Hold-Out Method

* So far we’ve evaluated cost function on whole of training data ...
* ... but we’re really interested in how well our model makes predictions for new data i.e. how well the model generalises.
* Split training data into (i) test data used to evaluate prediction performance and (i) training data used to train model. E.g. 20% is test data, 80% is training data.
* There is a trade-off in how we split the data. If we use more for the training part then we expect our model to be better trained, but then we have less data to test the model on. And vice versa. An 80/20 or 90/10 split is common.
* Typically split the data randomly. So as avoid inadvertently introducing bias.
```
import numpy as np
X = np.arange(0.1,0.05).reshape(-1, 1)
y = 10*X + np.random.normal(0.0,1.0,X.size).reshape(-1, 1)
for i in range(5):
   from sklearn.model_selection import train_test_split
   Xtrain, Xtest, ytrain, ytest = train_test_split(X,y,test_size=0.2)

   from sklearn.linear_model import LinearRegression
   model = LinearRegression().fit(Xtrain, ytrain)

   ypred = model.predict(Xtest)
   from sklearn.metrics import mean_squared_error
   print("intercept %f, slope %f, square error %f"%(model.intercept_, model.coef_,mean_squared_error(ytest,ypred)))
```
intercept -0.146890, slope 10.174736, square error 0.680207
intercept -0.050447, slope 9.898857, square error 1.105285
intercept -0.154663, slope 10.048717, square error 1.212909
intercept -0.441200, slope 10.543796, square error 1.904468
intercept -0.117850, slope 9.859572, square error 1.412553

- As we use different subsets of the training data to train the model we get slightly different model parameters and predictions.
- By doing this repeatedly we get an idea of how robust/fragile our model and its predictions are.
Repeatedly applying hold-out method using random splits is fine, but its more common to use k-fold cross-validation.

- Divide our data into k equal sized parts
- Use part 1 as test data and the rest as training data. i.e. train model using all of the data except part 1, then calc $J(\theta)$ for part 1 data
- Use part 2 as test data and the rest as training data, and so on.
- This gives us k estimates of $J(\theta)$ and so we can use this to estimate the average and the spread of values.
k-Fold Cross-validation

<table>
<thead>
<tr>
<th>Original dataset</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fold 1</td>
<td>Test</td>
<td>Train</td>
<td>Train</td>
<td>Train</td>
<td>Train</td>
</tr>
<tr>
<td>Fold 2</td>
<td>Train</td>
<td>Test</td>
<td>Train</td>
<td>Train</td>
<td>Train</td>
</tr>
<tr>
<td>Fold 3</td>
<td>Train</td>
<td>Train</td>
<td>Test</td>
<td>Train</td>
<td>Train</td>
</tr>
<tr>
<td>Fold 4</td>
<td>Train</td>
<td>Train</td>
<td>Train</td>
<td>Test</td>
<td>Train</td>
</tr>
<tr>
<td>Fold 5</td>
<td>Train</td>
<td>Train</td>
<td>Train</td>
<td>Train</td>
<td>Test</td>
</tr>
</tbody>
</table>
from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X, y, cv=5, scoring='neg_mean_squared_error')
print(scores)
print("Accuracy: %0.2f (+/− %0.2f)" % (scores.mean(), scores.std()))

from sklearn.model_selection import KFold
kf = KFold(n_splits=5)
for train, test in kf.split(X):
 from sklearn.linear_model import LinearRegression
 model = LinearRegression().fit(X[train], y[train])
 ypred = model.predict(X[test])
 from sklearn.metrics import mean_squared_error
 print("intercept %f, slope %f, square error %f"%(model.intercept_, model.coef_, mean_squared_error(y[test], ypred)))
Example output:

Accuracy: −1.08 (+/- 0.91)
intercept −0.810381, slope 11.420786, square error 0.274081
intercept −0.741972, slope 11.354662, square error 0.693850
intercept −0.946450, slope 11.580333, square error 2.841125
intercept −0.845299, slope 11.667406, square error 0.584412
intercept −0.601880, slope 10.690939, square error 1.013331
How to choose k? Common choices are $k = 5$ or $k = 10$.

