
Automatic Generation of Optimised Virtual

Machine Interpreters

by

Mr Kevin Casey, BSc. MSc.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Doctor of Philosophy

University of Dublin, Trinity College

September 2005

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Mr Kevin Casey

February 1, 2006

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Mr Kevin Casey

February 1, 2006

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr David Gregg, whose

enthusiasm and encouragement ensured the completion of this thesis.

I would also like to thank the members of the Computer Architecture Group who

have been great company and of great assistance through the years. Particular thanks

to Andrew Beatty, Andy Nisbet, Brian Davis and Yunhe Shi from the group, with

whom I have worked on many issues relating to the Java Virtual Machine.

Special thanks are also due to M. A. Ertl of the Technical University, Vienna, for

his unselfish assistance and ready availability to offer advice throughout the duration

of this project, and also for acting as host when I visited Vienna in 2004.

Finally, my greatest appreciation is reserved for Rosemary, my family and my friends

for the patience they have all shown as I disappeared into my work. This work would

not have been completed without their boundless understanding.

Mr Kevin Casey

University of Dublin, Trinity College

September 2005

iv

Automatic Generation of Optimised Virtual

Machine Interpreters

Publication No.

Mr Kevin Casey, Ph.D.

University of Dublin, Trinity College, 2005

Supervisor: Dr. David Gregg

Virtual Machines (VMs) are commonly used as execution platforms for many modern

high-level languages. Two important examples are the Java VM, intended for run-

ning Java applications, and Microsoft’s Common Language Runtime (CLR), intended

for executing .NET applications compiled from C#/VB.NET. Typical VMs are imple-

mented as either interpreters or Just-In-Time compilers. Interpreters are slower but

have several advantages such as reliability, portability and memory efficiency that make

them ideal for certain types of application.

This thesis concentrates on various optimisations to improve the performance of

VM interpreters. We show how it is possible to select and apply broadly useful optimi-

sations, and even more importantly, show how these optimisations can be implemented

v

in a automatic and portable manner. In order to facilitate this work we develop an

interpreter generation tool, Tiger which provides extensive support for these optimisa-

tions. Details of this tool are presented, along with a discussion of how it supports a

number of optimisations.

A new optimised, portable JVM called Fastcore is constructed using Tiger, and

then evaluated. The applied optimisations such as faster dispatch methods, constant

inlining, conditional loading of operands and faster method dispatch are detailed along

with their cumulative effect (an average speedup of 1.31) over an equivalent unopti-

mised JVM interpreter.

Remaining optimisations are then classified into two broad categories; static in-

struction enhancement and dynamic instruction enhancement. Static instruction en-

hancements are comprised of instruction replication, instruction concatenation (su-

perinstructions) and instruction specialisation. We show how these optimisations can

improve the performance of our optimised interpreter by a speedup of up to 2.1 when

the interpreter is being optimised for a broad range of programs, and up to 3.35 when

the interpreter is being customised for a particular program.

Dynamic instruction enhancements are comprised of dynamic instruction replica-

tion, along with a number of methods for creating dynamic superinstructions. The

effects of these dynamic optimisations are examined in comparison to each other and

against the static optimisations previously presented. These more generic dynamic

optimisations improve performance by a speedup of up to 2.76 for a broad range of

programs.

Extensive results using hardware performance counters are presented for all of these

optimisations. Some surprising results are encountered, which are highlighted and

explained. These results give greater insight into the behaviour of VM interpreters and

help the construction of simpler, faster, more maintainable VM interpreters.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables xii

