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Abstract—We develop an edge-assisted object recognition sys-
tem with the aim of studying the system-level trade-offs between
end-to-end latency and object recognition accuracy. We focus on
developing techniques that optimize the transmission delay of
the system and demonstrate the effect of image encoding rate
and neural network size on these two performance metrics. We
explore optimal trade-offs between these metrics by measuring
the performance of our real time object recognition application.
Our measurements reveal hitherto unknown parameter effects
and sharp trade-offs, hence paving the road for optimizing this
key service. Finally, we formulate two optimization problems
using our measurement-based models and following a Pareto
analysis we find that careful tuning of the system operation yields
at least 33% better performance for real time conditions, over
the standard transmission method.

Index Terms—Edge Computing, Real Time Object Recognition

I. INTRODUCTION

Edge-assistance will most likely be a key component of

future latency-critical and computationally-demanding mobile

applications such as video analytics and Tactile Internet ser-

vices [1], [2]. Augmented Reality [3] and real time object

recognition [4] are examples of such services that can benefit

from the computational power of a nearby edge server, since

mobile devices are too slow to timely perform the required

computations. Nevertheless, the practical performance benefits

of such edge architectures remain unexplored. On the one

hand, data transmissions are added to the service delay. On

the other hand, the quality and execution delay of analytics is

affected by the volume of the transmitted data, as well as the

complexity of the algorithm running on the edge server.

In this paper we investigate this issue experimentally, by

building the edge computing system illustrated in Fig. 1. We

develop a real-time object recognition system, as a repre-

sentative of the plethora of emerging visual-aided services,

e.g. video stream analytics, mobile augmented reality, etc. A

mobile handset (client) captures camera images and transmits

them to an edge server for processing; the server uses a deep

neural network (NN) to detect and classify objects in the

images; and sends the output to the handset which overlays this

information on the screen. We built the above system using

an Android application and a state-of-the-art deep learning

network running on GPU hardware for the server. We use a

high performance 802.11ac wireless link for communication

between the handset and the server, which features technology
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Fig. 1: Schematic of edge-assisted object recognition system.

likely to persist in future small cells1, hence making our results

relevant to a range of systems.

Our goal is to understand the system-level trade-offs be-

tween end-to-end (E2E) latency and object recognition ac-

curacy, and propose specific solutions that can improve the

performance of the system. We firstly show that the degree

of image compression and deep learning NN input size

are key parameters affecting both performance metrics. In

particular, the use of more aggressive image compression

saves on communication latency between client and server

(since the transmitted image file is smaller), but at the cost

of reduced object recognition accuracy. While the impact

of image degradation due to noise or blur on recognition

accuracy has started to receive attention in the deep learning

literature [5], the impact of compression on accuracy remains

relatively poorly understood. Furthermore, a large NN size

will improve recognition performance at the cost of higher

execution delay at the server, hence increasing E2E latency. To

the best of our knowledge, the trade-off between E2E latency

and recognition accuracy for the above parameters, has not

previously been explored.

We focus our effort in designing wireless transmission

interventions that further improve the communication delay of

the system. Such interventions have not yet received significant

attention by the edge computing literature, as most efforts

have been devoted to minimizing computation delays [6]–[8].

This delay source however, is of critical importance to low

latency services, and hinders their ability to achieve real time

performance, e.g. [4], [9]. We show that transmit time can

be reduced by up to 65% by sending the images as short

back-to-back bursts of UDP packets. We also find that the

client Network Interface Controller (NIC) powersave can incur

1We use MU-MIMO/OFDM and channel aggregation at the PHY layer,
and employ packet aggregation at the MAC layer to reduce framing/signaling
overheads.



substantial transmit latency and, hence, smarter sleep mode

adaptation can further decrease latency by up to 60%.

Finally, we model the different sources of delay in our sys-

tem, and the obtained accuracy, as functions of the NN size and

encoding rate using our measurements. We illustrate the use of

the developed model to highlight optimal trade-offs between

E2E latency and system object detection accuracy. Moreover,

we show that the use of smart wireless transmission techniques

employed, can nearly double the system performance along

the Pareto-optimal curve of accuracy vs frame rate. Our main

contributions are as follow.