- There are two sources of prediction error (i) noise, (ii) model mistakes. Here we’re interested in (ii).
- Each test set has n/k points. We average over these to calculate the cost function e.g. square error.
 - Averaging \rightarrow smooths out the noise error, provided n/k is large enough i.e. k small enough.
- We generate k estimates of the cost function, one for each fold.
 - We use these to estimate the distribution (mean and variance) of the cost function \rightarrow need k large enough that we have enough samples to estimate distribution.
- Also, as k increases the computation times increases (remember we need to fit the model k times), so don’t want k to be too large.
- $k = 5$ or $k = 10$ is a reasonable compromise value, but also sometimes use other values e.g. leave one out cross-validation uses $k = m$, #training data points.
Suppose we add a penalty to the linear regression cost function:

- Model: $h_\theta(x) = \theta^T x$
- Cost Function: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 + \theta^T \theta / C$
- This variant of linear regression is called **Ridge Regression**
- Parameter C in cost function is called a **hyperparameter** (to distinguish it from model parameters θ).
- How to choose value for C?
- ... use cross-validation. Scan across a range of values for C, do cross-validation for each value of C and plot distribution of prediction error.
- Rule of thumb: increase C value by factor of 5 or 10 so can quickly scan across a large range e.g. [0.1, 1, 10, 100] or [0.1, 0.5, 1, 5, 10, 50, 100]
Tuning Model Hyperparameters

```python
mean_error=[]; std_error=[]
Ci_range = [0.1, 0.5, 1, 5, 10, 50, 100]
for Ci in Ci_range:
    from sklearn.linear_model import Ridge
    model = Ridge(alpha=1/(2*Ci))
    temp=[]
    from sklearn.model_selection import KFold
    kf = KFold(n_splits=5)
    for train, test in kf.split(X):
        model.fit(X[train], y[train])
        ypred = model.predict(X[test])
        from sklearn.metrics import mean_squared_error
        temp.append(mean_squared_error(y[test],ypred))
    mean_error.append(np.array(temp).mean())
    std_error.append(np.array(temp).std())
import matplotlib.pyplot as plt
plt.errorbar(Ci_range,mean_error,yerr=std_error)
plt.xlabel('Ci'); plt.ylabel('Mean square error')
plt.xlim((0,50))
plt.show()
```
Choosing C too small (making the $\theta^T\theta/C$ penalty too strong) increases the prediction error

- C values ≥ 5 look ok. *Would you choose 5 or 50 for C?*
 - Avoiding over-fitting: try to use “simplest” model possible → smallest value of C

In your assignments and projects, when hyperparameter values need to be selected it is mandatory to present cross-validation analysis to support your choice of values.
Another example, polynomial features.

- Linear regression (no penalty)
- Actual data is quadratic plus noise, but suppose we don’t know this
- Use features $[1, x, x^2, x^3, x^4, \ldots x^q]$
- How to choose value for hyperparameter q?
- Scan across a range of values for q, do cross-validation for each value of q and plot distribution of prediction error.
- How to choose range of values to scan across?
import numpy as np
X = np.arange(0, 1, 0.01).reshape(-1, 1)
y = 10*(X**2) + np.random.normal(0.0, 1.0, X.size).reshape(-1, 1)
from sklearn.model_selection import KFold
kf = KFold(n_splits=5)
import matplotlib.pyplot as plt
plt.rc('font', size=18); plt.rcParams['figure.constrained_layout.use'] = True
mean_error = []; std_error = []
q_range = [1, 2, 3, 4, 5, 6]
for q in q_range:
 from sklearn.preprocessing import PolynomialFeatures
 Xpoly = PolynomialFeatures(q).fit_transform(X)
 from sklearn.linear_model import LinearRegression
 model = LinearRegression()
 temp = []; plotted = False
 for train, test in kf.split(Xpoly):
 model.fit(Xpoly[train], y[train])
 ypred = model.predict(Xpoly[test])
 from sklearn.metrics import mean_squared_error
 temp.append(mean_squared_error(y[test], ypred))
 if ((q==1) or (q==2) or (q==6)) and not plotted:
 plt.scatter(X, y, color='black')
 ypred = model.predict(Xpoly)
 plt.plot(X, ypred, color='blue', linewidth=3)
 plt.xlabel("input x"); plt.ylabel("output y")
 plt.show()
 plotted = True
 mean_error.append(np.array(temp).mean())
 std_error.append(np.array(temp).std())
plt.errorbar(q_range, mean_error, yerr=std_error, linewidth=3)
plt.xlabel('q')
plt.ylabel('Mean square error')
plt.show()
Choosing \(q \) too small or too large increases the prediction error on the test data but not on the training data. Why?

