condition is

satisfied, i.e. there exists a point x̄ ∈ X such that g(x̄)+δ ≺ 0.

The difficulty in solving problem (7) is that the problem

itself is not known, and so it is not possible to use standard

optimisation algorithms (such as interior-point methods [15])

to solve it. This kind of problems are, however, not uncommon

and appear in stochastic control, where controllers have to be

designed without perfect knowledge of the randomness in the

system. In communication networks sources of randomness

can be, for example, packet arrivals or time varying channel

conditions.

In the next section we show how to solve optimisation

problem (7) by using perturbations in the updates of the

dual variables of the subgradient method. Our key assumption

is that we can observe a value δi at each iteration of the

subgradient method, and that limk→∞
1
k

∑k

i=1 δi = δ. In order

to emphasise that the problem that we aim to solve is the

perturbed one, we define the perturbed Lagrangian

L̃(x, λ) := f(x) + λT (g(x) + δ), (8)

and the perturbed dual function

q̃(λ) := inf
x∈X

L̃(x, λ). (9)

Also, and to avoid confusions, we will use f⋆(δ) = q(λ⋆(δ))
where λ⋆(δ) = argmaxλ�0 q̃(λ) to denote a solution of the

δ-perturbed problem.
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B. Subgradient Method with Perturbations

In this section we study the subgradient method where the

computation of a subgradient of the dual function (5) and the

update of the dual variables (4) have perturbations.

1) Perturbations in the computation of a subgradient: First

of all observe that

xk ∈ argmin
x∈X

L̃(x, λ),

= argmin
x∈X

{f(x) + λT
k (g(x) + δ)},

= argmin
x∈X

{f(x) + λT
k g(x)},

and therefore xk can be obtained irrespectively of the pertur-

bation δ. We extend update (5) to allow perturbations or errors

in the Lagrange multiplier, which will result in an “inexact”

computation of the subgradient of the dual function. That is,

xk ∈ argmin
x∈X

L̃(x, µk), (10)

where µk = λk + ǫk with ǫk ∈ R
m. We will usually refer to

µk as an approximate or perturbed Lagrange multiplier, and it

will capture the fact that in some optimisation problems the

exact Lagrange multipliers are not known or have errors. For

instance, in distributed optimisation a node might not have

access to the exact Lagrange multipliers in the system due to

transmission delays or losses, however, a delayed or outdate

version of the true Lagrange multipliers might be available

instead. Approximate Lagrange multipliers can also allow to

capture asynchronous subgradient updates, and to use scaled

queue occupancies as surrogates for the Lagrange multipliers.

2) Perturbations in the update of the dual variables: The

other perturbation we consider is in the update of the dual

variables, i.e. we have

λk+1 = [λk + α(g(xk) + δk)]
+, (11)

where {δk} is a sequence of points from R
m such that

limk→∞
1
k

∑k
i=1 δi = δ. Sequence {δk} could be a realisation

of a random variable, however, there is no requirement for the

random variables to be independent and identically distributed

(i.i.d.). A sequence {δk} can also be selected in each iteration

in order to model a particular problem characteristic. For ex-

ample, if λk represents a queue occupancy and g(xk) a packet

transmission from the queue, a lossy link can be modelled

using perturbations by selecting δk = −g(xk). Namely, we

enforce that λk+1 = λk and so the transmitted packet cannot

“leave” the queue and must be transmitted again. Importantly,

selecting δk = −g(xk) for some k does not guarantee that

the Slater condition is satisfied in the perturbed problem (7),

neither that the perturbed problem is even feasible. Special

care has to be taken to ensure that the Slater condition is

satisfied when perturbations are chosen to model some kind

of phenomena in the system.

C. Convergence

We start by presenting the following lemma.

Lemma 2 (Subgradient Method with Perturbations). Consider

the setup of optimisation problem PD and updates (10) and

(11). Suppose {δk}, {ǫk} are two sequence of points from R
m

and that λ1 = 0. Then,

−
1

k

k
∑

i=1

Γi −
‖θ‖22
2αk

≤ q̃

(

1

k

k
∑

i=1

λi

)

− q̃(θ).

where Γi =
α
2 ‖g(xi)+δi‖22+(λi−θ)T (δi−δ)+2‖ǫi‖2‖g(xi)+

δ‖2, and θ is any vector from R
m
+ .

