A Language and Tool for Generating Efficient
Virtual Machine Interpreters

David Gregg!> and M. Anton Ertl?

! Department of Computer Science, Trinity College, Dublin 2, Ireland.
David.Gregg@cs.tcd.ie
2 Institut fir Computersprachen, TU Wien, A-1040 Wien, Austria.
anton@complang.tuwien.ac.at

Abstract. Stack-based virtual machines (VMs) are a popular represen-
tation for implementing programming languages, and for distributing
programs in a target neutral form. VMs can be implemented with an
interpreter to be simple, portable, quick to start and have low memory
requirements. These advantages make VM interpreters especially useful
for minority-use and domain-specific languages. VM interpreters contain
large amounts of repeated or similar code. Furthermore, interpreter opti-
misations usually involve a large number of similar changes to many parts
of the interpreter source code. We present a domain-specific language for
describing the instruction set architecture of a VM. Our generator takes
the instruction definition and produces C code for processing the instruc-
tions in several ways: execution, VM code generation and optimisation,
disassembly, tracing and profiling. The generator can apply optimisations
to the generated C code for each VM instruction, and across instructions.
Using profile-directed feedback and experimentation the programmer can
rapidly optimise the interpreter for new architectures, environments and
applications.

1 Introduction

Interpreters are a popular approach for implementing programming languages,
especially where simplicity and ease of construction are important. A common
choice when implementing interpreters is to use a virtual machine (VM), i.e.,
an intermediate representation similar to real machine code, which can be inter-
preted efficiently. Well-known examples of virtual machines are Java’s JVM [1],
Prolog’s WAM [2], and Smalltalk’s VM [3].

An unusual feature of VM interpreters when compared with other programs
is that they contain large amount of repeated similar code. Writing and maintain-
ing this code can be time consuming and expensive. Furthermore, common ap-
proaches to optimising VM interpreters often require similar (but not identical)
modifications to large numbers of places in the interpreter’s source code. Such op-
timisations must usually be performed by the programmer on the source code of
the interpreter, because compilers do not have enough domain-specific knowledge
of interpreters to identify such opportunities. The result is that VM interpreters

usually remain under-optimised because the programming effort and mainte-
nance cost of experimenting with and performing these optimisations would be
too high.

An alternative to writing this source code manually is to generate the re-
peated similar code using a program generator. In this chapter we describe on-
going work on vmIDL (VM Instruction Definition Language), a domain-specific
language [4] for describing the instruction set architecture of a VM. Our inter-
preter generator vmgen accepts a vmlIDL specification as input and outputs C
source code for an optimised interpreter, as well as code to implement support
software such as tracing, profiling, and optimising VM code at the time it is
generated. The goal is to automate much of the construction of interpreters, in
much the same way that routine tasks in manufacturing of physical goods are
routinely automated.

This chapter presents an overview of our research on generating virtual ma-
chine generators and the relationship of our work to domain-specific program
generation. Our work is not only an example of a domain-specific language and
generator. It is also an enabling technology for other DSLs. By automating many
routine tasks in building and optimising an interpreter, it allows portable, rea-
sonably efficient implementations of languages to be constructed quickly.

The rest of this chapter is organised as follows. We first explain the ad-
vantages of interpreters for implementing minority-use and domain-specific lan-
guages (section 2). Section 3 makes the case for automating the construction
of VM interpreters. Section 4 introduces vmIDL, a domain-specific language for
describing virtual machine instructions. In section 5 we show how vmgen uses
the vmIDL specification to generate C code for the major components of an in-
terpreter system. Section 6 describes the three large interpreters that have been
built using vmIDL. In section 7 optimisations performed by vmgen are presented.
Finally, section 8 describes existing related work on interpreter generators and
interpreters.

2 Interpreters and DSLs

Implementing a domain-specific language (DSL) is very different from imple-
menting a widely-used general-purpose language [5]. General-purpose languages
such as Fortran, C, and Java are typically rich in features, Turing complete and
often have a relatively complicated syntax. Such languages usually have a large
base of users, which makes it economical for sophisticated programming envi-
ronments to be developed for such languages. For example, languages such as
C++ have highly-optimising compilers, special syntax support in editors such
Emacs, debuggers and even automatic code restructuring tools.

In contrast, domain-specific languages are smaller and simpler [6]. There
are special purpose constructs to enable domain-specific optimisations or code
generation. Many DSLs have a small user base. Thus, it is not economical to
invest in developing sophisticated compilers and development environments. The

cost of developing, maintaining and porting implementations of the language is
very significant compared to the potential user base.

Interpreters have many advantages for implementing domain-specific and
minority-use languages [7, 8]. First, interpreters are relatively small, simple pro-
grams. Simplicity makes them more reliable, quicker to construct and easier
to maintain. Debugging an interpreter is simpler than debugging a compiler,
largely because interpreters are usually much smaller programs than compilers.
Second, they can be constructed to be trivially portable to new architectures.
An interpreter written in a high-level language can be rapidly moved to a new
architecture, reducing time to market. There are also significant advantages in
different target versions of the interpreter being compiled from the same source
code. The various ports are likely to be more reliable, since the same piece of
source code is being run and tested on many different architectures. A single
version of the source code is also significantly cheaper to maintain. Interpreters
allow a fast edit-compile-run cycle, which can be very useful for explorative
programming and interactive debugging. Although just in time compilers offer
similar advantages, they are much more complicated, and thus expensive to con-
struct. Finally, interpreters require much less memory than compilers, allowing
them to be deployed in environments with very limited memory, a useful feature
for embedded systems.