• We build the edge architecture of Fig. 1, where the image

encoding rate and input NN size are tunable parameters.

• We tailor the system design, with wireless transmission

interventions (Transport layer, MAC aggregation, device

wake-up), reducing the communication delay to just 2-6 ms.

• Using the system, we explore the impact of image encoding

quality and NN size on the delay and recognition accuracy.

Extensive experiments reveal sharp trade-offs between these

two performance criteria.

• We collect a wealth of measurements and use them to build

statistical models for the performance metrics of interest.

These can be used in order to tailor the system operation

based on the needs of the client, e.g. maximize accuracy for

a minimum perceived frame rate.

Paper Organization. In Sec. II we describe the system

architecture and the evaluation scenario. In Sec. III we measure

the impact of the image encoding and NN size on the E2E

latency, and present our design choices for reducing the

transmission delay. In Sec. IV we analyze the inherent latency-

accuracy trade-off, while in Sec. V we use our measurements

to obtain analytical models for delay and accuracy. Finally,

Sec. VI presents a discussion of the related work, while

Sec. VII concludes the paper.

II. PRELIMINARIES

A. Hardware & Software Setup

We developed an Android application that captures images

through the handset’s camera, carries out JPEG encoding and

then transmits the compressed images to an edge server for

processing. The server software (written in C/C++) decom-

presses and pre-processes the images, and submits them to

the deep learning neural network (NN) which is implemented

using a GPU-optimized framework. The results, i.e., the

bounding boxes and labels, are then sent back to the client

handset and overlaid on the displayed image.

Object recognition is performed by YOLO [10], a state-

of-the-art deep learning detector implemented on darknet, an

open source framework that supports GPU computations via

cuda. It takes an n×n array of image pixels as input, with each

pixel being a float value, and down-samples by 32 to give an

n/32 grid. Then, each grid cell proposes bounding boxes and

labels for any contained objects. These results are filtered to

generate the output consisting of a set of bounding boxes of

recognized objects with their labels and respective confidence.

We use different mobile devices to measure the effect of the

end user’s hardware on the system’s performance: (i) a Google

Pixel 2 (default device), (ii) a Samsung Galaxy S8, and (iii)

a Huawei P10 Lite. All devices are equipped with 802.11ac

chipsets, and we will be using the Google phone unless stated

otherwise. The edge server is connected via Ethernet to a WiFi

router that serves as an access point (802.11ac, 5GHz) for the

handsets2, see Fig. 1.

B. The Need for Edge Server Offload

We investigated first the viability of running YOLO on the

handset by cross-compiling darknet, but found that the running

times were excessive (on the order of minutes). Use of a cut-

down version of YOLO, referred to as TinyYOLO [10], was

also investigated. The running time was around 1s per image,

substantially faster than with the full YOLO network but still

very slow compared to the server. Note also that the speedup

of TinyYOLO is obtained at the cost of significantly reduced

object recognition accuracy, and supports only a small subset

of object types. Our tests convey the same message as previous

studies [11], [12], namely confirm the necessity for offloading

the object recognition task to a powerful server, if low latency

operation is to be obtained.

C. Evaluation Scenario

To evaluate the system performance we used the extensive

COCO dataset [13] which covers a wide range of images

and objects, and includes ground truth for each image (object

locations and labels within each image). For quantifying

performance, we used the Average Precision (AP) and Average

Recall (AR) metrics3 for a range of Intersection-over-Union

(IoU) values. Detection is considered successful when the ratio

of the overlapping area between the detected object and the

ground truth, over their respective union area, is higher than

an IoU value of 0.5. COCO further breaks precision and recall

metrics down by whether objects are large, medium or small.

YOLO is known to perform poorly on small objects and so

we focus on large and medium objects.

To use the COCO images we connected the phone to a

server via a USB cable and a Python script on the server

sends commands to the phone using the Android Debug Bridge

(adb). The server initiates the client application through adb

and configures the system parameters for the experiment (e.g.,

the JPEG compression level). Then it iterates over 5000 images

from the COCO validation set, sending them one-by-one to the

phone through cable. The phone transmits each image to the

server through the wireless interface, as if they were images

captured by its camera, receives the server response over WiFi

and passes this back over the USB cable for logging.