Proof: Observe that for any vector θ ∈ R
m we have that

‖λk+1 − θ‖22 = ‖[λk + α(g(xk) + δk)]
+ − θ‖22

≤ ‖λk + α(g(xk) + δk)− θ‖22
= ‖λk − θ‖22 + α2‖g(xk) + δk‖

2
2

+ 2α(λk − θ)T (g(xk) + δk).

We can write the last term in the RHS of the last equation

as (λk − θ)T (g(xk) + δk) = (λk − θ)T (g(xk) + δ) + (λk −
θ)T (δk − δ) and obtain

‖λk+1 − θ‖22 − ‖λk − θ‖22

≤ α2‖g(xk) + δk‖
2
2 + 2α(λk − θ)T (g(xk) + δ + (δk − δ)).

Now, observe that since

xk ∈ argmin
x∈X

L(x, λk) = argmin
x∈X

L̃(x, λk) (12)

for all λk ∈ R
m
+ , we can write

(λk − θ)T (g(xk) + δ)

= (λk − θ)T (g(xk) + δ) + f(xk)− f(xk)

= L̃(xk, λk)− L̃(xk, θ)

≤ L̃(xk, λk)− q̃(θ),

where the last equation follows since q̃(θ) = infx∈X L̃(x, θ) ≤
L̃(xk, θ). Hence,

‖λk+1 − θ‖22 − ‖λk − θ‖22

≤ α2‖g(xk) + δk‖
2
2 + 2α(λk − θ)T (δk − δ)

+ 2α(L̃(xk, λk)− q̃(θ)).

Now, observe that since L̃(xk, λk) = L̃(xk, λk)− L̃(xk, µk)+
L̃(xk, µk) ≤ |L̃(xk, λk)− L̃(xk, µk)|+ L̃(xk, µk) = q̃(µk) +
|L̃(xk, λk)− L̃(xk, µk)| = q̃(µk)+ |(λk−µk)

T (g(xk)+δ)| =
q̃(µk) + |ǫTk (g(xk) + δ)| ≤ q̃(µk) + ‖ǫk‖2‖g(xk) + δ‖2 =
q̃(µk)−q̃(λk)+q̃(λk)+‖ǫk‖2‖g(xk)+δ‖2 ≤ |q̃(µk)−q̃(λk)|+
q̃(λk) + ‖ǫk‖2‖g(xk) + δ‖2 ≤ q̃(λk) + 2‖ǫk‖2‖g(xk) + δ‖2,

we have that

‖λk+1 − θ‖22 − ‖λk − θ‖22

≤ α2‖g(xk) + δk‖
2
2 + 2α(λk − θ)T (δk − δ)

+ 2α(q̃(λk)− q̃(θ)) + 4α‖ǫk‖2‖g(xk) + δ‖2.

Summing from i = 1, . . . , k we obtain
∑k

i=1(‖λi+1−θ‖22−

‖λi− θ‖22) ≤
∑k

i=1(α
2‖g(xi)+ δi‖22+2α(λi− θ)T (δi− δ)+
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2α(q̃(λi) − q̃(θ)) + 4α‖ǫi‖2‖g(xi) + δ‖2), and rearranging

terms and dividing by 2αk yields

−
1

k

k
∑

i=1

(α

2
‖g(xi) + δi‖

2
2 + (λi − θ)T (δi − δ)

+ 2‖ǫi‖2‖g(xi) + δ‖2
)

+
‖λk+1 − θ‖22 − ‖λ1 − θ‖22

2αk

≤
1

k

k
∑

i=1

q̃(λi)− q̃(θ).

Finally, by the convexity of −q we can write

1

k

k
∑

i=1

q̃(λi) ≤ q̃

(

1

k

k
∑

i=1

λi

)

, (13)

and the stated result follows.