These advantages, especially simplicity and portability, have made inter-
preters very popular for minority-use languages, whose use is usually restricted
to a limited domain. For example, Python has always been implemented us-
ing an interpreter, which has allowed a non-profit organization to implement
and maintain one of the most widely ported languages available. Similarly, most
implementations of Forth and Perl are based on interpreters, as are all imple-
mentations of Ruby, Logo, sed and awk. Interpreters allow a language imple-
mentation to be constructed, maintained and ported much more cheaply than
using a compiler.

3 Automation

When creating a VM interpreter, there are many repetitive pieces of code: The
code for executing one VM instruction has similarities with code for executing
other VM instructions (get arguments, store results, dispatch next instruction).
Similarly, when we optimise the source code for an interpreter, we apply sim-
ilar transformations to the code for each VM instruction. Applying those op-
timisations manually would be very time consuming and expensive, and would
inevitably lead us to exploring only a very small part of the design space for
interpreter optimisations. This would most likely limit the performance of the
resulting interpreter, because our experience is that the correct mix of interpreter
optimisations is usually found by experimentation.

Our system generates C source code, which is then fed into a compiler. With
respect to optimisation, there is a clear division of labour in our system. Vmgen
performs relatively high-level optimisations while generating the source code.

These are made possible by vmgen’s domain-specific knowledge of the structure
of interpreters, and particularly of the stack. On the other hand, lower-level,
traditional tasks and optimisations such as instruction selection, register alloca-
tion and copy propagation are performed by an existing optimising C compiler.
This allows us to combine the benefits of domain-specific optimisation with the
advantages of product-quality compiler optimisation.

For VM code disassembly and VM code generation (i.e. generating VM code
from a higher-level language, or from another format at load time), a large
amount of routine, similar code also appears in interpreters. Moreover, the code
for dealing with one VM instruction is distributed across several places: VM
interpreter engine, VM disassembler, and VM code generation support functions.
To change or add a VM instruction, typically all of these places have to be
updated. These issues suggest that much of the source code for interpreters
should be generated from a high-level description, rather than hand-coded using
expensive programmer time.

We present vmIDL, a high-level domain-specific language for describing stack
VM instructions. Virtual machines are often designed as stack architectures,
for three main reasons: 1) It is easy to generate stack-based code from most
languages; 2) stack code is very compact, requiring little space in memory; 3)
stack-based code can easily be translated into other formats. Our approach com-
bines a small DSL for describing stack effects with general purpose C code to
describe how the results of the VM instruction are generated from the inputs. In
addition, vmIDL makes it easy to write fast interpreters by supporting efficient
implementation techniques and a number of optimisations.

4 A Domain-Specific Language

Our domain-specific language for describing VM instructions, vmIDL, is sim-
ple, but it allows a very large amount of routine code to be generated from a
very short specification. The most important feature of vmIDL is that each VM
instruction defines its effect on the stack. By describing the stack effect of each in-
struction at a high level, rather than as simply a sequence of low-level operations
on memory locations, it is possible to perform domain-specific optimisations on
accesses to the stack.

4.1 Instruction Specifications

A typical example of a simple instruction description is the JVM instruction
iadd:

jadd (i1 i2 -- i)
{
i = i1+i2;

}

The stack effect (which is described by the first line) contains the following
information: the number of items popped from and pushed onto the stacks, their
order, which stack they belong to (we support multiple stacks for implementing
VMs such as Forth, which has separate integer and floating point stacks), their
type, and by what name they are referred to in the C code. In our example, iadd
pops the two integers i1 and i2 from the data stack, executes the C code, and
then pushes the integer i onto the data stack.

A significant amount of C code can be automatically generated from this
simple stack effect description. For example, C variables are declared for each of
the stack items, code to load and store items from the stack, code to write out the
operands and results while tracing the execution of a program, for writing out
the immediate arguments when generating VM code from source code, and when
disassembling VM code. Similarly, because the effect on the stack is described
at a high level, code for different low-level representations of the stack can be
generated. This feature allows many of the stack optimisations described in
section 7.

4.2 Special Keywords

In addition to the stack effects, our language also provides some keywords that
can be used in the C code which have special meaning to our generator.

SET_IP This keyword sets the VM instruction pointer. It is used for implement-
ing VM branches.

TAIL This keyword indicates that the execution of the current VM instruction
ends and the next one should be invoked. Using this keyword is only neces-
sary when there is an early exit out of the VM instruction from within the
user-supplied C code. Vmgen automatically appends code to invoke the next
VM instruction to the end of the generated C code for each VM instruction,
so TAIL is not needed for instructions that do not branch out early.

As an example of the use of these macros, consider a conditional branch:

ifeq (#aTarget i --)
{
if (i=0){
SET_IP(aTarget);
TAIL;
}
}

The # prefix indicates an immediate argument. To improve branch prediction
accuracy, we use TAIL inside the body of the if statement, to allow separate
dispatch code for the taken and not taken (fall-through) branches of the if (see
section 7.4).

vmIDL spec — { simple_inst | super_inst | comment | declaration }

simple_inst — inst_id (stack_effect) { C_code }

stack_effect — {item.id} -- {item._id}

super_inst — inst_id = inst_id {inst_id}

comment — \ comment_string

declaration — \E (stack_def | stack_prefix | type_prefix)

stack_def — stack stack_id pointer_id c_type_id

stack_prefix — stack_id stack-prefix prefix_id

typeprefix — s” typestring” (single | double) stack_id type-prefix prefix_id

Fig. 1. Simplified EBNF grammar for vmIDL

4.3 Types

The type of a stack item is specified through its prefix. In our example, all
stack items have the prefix i that indicates a 32-bit integer. The types and their
prefixes are specified at the start of the vmIDL file:

\E s" int" single data-stack type-prefix i

The s" int" indicates the C type of the prefix (int). In our current implemen-
tation, this line is executable Forth code, and the slightly unorthodox s"..."
syntax is used to manipulate the string "int". The qualifier single indicates
that this type takes only one slot on the stack, data-stack is the default stack
for stack items of that type, and i is the name of the prefix. If there are several
matching prefixes, the longest one is used.

