Overview

- Instance-based Learning: kNN
- Instance-based Learning Using Kernels
- Kernel Logistic Regression and Kernel SVMs
- Kernel Regression
Instance-based Learning: \(k \)NN

- Training data: \(\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(m)}, y^{(m)})\} \)
- Given new input \(x \), find the nearest point in the training data e.g. \(x^{(2)} \) and use its label e.g. \(y^{(2)} \) as our prediction
- Can generalise to finding the \(k \) nearest neighbours (hence \(k \)NN) and predicting the label by majority vote
- We can use the same idea for both real valued outputs and for classification.
- How do we measure distance i.e. decide which points are nearest? Recall \(x \) is a vector. Often use Euclidean distance \(\sum_{j=1}^{n} x_j^2 \).
Instance-based Learning Using Kernels

- Define a weighting function $K(x, z)$ that is maximum when $x = z$ and decays as the distance between x and z increases.
- This function is often called a **kernel**, although this requires $K(x, z)$ to be of the form $\phi(x)^T \phi(z) = \phi(z)^T \phi(x)$ for some mapping ϕ.
- E.g. Gaussian kernel $K(x, z) = e^{\frac{\sum_{j=1}^{n} (x_j - z_j)^2}{\sigma^2}}$. Parameter σ controls how quickly the weighting decays i.e how narrow or wide the bell shape is.
- Example: $z = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$
Use prediction $\text{sign}(\sum_{i=1}^{m} \alpha_i y^{(i)} K(x, x^{(i)}))$ where $\alpha_i \geq 0$, $i = 1, \ldots, m$ are parameters to be chosen.
Instance-based Learning Using Kernels

- Plot is of $\sum_{i=1}^{m} \alpha y^{(i)} K(x, x^{(i)})$ with $K(x, x^{(i)}) = e^{\frac{(x-x^{(i)})^2}{\sigma^2}}$ (use same α and σ values for all points i).
- Notice the edge effects. When no training data then with Gaussian kernel prediction reverts to zero.
Increasing σ makes the kernel broader. Tends to underfit the training data points.

Decreasing σ makes the kernel narrower. Tends to overfit the training data points.
Example: Nonlinear Decision Boundary

Generate training data using $y = \text{sign}((x_1 - 1)^2 + (x_2 - 1)^2 - 1)$.
Example: Nonlinear Decision Boundary

Fit \(\text{sign}(\sum_{j=1}^{m} \alpha y^{(j)} K(x, x^{(j)})) \), using Gaussian kernel with \(\alpha = 0.5 \) and various values of \(\sigma^2 \).
Kernel Logistic Regression

- Replace $\theta^T x$ with $\sum_{j=1}^{m} \alpha_j y^{(j)} K(x, x^{(j)})$
- Hypothesis: $\text{sign}(\sum_{j=1}^{m} \alpha_j y^{(j)} K(x, x^{(j)}))$
- Cost: $J(\alpha) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y^{(i)} \sum_{j=1}^{m} \alpha_j y^{(j)} K(x^{(i)}, x^{(j)})})$
- Use gradient descent to select α as usual. Select σ (kernel parameter) and λ using cross-validation.
- Use of kernels provides another way to handle nonlinear decision boundaries. The extra flexibility comes at greater computational cost (more parameters to choose) and with risk of overfitting.
Kernel SVMs

- Replace $\theta^T x$ with $\sum_{j=1}^{m} \alpha_j y^{(j)} K(x, x^{(j)})$ as before
- Hypothesis: $\text{sign}(\sum_{j=1}^{m} \alpha_j y^{(j)} K(x, x^{(j)}))$
- Cost:
 $$J(\alpha, \theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)} \sum_{j=1}^{m} \alpha_j y^{(j)} K(x^{(i)}, x^{(j)})) + \lambda \theta^T \theta$$
- What about $\theta^T \theta$ term? We’d like cost to be only in terms of α

1 Training a Support Vector Machine in the Primal. Olivier Chapelle, Neural Computation 2007
Kernel SVMs

What about $\theta^T \theta$ term?

- There’s another way to think about kernel approaches. What we’re doing is replacing x by $\phi(x)$, generalising what we did when we used polynomials to fit nonlinear decision boundaries.
- Changing $\theta^T x$ to $\theta^T \phi(x)$, define $\theta = \sum_{j=1}^{m} \alpha_j y^{(j)} \phi(x^{(j)})$.
- Then $\theta^T \phi(x) = \sum_{j=1}^{m} \alpha_j y^{(j)} \phi(x^{(j)})^T \phi(x) = \sum_{j=1}^{m} \alpha_j y^{(j)} K(x, x^{(j)})$.

$$
\theta^T \theta = \sum_{j=1}^{m} \alpha_j y^{(j)} \phi(x^{(j)})^T \sum_{i=1}^{m} \alpha_i y^{(i)} \phi(x^{(i)})
= \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_j y^{(j)} K(x^{(j)}, x^{(i)}) y^{(i)} \alpha_i = \alpha^T M \alpha
$$

where M is matrix with $M_{ij} = y^{(j)} K(x^{(j)}, x^{(i)}) y^{(i)}$ and α is parameter vector.

- Cost:

$$
J(\alpha) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)} \sum_{j=1}^{m} \alpha_j y^{(j)} K(x^{(i)}, x^{(j)})) + \lambda \alpha^T M \alpha
$$
Kernel SVMs: Summary

- Hypothesis: \(\text{sign}(\sum_{j=1}^{m} \alpha_j y^{(j)} K(x, x^{(j)})) \)

- Cost:
 \[
 J(\alpha) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)} \sum_{j=1}^{m} \alpha_j y^{(j)} K(x^{(i)}, x^{(j)})) + \lambda \alpha^T M \alpha
 \]

- Use gradient descent to select \(\alpha \) as usual. Select \(\sigma \) (kernel parameter) and \(\lambda \) using cross-validation.
Kernalised Ridge Regression

- Replace $\theta^T x$ with $\sum_{j=1}^{m} \alpha_j y^{(i)} K(x, x^{(j)})$
- Use $\theta^T \theta = \alpha^T M \alpha$ where M is matrix with $M_{ij} = y^{(j)} K(x^{(j)}, x^{(i)}) y^{(i)}$ and α is parameter vector.
- Hypothesis: $\sum_{j=1}^{m} \alpha_j y^{(i)} K(x, x^{(j)})$
- Cost: $J(\alpha) = \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - \sum_{j=1}^{m} \alpha_j y^{(i)} K(x^{(i)}, x^{(j)}))^2 + \lambda \alpha^T M \alpha$
- Use gradient descent to select α as usual, or can use closed-form solution. Select σ (kernel parameter) and λ using cross-validation.
- Use of kernels provides another way to fit nonlinear curves.