Lemma 2 is stated in a general form and provides a lower

bound on the difference q̃( 1
k

∑k
i=1 λi)− q̃(θ), where θ is any

vector from R
m
+ . The assumption that λ1 = 0 is not essential

and we just make it to obtain a simpler bound. Now, let θ =
δ̄k := 1

k

∑k

i=1 δi and suppose that there exists a point x ∈ X
such that g(x)+δ̄k ≺ 0, that is, the Slater condition is satisfied

in problem (7) with perturbation δ̄k (instead of δ). Then,

−
1

k

k
∑

i=1

Γi −
‖λ⋆(δ̄k)‖22

2αk
≤ q̃

(

1

k

k
∑

i=1

λi

)

− q̃(λ⋆(δ̄k)) ≤ 0,

where the upper bound follows directly from the fact that

q̃(λ⋆(δ̄k)) ≥ q̃(λ) for all λ ∈ R
m
+ . Note that since λ⋆(δ̄k)

is bounded by Lemma 1, then, when k → ∞ we have

that −Γ̄ ≤ q̃( 1
k

∑k

i=1 λi) − q̃(λ⋆(δ̄k)) ≤ 0 where Γ̄ :=

limk→∞
1
k

∑k

i=1 Γi. That is, in order for the bound to be use-

ful we need that Γ̄ is bounded and small in appropriate sense,

which will depend on the assumptions made on sequences

{ǫk} and {δk}.

Before making any assumptions on the perturbations we

present the following theorem, which establishes a bound on

how approximate primal solutions can be recovered from the

perturbed subgradient method.

Theorem 1 (Approximate Primal Solutions). Consider the

setup of Lemma 2 and let θ = λ⋆(δ̄k) where λ⋆(δ̄k) ∈
argmaxλ�0{q̃(λ)} and δ̄k = 1

k

∑k

i=1 δi. If there exists a point

x ∈ X such that g(x) + δ̄k ≺ 0 the following bound holds

−
1

k

k
∑

i=1

Γi −
‖λ⋆(δ̄k)‖22

2αk
−

(

λk+1

αk

)T
(

1

k

k
∑

i=1

λi

)

≤ f (x̄k)− f⋆(δ̄k)

≤
1

k

k
∑

i=1

(λT
i (δ̄k − δi) +

α

2
‖g(xi) + δi‖

2
2

+ ‖ǫi‖2‖g(xi) + δi‖2),

where f⋆(δ̄k) = q(λ⋆(δ̄k)), Γi = α
2 ‖g(xi) + δi‖22 + (λi −

λ⋆(δ̄k))
T (δi− δ)+2‖ǫi‖2‖g(xi)+ δ‖2, x̄k = 1

k

∑k

i=1 xi, and

xi is the primal variable obtained with update (10).

Proof: Consider the perturbed problem (7) with δ̄k and

observe that

1

k

k
∑

i=1

L̃(xi, µi) =
1

k

k
∑

i=1

q̃(µi) ≤ q̃

(

1

k

k
∑

i=1

µi

)

≤ q̃(λ⋆(δ̄k)).

Further, since 1
k

∑k

i=1 L̃(xi, µi) = 1
k

∑k

i=1 f(xi) +

µT
i (g(xi) + δ̄k) ≥ f(x̄k) + 1

k

∑k

i=1 µ
T
i (g(xi) + δ̄k), and

µk = λk + ǫk we have that

f(x̄k)− f⋆(δ̄k) ≤ −
1

k

k
∑

i=1

(λi + ǫi)
T (g(xi) + δ̄k) (14)

From Lemma 2 we have there exists a sequence {βk} of points

from R+ ∪ {+∞} such that −βk ≤ q̃(λ̄k) − q̃(λ⋆(δ̄k)) for

all k where λ̄k = 1
k

∑k

i=1 λi. Since q̃(λ̄k) ≤ L̃(x̄k, λ̄k) =
f(x̄k) + λ̄T

k (g(x̄k) + δ̄k), by rearranging terms we have

− βk −

(

1

k

k
∑

i=1

λi

)T

(g(x̄k) + δ̄k) ≤ f(x̄k)− f⋆(δ̄k) (15)

We now proceed to upper bound the RHS of (14). Observe

that for any sequence {xk} in X we can write

‖λk+1‖
2
2 = ‖[λk + α(g(xk) + δk)]

+‖22
≤ ‖λk + α(g(xk) + δk)‖

2
2

≤ ‖λk‖
2
2 + α2‖g(xk) + δk‖

2
2 + 2αλT

k (g(xk) + δk).

Rearranging terms and summing from i = 1, . . . , k we have

that
∑k

i=1

(

‖λi+1‖22 − ‖λi‖22
)

≤ α2
∑k

i=1 ‖g(xi) + δi‖22 +

2α
∑k

i=1 λ
T
i (g(xi)+ δi), and further rearranging and dividing

by 2αk yields

−
1

k

k
∑

i=1

λT
i (g(xi) + δi) ≤

α

2k

k
∑

i=1

‖g(xi) + δi‖
2
2 +

‖λ1‖22
2αk

.