2The edge server is a 3.7 GHz Core i7 PC equipped with 32GB of RAM
and a GeForce RTX 2080Ti GPU; and the router is the ASUS RT-AC86U.

3AP is the ratio Tp/(Tp +Fp) while AR is the ratio Tp/(Tp +Fn), with
Tp being the true positive detections, Fp the false positive and Fn the false
negative detections. The results are averaged over all objects classes.



III. SYSTEM END-TO-END LATENCY

Our first goal is to measure each of the different delay

components involved in the procedure, and investigate how

they are affected by the encoding rate q and NN size n, but

also by the network set up (from the transport, to data link and

physical layer). Based on our findings we propose and evaluate

network design choices that speedup the task completion.

A. Encoding Delay (Tenc )

The handset application converts its camera images to JPEG

format before transmission to the server. We use JPEG as it

is widely adopted and supported by the Android API. While

image encoding is a typical step in such systems, its impact

on the performance of edge-assisted object recognition has

not received attention, with only few exceptions [2]. JPEG

is a lossy format and its compression is decided by the

encoding rate q. Note that we rely on the terminology of the

compression library we employed in our system4 and define

q∈ [10, 100] as the percentage ratio of compressed image size

over its actual size, where q=100 for an uncompressed image.

At higher encoding rates, the number of discrete cosine

transform coefficients that represent the JPEG image is larger,

leading to an expected increase in the encoding delay. Indeed,

Fig. 2a (upper plot) shows the encoding delay Tenc vs. the

encoding rate q. It can be seen that Tenc grows from 5ms to

11ms as q increases from 25% to 100%. This has also impact

on the size of the compressed image, see Fig. 2a (lower plot).

B. Decoding and Pre-processing Delay (Tdec )

Upon receiving an image, the server (i) decompresses it

to obtain an RGB image; (ii) re-samples/pads the image

to match the input size n of the deep learning network;

(iii) rotates the image to compensate for the handset camera

orientation; and (iv) converts the pixel values from 0-255

integers to 0-1.0 floats. Our profiling indicates that most of this

processing is limited by memory resources rather than CPU.

Hence, in our implementation we execute steps (i) and (ii)

jointly so as to minimize memory movements and maximize

scope for in-processor caching. And similarly we designed our

implementation to execute simultaneously steps (iii) and (iv).

Contrary to encoding delay, this part of the processing depends

both on the encoding rate and the NN size. Fig. 2b plots

measurements of the processing time vs. q and n. Observe

that when q ≤ 75 the latency is largely insensitive to q, i.e.,

it is dominated by the preprocessing steps other than image

decompression. Similarly, the NN size n affects significantly

Tdec only when it is very large (notice the sudden increase

when n ≥ 512). As we will see later, these findings create

opportunities for optimizing the overall system operation.

C. Transmission Delay (Ttx )

Next, we investigate the network impact on the task delay,

and propose specific solutions that can effectively halve this

time. First, note that the size of the transmitted images vary

4For jpeg compression (through quantization) we used the Android library:
https://developer.android.com/reference/android/graphics/YuvImage.
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Fig. 2: Time used for: (a) JPEG encoding, (b) decoding and

preprocessing, vs encoding rate q. Results are averaged for the

entire COCO library (5000 images).
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Fig. 3: (a) Wireless transmission delay using TCP vs JPEG

encoding rate, (b) example time history of the NIC state on

the mobile handset when power saving is enabled.

between 20–250KB, corresponding to roughly 13–166 packets

(each 1500B long). In contrast, the server response contains

object bounding boxes and typically fits into a single packet.

Hence, the network transmission delay is dominated by the

time taken to transmit the image and we expect that this will

increase with the encoding rate q.

The solid line in Fig. 3a plots the transmission delay vs.

q. This delay includes the time needed to send the image to

the server and the time for transmitting back the response.

The measurements are when TCP is used with default Android

and Linux settings, i.e., Cubic congestion control and dynamic

socket buffer sizing. As expected, the delay tends to increase

with the JPEG quality (for larger q). However, when q < 80
the delay is relatively insensitive to the encoding rate. Further

investigation reveals that this insensitivity is mainly caused

by two factors. Firstly, the handset’s power management

aggressively puts the NIC into sleep mode, and this induces a

delay to wake the NIC when transmission or reception restarts.