List of Figures xiii

Chapter 1 Introduction 1

1.1 Virtual Machines and Interpreters . 1

1.2 Our Thesis . 4

1.3 Contributions . 4

1.4 Collaborations . 5

1.5 Overview . 6

Chapter 2 Background 8

2.1 Introduction . 8

2.2 A Brief History of Java . 8

2.3 The Java Virtual Machine . 10

2.3.1 Execution Engine . 12

2.3.2 Dynamic Class Loader . 15

2.3.3 Bytecode Verifier . 15

2.3.4 Java Native Interface . 16

2.3.5 The Garbage Collector . 17

2.3.6 Threading Model . 18

2.4 Modern Processor Architecture . 19

vii

2.4.1 Pipelining . 19

2.4.2 Branch Prediction . 21

2.5 Conclusion . 23

Chapter 3 Literature Survey 24

3.1 Introduction . 24

3.2 Dispatch Techniques . 26

3.2.1 Direct Threaded Dispatch . 28

3.2.2 Token Threaded Dispatch . 30

3.2.3 Offset Threading . 31

3.2.4 Indirect Threaded Dispatch . 34

3.2.5 Other Threading Mechanisms 35

3.3 Instruction Scheduling . 36

3.4 Stack Caching . 38

3.4.1 Fixed-size Stack Caching . 39

3.4.2 Dynamic Stack Caching . 41

3.4.3 Static Stack Caching . 45

3.5 Instruction Specialisation . 46

3.6 Static Replication . 48

3.7 Superinstructions . 50

3.8 Register Machines . 53

3.9 Dynamic Code Copying Techniques . 56

3.10 Conclusion . 59

Chapter 4 Tiger - An Interpreter Generator 61

4.1 Introduction . 61

4.2 Tiger - Front-end Functionality . 62

4.2.1 Definitions and Options . 62

4.2.2 General Syntax . 63

4.2.3 Dispatch Method . 65

4.2.4 Pushing of Expressions . 66

4.2.5 Eliminating Unnecessary Stack Writes 66

4.2.6 Early Loading . 68

viii

4.2.7 Deferred Reading/Writing . 69

4.2.8 Instruction Specialisation . 72

4.2.9 Instruction Replication . 74

4.2.10 Superinstructions . 75

4.2.11 Preferred Instructions . 78

4.3 Tiger - Back-end Functionality and Requirements 79

4.3.1 Generated Interpreter Core . 80

4.3.2 User-Supplied Type Conversion Macros 80

4.3.3 Instruction Indices . 81

4.3.4 The Labels Array . 83

4.3.5 Instruction Names . 84

4.3.6 Replication File . 84

4.3.7 Specialisation File . 85

4.3.8 Superinstruction Parsing . 87

4.3.9 Global Definitions . 92

4.4 Interpreter Diagnostics . 92

4.4.1 Histogram . 92

4.4.2 Dispatch Tracking . 93

4.4.3 Debugger . 100

4.4.4 Profiler . 102

4.5 Conclusion . 104

Chapter 5 Construction of an Optimised Java Interpreter 106

5.1 Introduction . 106

5.2 Customisation Options . 108

5.3 Building a Basic Interpreter Core in Tiger 108

5.4 Choice of Dispatch Method . 109

5.4.1 Supporting Data Structures . 111

5.4.2 Code Translation . 115

5.4.3 Branch Offset Patching . 116

5.4.4 Quickable Opcodes . 119

5.4.5 Threaded Exception Handler . 121

5.4.6 Stackmaps and Garbage Collection 121

ix

5.5 Initial Optimisations . 123

5.5.1 Multiple Dispatches for Conditional Branches 123

5.5.2 Operand Modification . 123

5.5.3 Constant Pool Inlining . 125

5.5.4 Conditional Loading of Operands 126

5.5.5 Redundant Stack Push Elimination 129

5.5.6 Synchronised Method Instructions 129

5.5.7 Faster Java Method Dispatch and Return 131

5.5.8 Software Barrel Shifting . 133

5.5.9 Optimising Register Allocation 135

5.6 Discarded Optimisations . 136

5.7 Experimental Results on the Optimised Interpreter 137

5.8 Conclusion . 142

Chapter 6 Static Instruction Enhancement 143

6.1 Introduction . 143

6.2 Profiling Methods . 144

6.3 Instruction Specialisation . 145

6.3.1 Implementation . 146

6.3.2 Specialised Instruction Selection 149

6.3.3 Evaluation . 150

6.4 Superinstructions . 153

6.4.1 Initial Experiments . 154

6.4.2 Which Sequences? . 156

6.4.3 Parsing . 163

6.4.4 Quickable Instructions . 167

6.4.5 Across Basic Blocks . 168

6.5 Instruction Replication . 173

6.5.1 Implementation . 174

6.5.2 Evaluation . 174

6.6 Superinstructions vs Replication . 178

6.7 Conclusion . 179

x

Chapter 7 Dynamic Instruction Enhancement 181

7.1 Introduction . 181

7.2 Code Copying . 182

7.3 Non-Relocatable Code . 183

7.4 Dynamic Replication . 184

7.4.1 Quickable Instructions . 187

7.4.2 Results . 191

7.5 Dynamic Superinstructions . 192

7.5.1 Quickable Instructions . 195

7.5.2 Results . 196

7.5.3 Across Basic Blocks . 197

7.5.4 With Static Superinstructions 197

7.5.5 Across Basic Blocks with Static Superinstructions 199

7.6 Dynamic Superinstructions without Replication 201

7.6.1 Quickable Instructions . 202

7.6.2 Across Basic Blocks . 205

7.7 Conclusion . 207

Chapter 8 Final Thoughts 212

8.1 The Importance of the Right Tool . 212

8.2 Interpreters can be Both Optimised and Portable 213

8.3 Static Instruction Enhancements Can Yield Surprising results. 214

8.4 Dynamic Code Copying . 215

8.5 Future Work . 216

8.6 Conclusion . 217

Appendices 219

Bibliography 222

xi

List of Tables