4.4 Programming Language Issues

Figure 1 shows a simplified grammar for vmIDL. Terminal symbols are shown
in bold font. A vmIDL specification consists of zero or more instances of each
of the major features of the language, which include the following. A simple
instruction is a standard instruction specification of the type shown in section
4.1. It consists of the name of the instruction, a stack effect and some C code to
perform the computation in the instruction.

A superinstruction is a compound instruction that consists of a sequence of
simple instructions, but that incurs only the interpreter overhead of executing
a single instruction (see section 7.5). A programmer specifies a superinstruction
by writing a name for the superinstruction, followed by the sequence of names
of the simple instructions that the superinstruction consists of. Given this sim-
ple declaration, vmgen automatically constructs source code to implement the
superinstruction from the instruction definitions of the component instructions.
No further programmer intervention is needed. Note that the grammar descrip-
tion of a superinstruction allows the list of simple instructions to have only one
element. In a current research (i.e. unreleased) version of vmIDL, we use this
feature to implement multiple versions of simple instructions (see section 7.3).

Comments in vmIDL are specified with a backslash followed by a space at the
start of a line. Our work on interpreter generators originated in an implementa-
tion of the Forth language [9], and for this reason the Forth comment character
is used.

The final major feature in vmIDL is a declaration. A stack declaration is used
to declare the name of a stack, the name of the stack pointer used to access
that stack, and the type of the data stored in that stack (typically some neutral
type, such as void *). When a VM uses multiple stacks, a stack prefix can be
declared. Finally, type prefixes are used to identify how data on the stack should
be interpreted (such as whether the value at the top of the stack should be
interpreted as an integer or floating point number).

Note that the syntax for declarations is rather unusual for a programming
language. As with comments, the syntax originates with Forth. The current
version of our interpreter generator system is implemented in Forth, and \E
denotes that vmgen should escape to the Forth interpreter. Everything appearing
after the \E is actually executable Forth code. For example, the vmIDL keyword
stack is a Forth procedure, which is called by vmgen to declare a new stack.
Although it is intended that this escape facility will only be used for declarations,
it allows our vmgen to be enormously flexible, since any valid Forth code can be
inserted in an escape line.

A great deal of research on domain-specific languages is concerned with se-
mantic issues such as reasoning about the properties of the described system,
checking for consistency, and type systems [5]. Our work on vmIDL does not ad-
dress these issues at all. The burden of finding semantic errors in the instruction
definition falls entirely on the programmer, in much the same way as if the in-
terpreter were written entirely in C, without the help of a generator. In fact, our
current system is deliberately lightweight, with only just enough functionality
to automatically generate the C code that would normally be written manually.
Our experience is that this is sufficient for the purposes of building efficient VM
interpreters, although occasionally we must examine the generated C code to
identify errors. Our work on vmIDL operates under the same economics as many
other domain-specific languages; the user base is not sufficiently large to support
features that are not central to building the interpreter.

5 Generator Output

Given an instruction definition in vmIDL, our generator, vmgen, creates several
different files of code, which are included into wrapper C functions using the C
preprocessor #include feature. By generating this code from a single definition,
we avoid having to maintain these different sections of code manually.

5.1 Interpreter Engine

Figure 2 shows the vmgen output for the iadd VM instruction. It starts with the
label of the VM instruction. Note that vmgen supports both interpreters with

LABEL(iadd) { /* label */

int i1; /* declarations of stack items */

int i2;

int i;

NEXT_PO; /* dispatch next instruction (part 0) */

i1 = vm_Cell2i(sp[1]); /* fetch argument stack items */

i2 = vm_Cell2i(spT0S);

sp += 1; /* stack pointer updates */

{ /* user-provided C code */

i = i1+i2;

}

NEXT_P1; /* dispatch next instruction (part 1) */
spTOS = vm_i2Cell(i); /* store result stack item(s) */
NEXT_P2; /* dispatch next instruction (part 2) */
}

Fig. 2. Simplified version of the code generated for the iadd VM instruction.

switch and threaded dispatch, as well as other dispatch methods, such as using
function pointers. The C macro LABEL() must be defined appropriately by the
programmer to allow the C code to be the target of a switch, goto, or function
call.

Next, the stack items used by the instruction are declared. NEXT_PO, NEXT_P1,
and NEXT_P2 are macros for the instruction dispatch sequence, which facilitate
prefetching the next VM instruction (see section 7.1). The assignments following
NEXT_PO are the stack accesses for the arguments of the VM instruction. Then
the stack pointer is updated (the stacks grow towards lower addresses). Next is
the C code from the instruction specification. After that, apart from the dispatch
code there is only the stack access for the result of the instruction. The stack
accesses load and store values from the stack. The variable spT0S is used for top-
of-stack caching (see section 7.2), while vm_Cel12i and vm_i2Cell are macros
for changing the type of the stack item from the generic type to the type of the
actual stack item. Note that if the VM instruction uses the TAIL keyword to exit
an instruction early, then the outputted C code will contain an additional copy
of the code to write results to the stack and dispatch the next instruction at the
early exit point.