Secondly, the dynamics of TCP congestion control mean that

it takes multiple round-trip times to transmit all image packets.

Next, we propose solutions for these two issues.

1) Handset NIC Wake-from-Sleep Latency: When entering

sleep mode, the handset’s 802.11 NIC sends a special flagging

frame to the AP which buffers any packets awaiting transmis-

sion until the handset signals it has woken up. Fig. 3b plots

an example time history of the handset’s NIC state derived



by extracting these state transitions from tcpdump data5. Also

indicated on Fig. 3b are “active” periods where the NIC is

awake and exchanges data with the server. Note that the NIC

regularly enters a sleep state, waking up when the handset

starts to send an image. As indicated by our measurements

above, the handset can roughly predict when the next image

transmission will occur. Namely, a new captured image is

transmitted approximately after 5-10ms (time for its encoding),

and this could be used to preemptively wake up the NIC.

Solution: In order to investigate the potential latency gains

of smart wake-up strategies, we adopted the cruder approach of

using iperf to generate 1Mb/s of background UDP traffic from

the server to the client, to keep the handset’s wireless interface

awake. The dashed line in Fig. 3a shows that the overall

transmit delay is now decreased for all values of q, consistent

with the handset NIC no longer having to be woken up for

transmitting the image. The delay reduction is approximately

5ms for all encoding rates which corresponds to a reduction

of 50% in the wireless transmission delay.

2) Latency Caused By TCP Dynamics: The upper plot in

Fig. 4a shows the time history when transferring an image

using TCP. The connection is kept open and used for sending

multiple images so that the overhead of the TCP handshake

(SYN-SYNACK-ACK) is only incurred once (takes 4ms; not

shown). The compressed image in this example is 31335B in

size, and when the HTTP request header is added, it occupies

22 TCP packets6. Its transmission lasts 2.5ms and uses 4 MAC

frames for data and 3 for TCP ACKs. On average, 5.5 TCP

data packets are therefore sent in each MAC frame. Observe

that the client needs to receive TCP ACKs before it can send

the full image since the TCP congestion window (cwnd) limits

the packets in flight to around 10 when starting a new transfer.

Also, observe that there is contention between uplink and

downlink due to the ACKs transmitted by the server.

Solution: We explore the gains from removing up-

link/downlink contention and the impact of TCP cwnd, by

modifying the Android client and server to use UDP. At the

client side, an image is segmented and placed into a sequence

of UDP packets which are then sent to the socket back-to-

back to facilitate aggregation by the NIC. The lower plot in

Fig. 4a shows UDP measurements7 for transmission of the

same image. Despite that UDP packets are fit within a single

MAC frame (our system can aggregate up to 128 packets in

1 frame), we see that the transfer used actually 3 frames.

Presumably this is due to the scheduling delays between the

kernel and NIC, and the relative timing of channel access

opportunities and packet arrivals. Nevertheless, we find that

the data transfer time is now 0.8ms, i.e., 3 times faster than

with TCP. Finally, Fig. 4b plots measurements of the overall

wireless transmission time (sending the image and receiving

its response) for the full COCO data set when using TCP and

5In our experiment a delay is inserted between input of each image to the
android app to make the power-save behavior easier to see.

6The payload of a 1500B TCP packet is 1448B including header overheads.
7Including the time needed to segment the image into UDP packets, so the

values are comparable with the TCP data.
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Fig. 4: (a) Time histories showing transfer of a compressed

image from client to server using TCP (upper plot) and UDP

(lower plot), markers indicate packet boundaries. (b) Wireless

transmission delay for TCP and UDP vs JPEG encoding rate

q with mobile NIC power-save disabled.
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Fig. 5: Server recognition delay (Tdl), for different NN size.

UDP; and with mobile NIC power-save disabled. We find that

using UDP packet bursting roughly halves the transmit time

for all JPEG encoding rates.