Next, observe that since λT
i (g(xi) + δi) = λT

i (g(xi) + δi +
δ̄k − δ̄k), and λ1 = 0 (by assumption) we can write

−
1

k

k
∑

i=1

λT
i (g(xi) + δ̄k)

≤
1

k

k
∑

i=1

λT
i (δ̄k − δi) +

α

2k

k
∑

i=1

‖g(xi) + δi‖
2
2.

Finally, since by Cauchy-Schwarz −ǫTi (g(xi) + δi) ≤
‖ǫi‖2‖g(xi) + δi‖2 the upper bound now follows.

For the lower bound observe that λk+1 � [λk +α(g(xk) +
δk)]

+ � λk + α(g(xk) + δk) and therefore α(g(xk) +
δk) � λk+1 − λk. Summing from i = 1, . . . , k we have

α
∑k

i=1(g(xi) + δi) �
∑k

i=1(λi+1 − λi) � (λk+1 − λ1).
Dividing by αk yields

g(x̄k) + δ̄k �
1

αk

k
∑

i=1

(g(xi) + δi) �
λk+1 − λ1

αk
.
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Finally, multiplying both sides by ( 1
k

∑k

i=1 λi) we have

(

1

k

k
∑

i=1

λi

)T

(g(x̄k) + δ̄k) ≤

(

λk+1

αk

)T
(

1

k

k
∑

i=1

λi

)

,

which concludes the proof.

Theorem 1 says that f(x̄k) approaches f⋆(δ̄k) when the

Slater condition is satisfied with perturbation δ̄k = 1
k

∑k

i=1 δi.
However, and as in Lemma 2, the bounds are loose because

we have not made any assumptions on sequences {ǫk} and

{δk}. Next, we present two corollaries to Theorem 1 in which

we make assumptions on sequences {ǫk} and {δk}.

Corollary 1. Consider the setup of Theorem 1, and suppose

that ‖ǫk‖2 ≤ ǫ and δk = δ for all k with ǫ > 0 and δ ∈ R
m.

Suppose there exists a point x ∈ X such that g(x) + δ ≺ 0,

and that Assumption 1 holds, i.e. maxx∈X ‖g(x) + δ‖2 := σg

is finite. Then, when k → ∞ we have that

|f (x̄k)− f⋆(δ)| ≤
α

2
σ2
g + 2ǫσg

lim
k→∞

g(x̄k) + δ � 0

Corollary 1 considers the inexact computation of a sub-

gradient without perturbation δk on the update of the dual

variables. Observe that term σ2
g/2 can be made arbitrarily

small by selecting α small. However, since term 2ǫσg does

not depend on α we have that f(x̄k) converges asymptotically

to a ball around f⋆(δ).
The following corollary extends the previous one to consider

perturbations δk.

Corollary 2. Consider the setup of Theorem 1, and suppose

{δk} is an ergodic stochastic process with E(δk) = δ. Suppose

E(‖δk − δ‖22) = σ2
δ , and that ‖ǫk‖2 ≤ ǫ for all k for

some ǫ > 0. Further, suppose that Assumption 1 holds, i.e.

maxx∈X ‖g(x) + δ‖2 := σg is finite. Then, when k → ∞ we

have that

|E(f (x̄k)− f⋆(δ))| ≤
α

2
(σ2

g + σ2
δ ) + 2ǫσg

lim
k→∞

g(x̄k) + δ � 0

By considering perturbation δk we have added the term

α(σ2
δ/2) to the bound in Corollary 1, which is related to the

variance of the stochastic process {δk}. Note that if we let

σ2
δ = 0 we then recover the bound in Corollary 1. Further,

see that unlike with perturbations ǫk, with perturbations δk
the effect of the perturbations can be reduced by selecting α
small. Another interesting observation is that since σ2

δ has to

be finite, then the stochastic process {δk} cannot be heavy-

tailed.

IV. NUMERICAL EXAMPLE

In this section, we show how the analysis can be used

in network flow problems where the intensity of the flows

changes over time—that is, capture the fact that the flows in

a network may depend on factors such as the users behaviour.

Figure 1: Illustrating the network of the numerical example in

Section IV.