This C code looks long and inefficient (and the complete version is even
longer, since it includes trace-collecting and other code), but GCC? optimises it

3 Other compilers (such as Intel’s Compiler for Linux) usually produce similar assem-
bly code for the stack access. Our experience is that most mainstream compilers
perform copy propagation and register allocation at least as well as GCC. However,
instruction dispatch is more efficient with GCC, since GNU C’s labels-as-values ex-
tension can be used to implement threaded dispatch, rather than switch dispatch
[10].

1d1 t0,8(s3) ;il = vm_Cell2i(sp[1]);

ldq s2,0(s1) ;load next VM instruction

addq s3,0x8,83 ;sp += 1;

addq s1,0x8,s1 ;increment VM instruction pointer
addl t0,s4,s4 ;i = il+i2;

jmp (s2) ;jump to next VM instruction

Fig. 3. Alpha code produced for iadd

quite well and produces the assembly code we would have written ourselves on
most architectures we looked at, such as the Alpha code in figure 3.

5.2 Tracing

A typical C debugger is not well suited for debugging an interpreter because
the C debugger works at a too-low level and does not know anything about the
interpreted program. Figure 4 shows the tracing code that we left out of figure 2.
NAME is a macro to output the instruction name and the contents of interesting
VM registers (e.g., the instruction pointer and the stack pointers). The user
defines the printarg_ functions and can thus control how the arguments and
results are displayed.

LABEL(iadd) {

NAME("iadd") /* print VM inst. name and some VM registers */
.. /* fetch stack items */

#ifdef VM_DEBUG
if (vm_debug) {

fputs(" i1=", vm_out); printarg_i(il); /* print arguments */
fputs(" i2=", vm_out); printarg i(i2);

}

#endif

ce /* user-provided C code */

#ifdef VM_DEBUG

if (vm_debug) {
fputs(" -— ", vm_out); /* print result(s) */
fputs(" i=", vm_out); printarg_i(i);
fputc(’\n’, vm_out);

}

#endif

/* store stack items; dispatch */

Fig. 4. Tracing code generated for the iadd VM instruction.

In addition to a tracing mechanism, we believe that a VM-level debug-
ger would also be useful. This would allow us to set breakpoints, single-step

through the program, examine the contents of the stack, instruction pointer,
stack pointer, etc. A version of the interpreter that supports such interaction
would be relatively easy to generate from the instruction definition, and would
greatly enhance Vmgen’s debugging facilities. At the time of writing, the current
version does not yet generate such a debugger.

5.3 VM Code Generation

Vmgen generates functions for writing VM instructions and immediate argu-
ments to memory. For each VM instruction, a function is generated which places
the opcode and any operands in memory. Using standard functions makes the
code more readable and avoids error-prone repeated code to store opcodes and
operands. More importantly, using these functions allow the VM code to be
automatically optimised as it is generated in memory. For example, if we gener-
ate the VM instructions iload followed by iadd and our interpreter offers the
superinstruction iload_iadd, then these functions will automatically make the
replacement. Similarly, other optimisations, such as instruction replication, that
modify the VM code can also be automatically applied, at the time the VM code
is generated.

5.4 Disassembler

Having a VM disassembler is useful for debugging the front end of the inter-
pretive system. All the information necessary for VM disassembly is present in
the instruction descriptions, so vmgen generates the instruction-specific parts
automatically:

if (ip[0] == vm_inst[1]) {
fputs("ipush", vm_out);
fputc(’ ’, vm_out); printarg_i((int)ip[1]);
ip += 2;

}

This example shows the code generated for disassembling the VM instruction
ipush. The if condition tests whether the current instruction (ip[0]) is ipush
(vm_inst [11). If so, it prints the name of the instruction and its arguments, and
sets ip to point to the next instruction. A similar piece of code is generated for
all the VM’s instruction set. The sequence of ifs results in a linear search of the
existing VM instructions; we chose this approach for its simplicity and because
the disassembler is not time-critical.

5.5 Profiling

Vmgen supports profiling at the VM level. The goal is to provide information
to the interpreter writer about frequently-occurring (both statically and dynam-
ically) sequences of VM instructions. The interpreter writer can then use this

information to select VM instructions to replicate and sequences to combine into
superinstructions.

The profiler counts the execution frequency of each basic block. At the end of
the run the basic blocks are disassembled, and output with attached frequencies.
There are scripts for aggregating this output into totals for static occurrences
and dynamic execution frequencies, and to process them into superinstruction
and instruction replication rules. The profiler overhead is low (around a factor
of 2), allowing long-running programs to be profiled.

6 Experience

We have used vmgen to implement three interpreters: Gforth, Cacao and CVM.
Our work on interpreter generators began with Forth and was later generalised
to deal with the more complicated Java VM. This section describes the three
implementations, and provides a discussion of integrating a vmIDL interpreter
into the rest of a sophisticated JVM with such features as dynamic class loading
and threads.

6.1 The Implementations

Gforth [11] is a portable product-quality interpretive implementation of Forth.
Forth is a stack-based language, meaning that all computations are performed
by manipulating a user-visible stack. It is primarily used for low-level systems
programming and embedded systems. Forth can be implemented in only a few
kilobytes of memory, and the standard Forth coding style of aggressive code
factoring allows extremely compact user code. Furthermore, the Forth language
is designed to be parsed and compiled to VM code very efficiently, allowing
interactive Forth systems in very small amounts of memory. Thus, many small
embedded systems such as camera and remote sensor systems provide a small,
interactive version of Forth, to allow engineers with a terminal to interact with
the system easily. Perhaps the most mainstream desktop Forth application is the
OpenBoot system which is used to boot all Sun Workstations.

