Overview

- Quick Probability Refresh
- Probabilistic Interpretation of Logistic Regression
- Probabilistic Interpretation of Regularisation
- Refresh: Continuous RVs
- Probabilistic Interpretation of Linear Regression
Probability Refresh

In this module it’s assumed you already know basic probability. There’s lots of review material online, including module ST3009:

- https://www.scss.tcd.ie/doug.leith/ST3009/

Summary:

- **Sample space** S: set of possible outcomes, **random event** E: subset of S, **random variable**: maps event E to a real value.

- Can think of probability of an event E as the frequency with which it happens when an experiment is repeated many times

- **Conditional probability**:
 - Events: $P(E|F) = \frac{P(E \cap F)}{P(F)}$ when $P(F) > 0$.
 - RVs: $P(X = x|Y = y) = \frac{P(X=x \text{ and } Y=y)}{P(Y=y)}$

- **Chain rule**: $P(X = x \text{ and } Y = y) = P(X = x|Y = y)P(Y = y)$.
Consequences of chain rule:

- **Marginalisation:** Suppose RV Y takes values in $\{y_1, y_2, \ldots, y_n\}$. Then

\[
P(X = x) = P(X = x \text{ and } Y = y_1) + \cdots + P(X = x \text{ and } Y = y_n)
= \sum_{i=1}^{n} P(X = x | Y = y_i)P(Y = y_i)
\]

- **Bayes rule:**

\[
P(X = x | Y = y) = \frac{P(Y = y | X = x)P(X = x)}{P(Y = y)}
\]

- **Independence:** Random variables X and Y are independent if

\[
P(X = x \text{ and } Y = y) = P(X = x)P(Y = y)
\]

for all x and y, in which case $P(X = x | Y = y) = P(X = x)$.
Probabilistic Interpretation: Logistic Regression

• Assume

\[P(Y = y|\theta, x) = \frac{1}{1 + e^{-y\theta^T x}} \]

and recall \(y = 1 \) or \(y = -1 \) only.

• The **likelihood** \(f_{D|\Theta}(d|\theta) \) of the training data \(d \) is therefore:

\[
 f_{D|\Theta}(d|\theta) = \prod_{i=1}^{m} \frac{1}{1 + e^{-y_i\theta^T x_i}}
\]

• Taking logs:

\[
 \log f_{D|\Theta}(d|\theta) = \sum_{i=1}^{m} \log \frac{1}{1 + e^{-y_i\theta^T x_i}}
\]

• And the maximum likelihood estimate of \(\theta \) minimises:

\[
 - \sum_{i=1}^{m} \log \frac{1}{1 + e^{-y_i\theta^T x_i}} = \sum_{i=1}^{m} \log(1 + e^{-y_i\theta^T x_i})
\]

since \(-\log(z) = \log(1/z) \).
Compare with our previous logistic regression setup ...

- **Hypothesis:**
 \[h_\theta(x) = \text{sign}(\theta^T x) \]

- **Parameters:** \(\theta \)

- **Cost Function:**
 \[J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y^{(i)}\theta^T x^{(i)}}) \]

- **Goal:** Select \(\theta \) that minimises \(J(\theta) \)

- **Prediction:**
 \[\text{sign}(\theta^T x) \]
 i.e.
 \[
 \begin{cases}
 1 & \text{if } P(Y = 1|\theta, x) > P(Y = -1|\theta, x) \\
 -1 & \text{otherwise}
 \end{cases}
 \]

- **Log-likelihood**
 \[\sum_{i=1}^{m} \log \frac{1}{1 + e^{-y \theta^T x}} \]

- **Select \(\theta \) to maximise log-likelihood**
 i.e. to minimise
 \[
 - \sum_{i=1}^{m} \log \frac{1}{1 + e^{-y \theta^T x}} = \sum_{i=1}^{m} \log(1 + e^{-y \theta^T x})
 \]

- **Probability:**
 \[P(Y = y|\theta, x) = \frac{1}{1 + e^{-y \theta^T x}}, \ y = \pm 1 \]
Probabilistic Interpretation: Logistic Regression

- The probabilistic formulation of logistic regression provides us with a new insight:

\[
P(Y = y | \theta, x) = \frac{1}{1 + e^{-y \theta^T x}}
\]

- So in addition to prediction \(h_\theta(x) = \text{sign}(\theta^T x) \) we also have an estimate of our confidence in the prediction, namely \(\frac{1}{1 + e^{-y \theta^T x}} \).