Concluding, in this subsection we showed that tailored

transmission strategies, such as smart NIC power-saving and

using UDP with packet bursting, reduce the transmit time to

around 5ms. This improvement is hugely important given the

targeted E2E latency budgets.8

D. Recognition Delay (Tdl ) and Impact of Handheld

YOLO outputs the coordinates of the image’s detected

objects along with their labels. The recognition delay Tdl

depends on the NN size, and our measurements in Fig. 5 show

that it increases, roughly, quadratically with n. Other works

have reported similar findings, e.g., see [7], [11], but the delays

are quite higher than our results, presumably due to the usage

of older GPU hardware. Furthermore, DeepMon [6] proposes

NN optimizations on the mobile devices that reduce the delay

at about 1sec for YOLO, but it is still worse than our system’s

performance. These values may vary from system to system,

but we expect qualitatively the trend to persist.

Similarly, we suspect that the handset hardware affects only

slightly (i.e., quantitatively) the results. To verify this, we

repeat our experiments with 2 additional mobile devices. The

delays that are directly related to the handset device, and may

8To achieve real time frame update rates, such as 30fps, the available total
latency budget is only 33ms.
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vary due to the different hardware specifications, are the en-

coding and transmission delay. Fig. 6 plots the total encoding

and transmission delay measured for the 3 devices (Pixel 2,

P10 Lite, Galaxy S8) for each encoding rate q (averaging all

dataset images). We find that compared to the Pixel 2, the

other 2 devices are slightly faster in image encoding, but also

slower in transmitting. Such differences might likely arise due

to the different chipsets/firmware implementations. Observe

however, that the roughly quadratic increase of both delay

components persists across all devices as q increases. Hence,

qualitatively the results hold for different hardware.

IV. PERFORMANCE TRADE-OFFS

Using our measurements above we discuss here the inter-

action and trade-offs between the two performance metrics,

i.e., the accuracy and E2E delay, under a range of different

scenarios. We discover that in several cases there are sharp

trade-off curves which create opportunities for improving the

system operation, by carefully tuning parameters q and n.

Figures 7a-7b plot the object recognition9 average precision

and recall vs the encoding rate q and the NN size n. We see

that both metrics generally increase with q and n, although

there is a sharp improvement going from n=128 to n=256.

Moreover, as n drops the precision and recall performance

deteriorate and cannot be improved even if we use high q
(e.g., see last row in each matrix). This finding differs from

previous studies, e.g., [5], perhaps due to the COCO dataset

which contains images with a large range of object sizes.

We further study the impact of the object sizes on perfor-

mance, while we consider different detection thresholds (IoU

values) [13]. In Fig. 7c we plot the precision and recall vs n
and q for large and medium objects, averaged for a range of

IoU values. We see that for large objects the accuracy increases

rapidly with n but plateaus when n > 300. For medium

objects on the other hand, the benefits of larger input size

(and so higher image resolution) are greater and accuracy only

plateaus when n>500. Fig. 7d shows that the dependence on

q, albeit not that strong, follows indeed a continuous increase.

We note that the precision and recall values in these plots are

relatively low because we use very high IoU thresholds (up to

9We have used the Python library CoCoApi for calculating these metrics,
https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools.

0.95). Also, we do not consider larger NNs since for n=608
we already have satisfactory precision but also large delays.

Finally, we study the frame rate, i.e., the reciprocal of E2E

latency, for different NN sizes and image encoding rates.

Fig. 7e presents the average frame rate for each scenario.

Notice that for small NNs (n<320) the encoding affects sig-

nificantly the frame rate, but this effect is weaker for n>320.

For example, when n = 608 the rate falls below 30fps even

for very small values of q. In other words, we find that in the

low NN size regime, the accuracy gains from choosing a high

encoding rate are not significant, while the frame rate gains

of a low encoding rate are substantial. Hence, a low encoding

rate is probably more suitable for a small NN. The opposite

is true in the high NN size regime, where we can achieve

substantial accuracy gains without compromising significantly

the frame rate. These findings underline the importance of

selecting jointly the values of parameters n and q. Next section

provides a systematic methodology towards that end.