Gforth has three programmer-visible stacks (data stack, return-stack, and
floating-point stack). Most of the VM instructions are directly used as Forth
words. The Gforth project started in 1992 and Gforth has been distributed as
a GNU package since 1996. The current version has been ported to six different
architectures, and to Unix, DOS and Windows. GForth is the perfect example
of a system where portability, simplicity, maintainability and code size are more
important than execution speed. On average, Gforth is just under five times
slower than BigForth [12] a popular Forth native code compiler, but is about
40% faster than Win32Forth, a widely used Forth interpreter implemented in
assembly language; and more than three times faster than PFE (Portable Forth
Environment), a widely-used C implementation of Forth [13].

Our second implementation is an interpreter-based variant of the Cacao JVM
JIT compiler for the Alpha architecture [14]. The goals of building the Cacao

interpreter were to see how useful vmgen is for implementing interpreters other
than Gforth, to add any missing functionality, and to be able to measure the
performance of our optimisations compared with other interpreters and JIT com-
pilers. The Cacao interpreter performs well compared to other JVMs running
on Alpha. It is more than ten times faster than the Kaffe 1.0.5 and DEC JVM
1.1.4 interpreters. On large benchmarks, the overall running time is less than 2.5
times slower than the Cacao JIT compiler. However, much of this time is spent
in Cacao’s slow run-time system, so the true slowdown of our interpreter over
the Cacao JIT compiler is closer to a factor of 10 [13].

The Cacao interpreter implementation is rather unstable, and does not im-
plement all aspects of the JVM standard correctly. Furthermore, as it runs only
on the Alpha architecture, it is difficult to compare with other JVM implemen-
tations. For this reason, we have recently embarked on a new JVM implementa-
tion, based on Sun’s CVM, a small implementation of the Java 2 Micro Edition
(J2ME) standard, which provides a core set of class libraries, and is intended for
use on devices with up to 2MB of memory. It supports the full JVM instruction
set, as well as full system-level threads. Our new interpreter replaces the existing
interpreter in CVM. Our CVM interpreter is similar to the Cacao implementa-
tion, except that it follows the standard JVM standard fully, and it is stable
and runs all benchmark programs without modification. Experimental results
[15] show that on a Pentium 4 machine the Kaffe 1.0.6 interpreter is 5.76 times
slower than our base version of CVM without superinstructions on standard large
benchmarks. The original CVM is 31% slower, and the Hotspot interpreter, the
hand-written assembly language interpreter used by Sun’s Hotspot JVM is 20.4%
faster than our interpreter. Finally, the Kaffe JIT compiler is just over twice as
fast as our version of CVM.

6.2 Integration Issues

Our work originates in Forth, and a number of issues arose when implementing a
full version of the JVM, which is much more complicated than Forth VMs. One
important difference between Forth and the JVM is that Forth uses the same
stack for all functions, whereas the JVM has a separate stack for each method.
The result is that call and return instructions in the JVM must save and restore
the stack pointer and stack cache. This was not particularly well supported in
vmgen because it happens so rarely in Forth, so new features have been added
to the experimental version of vmgen being used for the CVM implementation.

A similar problem arises with exceptions. Several JVM instructions, such
as array access and integer division can throw an exception. The result is that
control moves to the most recent exception handler for that type of exception,
which may be in the current method, or may be in another method further
up the call stack. Implementing exception handling correctly is not simple, but
it is mostly orthogonal to vmgen. Although it appears that exceptions could
complicate vmgen’s stack optimisations, in fact the operand stack is cleared
when an exception is thrown. So while stack cache and other variables must
be reloaded after an exception, it is not much more complicated than writing

vmIDL code for method calls and returns. The complicated exception handling
code must be written by the programmer outside vmIDL.

A more difficult problem arose with the JVM’s dynamic loading and initial-
isation of classes. New classes can be loaded at any time, so that the currently
executing method may contain references to objects of a class that has not yet
been loaded. Furthermore, each class contains an initialiser which must be ex-
ecuted exactly the first time an object or a static field or method of that class
is accessed [1]. The standard way to implement JVM instructions that can ac-
cess the fields and methods of other classes is to have two versions of each such
instruction. The first version loads and initialises the class, if necessary. It also
finds offsets for any field or method references to avoid costly lookups on future
executions. This instruction then replaces itself in the instruction stream with its
corresponding quick version, which does not perform the initialisations, and has
the necessary offsets as immediate operands, rather than symbolic references.

Our CVM implementation does not interpret original Java bytecode. Instead
we take Java bytecode, and produce direct-threaded code [16] using vmgen’s VM
code generation functions. These generated functions replace sequences of simple
VM instructions with superinstructions as the VM code is generated. However,
quick instructions make this process much more complicated, since the VM code
modifies itself after it is created. Our current version performs another (hand-
written) optimisation pass over the method each time an instruction is replaced
by a quick version. This solution effective, but makes poor use of vmgen’s features
for automatic VM code optimisation. It is not clear to us how vmgen can be
modified to better suit Java’s needs in this regard, while still remaining simple
and general.