- When \(\frac{1}{1 + e^{-y \theta^T x}} \) is close to 1, then we are confident in our prediction but when \(\frac{1}{1 + e^{-y \theta^T x}} \) is small then we are less confident.
Probabilistic Interpretation: Regularisation

- Recall Bayes Rule

\[
P(\Theta = \vec{\theta} | D = d) = \frac{P(D = d | \Theta = \vec{\theta})P(\Theta = \vec{\theta})}{P(D = d)}
\]

- **Posterior** \(\text{likelihood} \quad \text{prior}

- **Likelihood.** Probability of seeing the data \(d\) given model with parameter \(\Theta = \vec{\theta}\)

- **Prior.** Before seeing any data what is our belief about the model i.e. what is probability of parameter values \(\Theta\).

- **Posterior.** After seeing the data, what is our belief about probability of parameter values \(\Theta\) now that we have seen the data.

- **Maximum A Posteriori** (MAP) estimate of \(\vec{\theta}\) is value that maximises \(P(\Theta = \vec{\theta} | D = d)\)
Probabilistic Interpretation: Regularisation

• Maximum Likelihood estimation: select value of θ that maximises $P(D = d | \Theta = \theta)$
• Maximum a posteriori (MAP) estimation: select θ that maximises $P(\Theta = \theta | D = d)$
• Taking logs in Bayes Rule:

\[
\log P(\Theta = \theta | D = d) = \log P(D = d | \Theta = \theta) + \log P(\Theta = \theta) \\
- \log P(D = d)
\]

Can drop the $\log P(D = d)$ term since d is fixed, so we select θ to maximise:

\[
\underbrace{\log P(D = d | \Theta = \theta)}_{\text{log-likelihood}} + \underbrace{\log P(\Theta = \theta)}_{\text{log-prior}}
\]

or for continuous-valued RVs:

\[
\underbrace{\log f_{D|\Theta}(D = d | \Theta = \theta)}_{\text{log-likelihood}} + \underbrace{\log f_{\Theta}(\Theta = \theta)}_{\text{log-prior}}
\]
Ridge regression variant of linear regression:

- $Y = \Theta x + M, \ M \sim N(0, 1)$ as before.
- $\Theta_j, \sim N(0, \sigma^2)$ (this is our prior on θ_j), $j = 1, \ldots, n$
- log-likelihood: $-\sum_{i=1}^{m} (y^{(i)} - \theta^T x^{(i)})^2$
- log-prior: $-\theta_j^2 / \sigma^2$
- So MAP estimate selects θ to maximise:

$$-\sum_{i=1}^{m} (y^{(i)} - \theta^T x^{(i)})^2 - \sum_{j=1}^{n} \theta_j^2 / \sigma^2$$

i.e. to minimise:

$$\sum_{i=1}^{m} (y^{(i)} - \theta^T x^{(i)})^2 + \sum_{j=1}^{n} \theta_j^2 / \sigma^2$$
Probability Refresh

Continuous-valued random variables:

- $P(X = x) = 0$ for continuous-valued random variables, instead we need to consider intervals e.g. $P(a \leq X \leq b)$.

- $F_Y(y) := P(Y \leq y)$ is the **cumulative distribution function** (CDF) and $P(a < Y \leq b) = F_Y(b) - F_Y(a)$.

- For a continuous-valued random variable Y there exists a **probability density function** $f_Y(y) \geq 0$ such that:

\[
F_Y(y) = \int_{-\infty}^{y} f_Y(t)dt
\]

and so

\[
P(a < Y \leq b) = \int_{-\infty}^{b} f_Y(t)dt - \int_{-\infty}^{a} f_Y(t)dt = \int_{a}^{b} f_Y(t)dt
\]

- The probability density function $f(y)$ for random variable Y is **not** a probability e.g. it can take values greater than 1. Its the area under the PDF that is the probability $P(a < Y \leq b)$

- $\int_{-\infty}^{\infty} f(y)dy = 1$ (since $\int_{-\infty}^{\infty} f(y)dy = F_Y(\infty) = P(Y \leq \infty) = 1$)
Probability Refresh

- \(F_{XY}(x, y) = P(X \leq x \text{ and } Y \leq y) \) is the cumulative distribution function for \(X \) and \(Y \). It is well-defined for both continuous and discrete valued RVs.