A. Problem Setup

Consider the network illustrated in Figure 1 with m = 5
nodes and n = 7 links.1 Flows arrive in the system at nodes

1 and 2, and they must be allocated to links in order to reach

node 5, where they will leave the system. The incidence matrix

of the network is given by

A =













−1 −1 0 0 0 0 0
1 0 −1 −1 0 0 0
0 1 1 0 −1 −1 0
0 0 0 1 1 0 −1
0 0 0 0 0 1 1













,

and we will assume that the links have unit capacity. The time

in the system is divided in slots of equal duration, and at each

time slot a node can decide whether to allocate a flow to a link.

The goal of the problem is to design a distributed scheduling

policy that minimises the cost of allocating flows to links—for

example, suppose that a network operator charges for a link

usage.

The convex formulation of the problem is

minimise
x∈X

f(x) =
∑n

j=1 fj(x(j))

subject to Ax+ b � 0
(16)

where X :=
∏n

j=1 Xj , Xj := [0, 1] for all j = 1, . . . , n,

b ∈ R
m is a vector containing the mean arrival/departure of

flows in the network at each of the nodes, and fj : R →
R are convex functions that capture the cost of using each

link j = 1, . . . , n. Optimisation (16) can be solved with the

dual subgradient method, and since the objective function is

fully separable and constraints are linear, the computation of a

(dual) subgradient can be carried out in a distributed manner.

In particular, in each iteration we have updates

xk(j) ∈ arg min
x∈Xj

{fj(x) + αrk(j)x}, j = 1, . . . , n

(17)

λk+1 = [λk + α(Axk +Bk)]
+, (18)

where rk = λT
kA, and Bk ∈ R

m is a random variable that

captures the intensity of the flows that arrive/leave the system

in each of the nodes. Note that we have assumed that in each

update (17) a node has perfect knowledge of the Lagrange

multipliers in the system, however, this could be relaxed by

using an approximate Lagrange multiplier µk in the update.

1The network is taken from the flow example in [16].
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Figure 2: Illustrating the convergence of the utility function.

Namely, with µk we could capture imperfect network state

information when allocating flows to links.

B. Simulation

We run updates (17) and (18) with fj(x(j)) = x(j)2 for

every link j = 1, . . . , n, b = [0.2, 0.6, 0, 0,−1]T , Bk(j), j =
1, 2 are Bernoulli with E(Bk(j)) = b(j), and Bk(j) for j =
3, 4, 5 are equal to b(j) for all k, i.e. nodes 3 and 4 do not

contribute to changing the flow load in the system, and the

service of node 5 is deterministic.

Figure 2 shows the convergence of f(x̄k) to a ball around

the optimum for α = {10−2, 10−3}. Observe from Figure 2

that despite the asymptotic convergence established in Corol-

lary 2, we have that f(x̄k) is attracted to f⋆ for finite k. Note

as well from the figure that with α = 10−2 we have better

performance than with α = 10−3 for finite k. Nonetheless,

from Corollary 2 we have that asymptotically, by using a

smaller step size, we will recover a better solution.

V. CONCLUSIONS

We have studied the impact of perturbations on the con-

vergence of the subgradient method for the dual problem in

constrained convex optimisation. The study of perturbations

is motivated because in practical implementations the dual

variables updates and the computation of the subgradients

of the dual function can be affected by noise or errors. Our

results establish the asymptotic convergence of the objective

function when the perturbations that affect the computation of

a dual subgradient are bounded, and when the perturbations

in the update of the dual variables are ergodic and have finite

variance. With an example, we have shown how the analysis

can be used in network flow problems where the intensity of

the flows that arrive in the system changes over time.
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[10] A. Nedić, “Subgradient methods for convex minimization,” Ph.D. dis-

sertation, Massachusetts Institute of Technology, 2001.
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[14] A. Nedić and D. P. Bertsekas, “The effect of deterministic noise in

subgradient methods,” Mathematical Programming, vol. 125, no. 1, pp.
75–99, 2010.

[15] Y. Nesterov and A. Nemirovski, Interior-Point Polynomial Algorithms in

Convex Programming. Society for Industrial and Applied Mathematics,
1994.

[16] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on decompo-
sition methods,” pp. 1–36, 2007.

487

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 27,2023 at 07:41:34 UTC from IEEE Xplore.  Restrictions apply. 



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