CVM uses system-level threads to implement JVM threads. Several threads
can run in parallel, and in CVM these run as several different instances of the in-
terpreter. As long as no global variables are used in the interpreter, these different
instances will run independently. Implementing threads and monitors involves
many difficult issues, almost all of which are made neither simpler nor more
difficult by the use of vmIDL for the interpreter core. One exception to this was
with quick instructions. The same method may be executed by simultaneously
by several different threads, so race conditions can arise with quick instructions
which modify the VM code. We eventually solved this problem using locks on
the VM code when quickening, but the solution was not easily found. If we were
to implement the system again, we would implement threading within a single
instance of the interpreter, which would perform its own thread switches period-
ically. Interacting with the operating system’s threading system is complicated,
and reduces the portability of the implementation.

A final complication with our CVM interpreter arose with garbage collection.
CVM implements precise garbage collection, using stack maps to identify point-
ers at each point where garbage collection is possible. In our implementation, at
every backward branch, and at every method call, a global variable is checked to
see whether some thread has requested that garbage collection should start. If it
has, then the current thread puts itself into a garbage collection safe-state and

waits for the collection to complete. The use of vmIDL neither helps nor hinders
the implementation of garbage collection. Entering a safe state involves saving
the stack pointer, stack cache and other variables in the same way as when a
method call occurs. It seems possible that in the future, vmgen’s knowledge of
the stack effect of each instruction could be used to help automatically generate
stack maps. However, the current version contains no such feature, and items
on the stack remain, essentially, untyped. The main thrust of our current vmgen
work is interpreter optimisation, as we show in the next section.

7 Optimisations

This section describes a number of optimisations to improve the execution time
of interpreters, and how they can be automatically applied by vmgen to a vmIDL
definition.

7.1 Prefetching

Perhaps the most expensive part of executing a VM instruction is dispatch (fetch-
ing and executing the next VM instruction). One way to help the dispatch branch
to be resolved earlier is to fetch the next instruction early. Therefore, vmgen gen-
erates three macro invocations for dispatch (NEXT_PO, NEXT_P1, NEXT_P2) and
distributes them through the code for a VM instruction (see figure 2).

These macros can be defined to take advantage of specific properties of real
machine architectures and microarchitectures, such as the number of registers,
the latency between the VM instruction load and the dispatch jump, and autoin-
crement addressing mode. This scheme even allows prefetching the next-but-one
VM instruction; Gforth uses this on the PowerP C architecture to good advantage
(about 20% speedup).

7.2 Top-of-Stack Caching

Vmgen supports keeping the top-of-stack item (TOS) of each stack in a register
(i.e., at the C level, in a local variable). This reduces the number of loads from
and stores to a stack (by one each) of every VM instruction that takes one or
more arguments and produces one or more results on that stack. This halves the
number of data-stack memory accesses in Gforth [17]. The benefits can be seen
in figure 3 (only one memory access for three stack accesses).

The downside of this optimisation is that it requires an additional register,
possibly spilling a different VM register into memory. Still, we see an overall
speedup of around 7%-10% for Gforth even on the register-starved 1A32 (Pen-
tium, Athlon) architecture [13]. On the PowerPC the speedup is even larger (just
over 20%) as would be expected on a machine with many registers.

Vmgen performs this optimisation by replacing sp[0] with the local variable
name spTO0S when referencing stack items. Presuming the compiler allocates this
variable to a register, the benefits of top-of-stack caching occur. In addition, C

code is generated to flush or reload the stack for those instructions that affect
the stack height without necessarily using the topmost stack element.

7.3 Instruction Replication

Mispredictions of indirect branches are a major component of the run-time of
efficient interpreters [10]. Most current processors use a branch target buffer
(BTB) to predict indirect branches, i.e., they predict that the target address
of a particular indirect branch will be the same as on the last execution of the
branch.

The machine code to implement a VM instruction always ends with an indi-
rect branch to dispatch the next instruction. As long as, say, each iload instruc-
tion is followed by, say, an iadd, the indirect branch at the end of the iload will
generally be predicted correctly. However, this is rarely the case, and it often
happens that the same VM instruction appears more than once in the working
set, each time with a different following VM instruction.

Instruction replication splits a VM instruction such as iadd into several
copies: iaddl, iadd2, etc. When generating VM code and an iadd instruction is
needed, one of the replicated versions of iadd is actually placed in the generated
code. The different versions will have separate indirect branches, each of which is
predicted separately by the BTB. Thus, the different versions can have different
following VM instructions without causing mispredictions. The VM instructions
to replicate are selected using profiling information. The list of instructions to
replicate is included in the vmIDL input file, and vmgen automatically generates
separate C source code for each replication.

We tested this optimisations on several large Forth programs, and found that
it can reduce indirect branch mispredictions in Gforth by almost two thirds,
and running time by around 25% [18]. The experimental version of vmgen that
implements this optimisation uses superinstructions of length one to replicate
instructions.

7.4 VM Branch Tails

For conditional branch VM instructions it is likely that the two possible next VM
instructions are different, so it is a good idea to use different indirect branches for
them. The vmIDL language supports this optimisation with the keyword TAIL.
Vmgen expands this macro into the whole end-part of the VM instruction.

We evaluated the effect of using different indirect jumps for the different
outcomes of VM conditional branches in GForth. We found speedups of 0%-9%,
with only small benefits for most programs. However, we found a small reduction
in the number of executed instructions (0.6%—1.7%); looking at the assembly
language code, we discovered that GCC performs some additional optimisations
if we use TAIL.

7.5 Superinstructions

A superinstruction is a new, compound VM instruction that performs the work
of a sequence of simple VM instructions. Superinstructions are chosen using
the output of the profiler generated by vmgen. The list of selected sequences to
make into superinstruction is included in the vmIDL input file by the program-
mer. Given this list, vmgen automatically generates C code to implement the
superinstructions from the instruction definition of the component VM instruc-
tions.