V. DATA MODELS AND PARETO ANALYSIS

A. Fitting the Measurements

Our measurements indicate that the latency components and

accuracy can be approximated using quadratic functions of the

decision variables n and q. Note that only the decoding delay

Tdec and precision f (we omit recall for brevity) depend on

both n and q. On the other hand, the encoding and transmission

delays, Tenc and Ttx, depend only on q, and the deep learning

delay Tdl on n. We therefore define:

Tenc(q) = α0 + α1q + α2q
2, (1)

Tdec(n, q) = β0 + β1n+ β2q + β3nq + β4n
2 + β5q

2, (2)

Ttx(q) = γ0 + γ1q + γ2q
2, (3)

Tdl(n) = δ0 + δ1n+ δ2n
2, (4)

f(n, q) = ǫ0 + ǫ1n+ ǫ2q + ǫ3nq + ǫ4n
2 + ǫ5q

2. (5)

The model parameters are obtained by fitting our measure-

ments to (1)-(5). Clearly, the exact values of these parameters

can change if, for instance, we use a different access point or

server. However, as our tests with the different handset devices

have revealed, the changes are minimal and only quantitative.10

B. Pareto Analysis

We leverage the above models to explore the interaction of

the decision variables:

n ∈ N ,
{

[128, 608] | mod(n, 32)=0
}

, q ∈ Q, [10, 100],

i.e., study how they jointly affect the precision and the frame

rate (E2E latency), while we also devise the Pareto fronts

for these two performance criteria by following a detailed

parameter-sensitivity analysis. We formulate two optimization

problems; P1, where we maximize the precision subject to

achieving a minimum frame rate; and P2 where we maximize

the frame rate while not dropping the precision below a

threshold value. Formally the 2 problems can be written:

10The handsets affect only the values of parameters {αi}i and {γi}i.
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Fig. 7: Performance Trade-offs (disabled power-save; UDP). (a-b) Precision and recall (IoU=0.5) vs n and q. (c-d) Precision

and recall for medium and large objects vs n for uncompressed images (in (c)), and vs q with fixed n = 512 (in (d)). (e)

Frame rate vs NN size n and encoding rate q. All results are averaged over all images and all IoUs in [0.5, 0.95].

P1 : maximize
n∈N ,q∈Q

f(n, q) (6)

s.t. Ttotal(n, q) ≤ Tmax (7)

P2 : minimize
n∈N ,q∈Q

Ttotal(n, q) (8)

s.t. f(n, q) ≥ fmin. (9)

where we have defined:

Ttotal(n, q) = Tenc(q) + Tdec(n, q) + Ttx(q) + Tdl(n),

and Tmax is the highest tolerable delay in order to achieve a

frame rate of 1/Tmax fps. Respectively, fmin is the target

precision requested by the user. In essence, constraint (7)

ensures that the total delay does not exceed Tmax, and hence

the frame rate 1/Ttotal will be greater or equal to the threshold

1/Tmax. Similarly in P2 we maximize the frame rate by

minimizing Ttotal. Using both problem formulations we will

be able to highlight the trade-offs between delay and precision.

Fig. 8a plots the values of n and q that maximize the

precision while keeping the frame rate at or above the value

indicated on the x-axis (recall that n is a multiple of 32). The

achieved precision for each frame rate is displayed with a solid

line in Fig. 8b. Observe how the increasing frame rate dictates

the drop of NN size and encoding rate, which in turn result in

decreasing precision performance. Moreover, we observe that

the NN size continuously drops or stays level with the frame

rate, while the encoding rate can increase in some cases. That

occurs when the NN size has been reduced and hence the

increase of the encoding rate can sustain a higher precision.

Notice that for the largest range of frame rates, the NN size

can be kept quite high (around and above 400), even when

exceeding 30 fps. This yields a satisfactory precision of 0.5
at 40 fps11. However, after the 40 fps threshold, the NN size

has to be very small to facilitate fast object recognition and

the precision performance drops dramatically.