Notice the test data error bars become large for larger \(q \) (high-order polynomials tend to be badly behaved).

Costs for \(q = 1, 2 \) or \(3 \) look about the same, but \(q = 2 \) has smaller error bars. That’s normal – often the best choice isn’t that clear and some judgement is needed.
Let’s combine both. Use polynomial features with $q = 6$ and add ridge regression penalty

- **Ridge regression cost function:**
 \[J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 + \theta^T \theta / C \]
- **Use feature** $[1, x, x^2, x^3, x^4, x^5, x^q]$
- **Scan across a range of values for C**
Remember increasing C decreases contribution of $\theta^T\theta/C$ penalty to cost, so tend to revert to previous linear regression behaviour as C gets large.

Predictions for training data always improves as C made larger, but predictions for test data start getting worse.

Bearing in mind the error bars, values of C around 1 look like a reasonable choice.
Taking error bars into account, choice of C around 1 looks ok
Overfitting and Underfitting

- As our model gets more rich/complex we start to fit the "noise" in the training data, called **overfitting**. Predictions for new data become poor.
 - E.g. use of polynomial features with $q = 6$ when data is quadratic
- If our model is too simple it is not able to capture the behaviour of the data, called **underfitting**. Again, predictions become poor.
 - E.g. use of $q = 1$ (purely linear model) when data is quadratic
- Striking the right balance between over-fitting and under-fitting is a key task in supervised machine learning, and is intrinsic to all supervised learning approaches i.e it can’t be avoided.
There are two main approaches to model selection (both can be used together):

* **Sequential Model Selection:**

 \[
 \text{repeat} \{ \\
 \text{Add a new feature, fit model, use cross-val to evaluate} \\
 \text{\} until predictions start getting worse or improvement is small.}
 \]

* **Regularisation:**

 Change the cost function to add a penalty e.g. in linear regression change cost fn to

 \[
 \frac{1}{m} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2 + \frac{1}{C} \sum_{j=1}^{n} \theta_j^2
 \]

 Here \(\frac{1}{C} \sum_{j=1}^{n} \theta_j^2 \) is the **penalty** term, decreasing \(C \) makes this term bigger, increasing \(Ca \) makes it smaller (when \(C = \infty \) then \(\frac{1}{C} = 0 \) and we are back to original setup with no penalty).
Regularisation

Two common regularisation penalties:

- **Quadratic/L2 penalty**: $R(\theta) = \theta^T\theta = \sum_{j=1}^{n} \theta_j^2$. Also called Tikhonov regularisation. Encourages elements of θ to have small value.
 - Adding quadratic penalty to linear regression cost function → ridge regression, see above.
 - A quadratic penalty is always included in SVM cost function
 - Can add quadratic penalty to logistic regression too.

- **L1 penalty**: $R(\theta) = \sum_{j=1}^{n} |\theta_j|$.
 - Encourages sparsity of solution i.e. few non-zero elements in θ.
LASSO Regression

\[J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 + \frac{1}{C} \sum_{j=1}^{n} |\theta_j|. \]

- When \(C = 0.1 \) the model parameters \(\theta = [0, 0, 0, 0, 0, 0, 0] \)
- When \(C = 75 \) typical \(\theta = [0, 0, 8.02371592, 1.65407384, 0, 0, 0] \)
- Observe that L1 penalty tends to make as many elements of \(\theta \) zero as possible.