In a superinstruction, vmgen keeps all intermediate stack-values in local vari-
ables (which we hope will be allocated to registers), allowing values to be passed
from one component VM instruction to another without the usual loads and
stores for stack accesses. In addition stack pointer updates from the different
component instructions are combined, sometimes allowing the update to be elim-
inated entirely if the two component updates cancel one another. For example,
the generated code for the superinstruction iload-iadd is actually shorter than
that for either of its component VM instructions on x86 machines [15], because
all stack memory accesses and stack pointer updates can be eliminated. Overall,
adding superinstructions gives speedups of between 20% and 80% on Gforth [13].

7.6 Multiple-State Stack Caching

As mentioned in section 7.2 keeping the topmost element of the stack in a register
can reduce memory traffic for stack accesses by around 50%. Further gains are
achievable by reserving two or more registers for stack items. The simplest way
to do this is to simply keep the topmost n items in registers. For example, the
local variable* TOS_3 might store the top of stack, TOS_2 the second from top
and TOS_1 the next item down. The problem with this approach can be seen if
we consider an instruction that pushes an item onto the stack. This value of this
item will be placed in the variable TOS_3. But first, the current value of T0S_3
will be copied to T0S_2, since this is now the second from topmost item. The
same applies to the value in TOS_1, which must be stored to memory. Thus, any
operation that affects the height of the stack will result in a ripple of copies,
which usually outweigh the benefits of stack caching [17].

A better solution is to introduce multiple states into the interpreter, in which
the stack can be partially empty. For example, a scheme with three stack-cache
registers would have four states:

— State 0: cache is empty

— State 1: one item in the cache; top-of-stack is in TOS_1

— State 2: two items in the cache; top-of-stack is in TOS_2
— State 3: three items in the cache; top-of-stack is in T0OS_3

4 By keeping stack cache items in local variables, they become candidates to be al-
located to registers. There is no guarantee that C compiler’s register allocator will
actually place those variables in registers, but they are likely to be good candidates
because the stack cache is frequently used.

In this scheme, there will be four separate versions of each virtual machine
instruction — one for each state. Each version of each instruction will be cus-
tomised to use the correct variable names for the topmost stack items. All of
this code is generated by vmgen automatically from the vmIDL definition. Fig-
ure 5 shows the output of vmgen for one state of the iadd VM instruction. The
two operands are in the cache at the start of the instruction, and so are copied
from TOS_1 and TOS_2. The result is put into the new topmost stack location,
TOS-1, and the state is changed® to state 1, before the dispatch of the next VM
instruction. Note that there is no stack update in this instruction; the change in
the height of the stack is captured by the change in state.

LABEL (iadd_state2) { /* label %/

int i1; /* declarations of stack items */

int i2;

int i;

NEXT_PO; /* dispatch next instruction (part 0) */

il = vm_Cell2i(T0S_1); /* fetch argument stack items */
i2 = vm_Cell2i(T0S_2);

{ /* user-provided C code */

i= i1+i2;

}

NEXT_P1; /* dispatch next instruction (part 1) */
TOS_1 = vm_i2Cell(i); /* store result stack item(s) */
CHANGE_STATE(1) ; /* switch to state 1 */

NEXT_P2; /* dispatch next instruction (part 2) */
}

Fig. 5. Simplified version of the code generated for state 2 of the iadd instruction with
multiple-state stack caching.

Multiple-state stack caching is currently implemented in an experimental,
unreleased version of vmgen. Preliminary experiments show that memory traffic
for accessing the stack can be reduced by more than three quarters using a three
register cache.

7.7 Instruction Specialisation

Many VM instructions take an immediate argument. For example, the IGET-
FIELD_QUICK instruction loads an integer field of an object, and takes as an
immediate argument the offset at which at the field appears. Through profiling,
we might find that a very commonly used offset is zero (indicating the first field
in the object). Thus we might introduce a special version of the instruction, with
the immediate operand hardwired to zero.

> A common way to implement the state is to use a different dispatch table or switch
statement for each state.

An experimental version of vmgen supports instruction specialisation. A mod-
ified version of the profiler is used to measure the values of immediate arguments
on sample programs. The commonest immediate values for the most frequent
instructions are selected to be specialised instructions based on the profiling in-
formation. The experimental version of vmgen automatically generates C source
code for these specialised instructions from the instruction definition, by setting
the immediate argument to a constant value, rather than loading it from the
instruction stream.

Preliminary results show that specialisation has the potential to significantly
improve performance, both because it reduces the work involved in executing
the instruction by removing the operand fetch, and also because having several
different versions of an instruction each specialized for different operands has a
similar effect on indirect branch prediction as instruction replication.

8 Related Work

Our work on generating VM interpreters is ongoing. The best reference on the
current release version of vmgen is [13], which gives a detailed description of vm-
gen output, and presents detailed experimental results on the performance of the
GForth and Cacao implementations. More recent work presents newer results on
superinstructions and instruction replication [18] and the CVM implementation
[15].

The C interpreter hti [19] is created using a tree parser generator and can
contain superoperators. The VM instructions are specified in a tree grammar;
superoperators correspond to non-trivial tree patterns. It uses a tree-based VM
(linearized into a stack-based form) derived from lcc’s intermediate representa-
tion. A variation of this scheme is used for automatically generating interpreters
of compressed bytecode [20, 21].