To highlight the impact of our optimized networking con-

figuration, we compare the performance with the respective

11Recall that we obtain low precision values because on purpose we used
very high IoU values; for more typical thresholds the precision is much higher.
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Fig. 8: (a) The NN input size and encoding rate that maxi-

mize precision for the desired frame rate. (b) Corresponding

maximal precision values.
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Fig. 9: (a) The NN size and encoding rate that minimize

end-to-end delay for the target accuracy. (b) Corresponding

maximal frame rate values.

results of a non-optimized (vanilla) system, dashed line in

Fig. 8b. Namely, these results were obtained by fitting the

non-optimized (TCP, and enabled powersave) wireless trans-

mission delay measurements to (3) and solving P1. Clearly, the

increased transmission delays hamper the ability of the system

to achieve high precision for acceptable frame rates (precision

drops by 33% at 30 fps). Moreover, P1 becomes infeasible for

a target frame rate above 34 fps, indicating the greater range

in which the system can operate after configuring the network.

The respective results for P2 are displayed in Fig. 9a, 9b. The

optimal frame rate can be kept very close to 30 fps, even

for very high target precision. Also, we observe a huge gap

between the optimized and non-optimized solution in this case,

with the former achieving up to 93% higher frame rate than

the latter when target precision is very low.



VI. RELATED WORK

Deep Learning With Compressed Images. The impact

of image compression on recognition accuracy has started to

receive attention in the deep learning literature, see seminal

paper [5] and follow-up works, but this aspect of performance

remains relatively poorly understood. Most attention has fo-

cused on developing new compression approaches tailored to

deep learning e.g. see [3], [14]. The authors in [2] explore the

effect of image compression rate to the object detection accu-

racy. To the best of our knowledge however, the system-level

trade-offs between E2E latency and deep learning accuracy

introduced by the use of image compression have not been

previously explored.

Edge-Assistance. JAGUAR [15] and Glimpse [4] are edge-

assisted, real-time object recognition systems. They both use

object tracking to reduce the number of recognitions, but do

not use state of the art deep learning techniques for object

recognition. [11] proposes a solution for deciding the execu-

tion location of augmented reality tasks, either on the mobile,

or an edge server. The idea of distributing the neural network

layers among different tiers of the network architecture is

demonstrated in [16], [17]. The devices, based on their com-

putation resources execute smaller or larger parts of the NN

towards increasing the accuracy of inferences with tolerable

execution and network delays. In [8] the authors propose

a framework for distributing deep learning sub-processes to

edge, cloudlet and cloud nodes towards increasing the job

execution rate of the system. [3] presents an augmented reality

object detection system that leverages an edge server, as well

as object tracking and image encoding to improve latency.

The above works indicate the necessity of edge architectures,

towards improving the E2E latency of delay sensitive services.

Accuracy/Latency Trade-off. JALAD [18] proposes the

decoupling of a Deep Neural Network (DNN) between edge

and cloud towards minimizing latency with execution accu-

racy guarantees. Overlay [9] presents an augmented reality

system for mobile devices, assisted by a GPU-enabled server

that is designed towards minimizing the tracking error. Mo-

biQoR [19] studies the trade-off between delay and Quality

of Result for edge applications that involve machine learning

and analytics like face recognition. The authors show that

sacrificing computation result quality can decrease delay as

well as energy consumption. LAVEA [12] proposes a system

for computation offloading of data analytics to nearby edge

nodes. The formulated optimization problem aims in making

offloading and bandwidth allocation decisions towards mini-

mizing latency. DeepDecision [7] is a video analytics system

that balances accuracy and latency, by properly adjusting the

camera sample rate, video encoding rate, and deep learning

model. However, both transmission and processing delays

are much higher than the ones obtained by our system.

DeepMon [6] distributes the execution of a large DNN across

multiple mobile GPUs to reduce latency. It focuses on DNN

optimizations, instead of the network-centric analysis pre-

sented in our work. All the above works, highlight the inherent

trade-off between latency and accuracy in edge architectures.

Our work however goes beyond that, by proposing important

delay reducing modifications that easily enable real time

performance for object recognition.

VII. CONCLUSIONS

We develop an edge-assisted object recognition system and

show that careful network transmit and powersave strategies

can significantly reduce the wireless transmission delay. We

find that the level of image compression, as well as the

dimension of the deep learning network used, are key de-

sign parameters, affecting both end-to-end latency and object

recognition accuracy. We demonstrate how our measurements

can be used to choose these design parameters to optimally

trade-off between execution delay and accuracy.
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