- When \(X \) and \(Y \) are continuous-valued random variables there exists a probability density function (PDF) \(f_{XY}(x, y) \geq 0 \) such that:
 - \(F_{XY}(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u, v) du \ dv \)

- Define conditional PDF:
 \[
 f_{X|Y}(x|y) = \frac{f_{XY}(x, y)}{f_Y(y)}
 \]

- Then chain rule also holds for PDFs:
 \[
 f_{XY}(x, y) = f_{X|Y}(x|y)f_Y(y) = f_{Y|X}(y|x)f_X(x)
 \]

- So marginalisation, Bayes rule and independence carry over to PDFs similarly to discrete-valued RVs.
Probability Refresh

Y is a **Normal** or **Gaussian** random variable $Y \sim N(\mu, \sigma^2)$ when it has PDF:

$$f_Y(y) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

- $\mu = 0, \sigma = 1$
- $E[Y] = \mu, \ Var(Y) = \sigma^2$
- Symmetric about μ and defined for all real-valued x
Assume output y is generated by:

$$Y = \theta^T x + M = h_\theta(x) + M$$

where $h_\theta(x) = \theta^T x$ and M is Gaussian noise with mean 0 and variance 1. As usual, we use capitals for random variables.

So training data d is:

$$\{(x^{(1)}, h_\theta(x^{(1)}) + M^{(1)}), (x^{(2)}, h_\theta(x^{(2)}) + M^{(2)}), \cdots, (x^{(m)}, h_\theta(x^{(m)}) + M^{(m)})\}$$

where $M^{(1)}, M^{(2)}, \ldots, M^{(m)}$ are independent random variables each of which is Gaussian with mean 0 and variance 1.
Probabilistic Interpretation: Linear Regression

- A Gaussian RV Z with mean μ and variance σ^2 has pdf
 \[f_Z(z) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(z-\mu)^2}{2\sigma^2}}. \]

- So we are assuming: $f_M(m) = \frac{1}{\sqrt{2\pi}} e^{-\frac{m^2}{2}}$, $f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-h_\theta(x))^2}{2}}$.

- The likelihood $f_{D|\Theta}(d|\theta)$ of the training data d is therefore:
 \[f_{D|\Theta}(d|\theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}} e^{-\frac{(y(i)-h_\theta(x(i)))^2}{2}} \]

- Taking logs: $\log f_{D|\Theta}(d|\theta) = \log \frac{1}{\sqrt{2\pi}} - \sum_{i=1}^{m} \frac{(y(i)-h_\theta(x(i)))^2}{2}$

- And the maximum likelihood estimate of θ maximises
 \[\max_{\theta} - \sum_{i=1}^{m} (y(i) - h_\theta(x(i)))^2 \]
 i.e. minimises
 \[\min_{\theta} \sum_{i=1}^{m} (y(i) - h_\theta(x(i)))^2 \]
Probabilistic Interpretation: Who Cares?

• Since probability is about reasoning under uncertainty it would be very odd indeed if our machine learning algorithms did not make good sense from a probability/statistics point of view.
• Casting an ML approach within a statistical framework clarifies the assumptions that have been made (perhaps implicitly). E.g. in linear regression:
 • Noise is additive $Y = \theta^T x + M$
 • Noise on each observation is independent and identically distributed
 • Noise is Gaussian – it is this which leads directly to the use of a square loss $(y - h_\theta(x))^2$. Changing the noise model would lead to a different loss function.
• We can leverage the wealth of results and approaches from probability/statistics, and perhaps gain new insights. E.g. in linear regression:
 • Without regularisation, our estimate of θ is the maximum likelihood estimate. Would a MAP estimate be more/less useful?