Many of the performance-enhancing techniques used by vmgen have been
used and published earlier: threaded code and decoding speed [16, 22], schedul-
ing and software pipelining the dispatch [11,23,24], stack caching [11,17] and
combining VM instructions [19, 25, 24, 26]. Our main contribution is to automate
the implementation of these optimisations using a DSL and generator.

9 Conclusion

Virtual machine interpreters contain large amounts of repeated code, and opti-
misations require large numbers of similar changes to many parts of the source
code. We have presented an overview of our work on vmIDL, a domain-specific
language for describing the instruction sets of stack-based VMs. Given a vmIDL
description, our interpreter generator, vmgen, will automatically generate the
large amounts of C source code needed to implement a corresponding inter-
preter system complete with support for tracing, VM code generation, VM code
disassembly, and profiling. Furthermore, vmgen will, on request, apply a variety
of optimisations to the generated interpreter, such as prefetching the next VM

instruction, stack caching, instruction replication, having different instances of
the dispatch code for better branch prediction, and combining VM instructions
into superinstructions. Generating optimised C code from a simple specification
allows the programmer to experiment with optimisations and explore a much
greater part of the design space for interpreter optimisations than would be
feasible if the code were written manually.

Availability

The current release version of the vmgen generator can be downloaded from:
http://www.complang.tuwien.ac.at/anton/vmgen/.

Acknowledgments

We would like to thank the anonymous reviewers for their detailed comments,
which greatly improved the quality of this chapter.

References

1. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Second edn.
Addison-Wesley, Reading, MA, USA (1999)

2. Ait-Kaci, H.: The WAM: A (real) tutorial. In: Warren’s Abstract Machine: A
Tutorial Reconstruction. MIT Press (1991)

3. Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implementation.
Addison-Wesley (1983)

4. Weiss, D.M.: Family-oriented abstraction specification and translation: the FAST
process. In: Proceedings of the 11th Annual Conference on Computer Assurance
(COMPASS), Gaithersburg, Maryland, IEEE Press (1996) 14—22

5. Czarnecki, K., Eisenecker, U.: Generative programming — methods tools and
applications. Addison-Wesley (2000)

6. Lengauer, C.: Program optimization in the domain of high-performance parallelism
(2004) In this volume.

7. Grune, D., Bal, H., Jacobs, C., Langendoen, K.: Modern Compiler Design. Wiley
(2001)

8. Ertl, M.A.: Implementation of Stack-Based Languages on Register Machines. PhD
thesis, Technische Universitiat Wien, Austria (1996)

9. Moore, C.H., Leach, G.C.: Forth — a language for interactive computing. Technical
report, Mohasco Industries, Inc., Amsterdam, NY (1970)

10. Ertl, M.A., Gregg, D.: The behaviour of efficient virtual machine interpreters on
modern architectures. In: Euro-Par 2001, Springer LNCS 2150 (2001) 403412

11. Ertl, M.A.: A portable Forth engine. In: EuroFORTH ’93 conference proceedings,
Maridnské Lazne (Marienbad) (1993)

12. Paysan, B.: Ein optimierender Forth-Compiler. Vierte Dimension 7 (1991) 22-25

13. Ertl, M.A.) Gregg, D., Krall, A., Paysan, B.: vmgen — A generator of efficient
virtual machine interpreters. Software—Practice and Experience 32 (2002) 265—
294

14. Krall, A., Grafl, R.: CACAO a 64 bit JavaVM just-in-time compiler. Concur-
rency: Practice and Experience 9 (1997) 1017-1030

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Casey, K., Gregg, D., Ertl, M.A., Nisbet, A.: Towards superinstructions for Java
interpreters. In: 7th International Workshop on Software and Compilers for Em-
bedded Systems. LNCS 2826 (2003) 329 — 343

Bell, J.R.: Threaded code. Communications of the ACM 16 (1973) 370-372

Ertl, M.A.: Stack caching for interpreters. In: SIGPLAN ’95 Conference on Pro-
gramming Language Design and Implementation. (1995) 315-327

Ertl, M.A., Gregg, D.: Optimizing indirect branch prediction accuracy in virtual
machine interpreters. In: Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation (PLDI 03), San Diego,
California, ACM (2003) 278-288

Proebsting, T.A.: Optimizing an ANSI C interpreter with superoperators. In:
Principles of Programming Languages (POPL ’95). (1995) 322 332

Ernst, J., Evans, W., Fraser, C.W., Lucco, S., Proebsting, T.A.: Code compression.
In: SIGPLAN ’97 Conference on Programming Language Design and Implementa-
tion. (1997) 358-365

Evans, W.S., Fraser, C.W.: Bytecode compression via profiled grammar rewriting,.
In: Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation. (2001) 148-155

Klint, P.: Interpretation techniques. Software—Practice and Experience 11 (1981)
963-973

Hoogerbrugge, J., Augusteijn, L.: Pipelined Java virtual machine interpreters. In:
Proceedings of the 9th International Conference on Compiler Construction (CC’
00), Springer LNCS (2000)

Hoogerbrugge, J., Augusteijn, L., Trum, J., van de Wiel, R.: A code compression
system based on pipelined interpreters. Software—Practice and Experience 29
(1999) 1005-1023

Piumarta, 1., Riccardi, F.: Optimizing direct threaded code by selective inlining. In:
SIGPLAN 98 Conference on Programming Language Design and Implementation.
(1998) 291-300

Clausen, L., Schultz, U.P.; Consel, C., Muller, G.: Java bytecode compression for
low-end embedded systems. ACM Transactions on Programming Languages and
Systems 22 (2000) 471 489