3.1 Conversion of bytecode to register code (with stack pointer=10) 53

5.1 Method types encountered in the SPECjava98 suite. 132

5.2 Spec98 Benchmark programs used to evaluate VM performance 139

5.3 JavaGrande Benchmark programs used to evaluate VM performance . 139

6.1 Individual versus Exclusive profiling for the SPECjvm98 suite. 145

6.2 Comparison of superinstruction selection strategies. 157

7.1 dynamic repl performance versus Fastcore performance. 192

7.2 dynamic both performance versus Fastcore performance. 196

7.3 across bb performance versus Fastcore performance. 198

7.4 with-static-super performance versus Fastcore performance. 199

7.5 with static across BB performance versus Fastcore performance. 200

7.6 dynamic super performance versus Fastcore performance. 204

7.7 dynamic super across bb performance versus Fastcore performance. . . 205

7.8 Peak dynamic memory requirements (Mb) on various benchmarks . . . 210

7.9 Speedups of w/static across bb, two native code compilers and an opti-

mised interpreter over plain. 211

xii

List of Figures

2.1 Overview of the Java System . 11

2.2 The Java Virtual Machine Structure 13

2.3 Classic processor pipeline . 20

3.1 Instruction dispatch using switch [Ert95] 25

3.2 Switch dispatch in MIPS assembly [Ert95] 26

3.3 Switch Dispatch . 27

3.4 Threaded Dispatch . 29

3.5 Instruction dispatch using direct threading in GNU C [Ert95] 29

3.6 Switch Versus Threaded Dispatch . 31

3.7 Token Threaded Dispatch . 32

3.8 Instruction dispatch using token threading in GNU C [Ert95] 33

3.9 Direct threading in MIPS assembly [Ert95] 33

3.10 Offset threading in MIPS assembly [Ert95] 34

3.11 Indirect threading in MIPS assembly 35

3.12 Sequential and Pipelined Interpreters 37

3.13 Fixed Size Stack Caching with Three Registers 40

3.14 Dynamic Stack Caching with Four States 43

3.15 Static Stack Caching with Three Registers 45

3.16 Adding static replications using Round Robin and Random placement. 49

3.17 Example of forward copy propagation 54

3.18 Example of backward copy propagation 55

3.19 Dynamic Superinstructions (inlining) with threaded code. 58

4.1 Some definition and options in Tiger 63

xiii

4.2 A typical opcode definition in Tiger . 64

4.3 Reading a constant from the instruction stream onto the stack 65

4.4 Different dispatch methods in Tiger . 67

4.5 Pushing an expression onto the stack 68

4.6 A candidate instruction for stack push elimination 68

4.7 Stack push elimination in Tiger . 68

4.8 Early loading of dispatch address in Tiger 70

4.9 Deferred reading in Tiger . 71

4.10 Unspecialised ILOAD opcode . 73

4.11 Specialised ILOAD opcode . 73

4.12 Replicating the POP instruction . 75

4.13 Defining a new superinstruction in Tiger 77

4.14 A specialised superinstruction in Tiger 78

4.15 Preferred and non-preferred instructions in Tiger 79

4.16 Multiple slot type conversions in Tiger 81

4.17 Indices in Tiger . 82

4.18 The Tiger-generated index file . 82

4.19 Using Tiger-generated labels . 83

4.20 The Tiger-generated names file . 84

4.21 A Tiger-generated replication file . 85

4.22 A Tiger specialisation file . 86

4.23 A sample superinstruction-parsing DFA in Tiger 88

4.24 A sample DFA-based parsing file in Tiger 89

4.25 Overlaying of Hash Tables in Tiger . 91

4.26 Sample from histogram.dat . 93

4.27 SVG representation of histogram.dat 94

4.28 Sample from branchdata.dat . 96

4.29 SVG representation of branchdata.dat 97

4.30 Global definitions to support the branchData option 98

4.31 Sample from generated interpreter core with branchData option 99

4.32 Sample debugger output . 100

4.33 Interpreter core with debugging code inserted 101

4.34 Profiler Output Using Tiger Profiling Option 102

xiv

4.35 Support Code for the Profiler . 103

5.1 Translating aldc ind quick from CVM to Tiger 110

5.2 Support for direct-threaded code in Tiger 112

5.3 Relationship of Bytecode, Threaded Code, Offsets and Instruction Index

arrays. 114

5.4 Results of Code Threading . 116

5.5 Pseudo-code for Code Threading Procedure 117

5.6 Branch Offset Patching . 118

5.7 Threading for Non-Quick Instructions in Fastcore 120

5.8 Threaded Exception Table Creation in the Fastcore interpreter 122

5.9 Adding an extra dispatch to the iflt instruction 124

5.10 Operand combining . 125

5.11 Constant Pool Inlining . 127

5.12 Conditional Loading of Operands . 128

5.13 Optimised dup2 . 130

5.14 Translation of dreturn . 131

5.15 Pre-Shifting Operands . 134

5.16 Declaration of Register Variable . 136

5.17 Forward Branch Introduction at Translation Time 138

5.18 Benchmark running times on various JVMs relative to our interpreter

(Fastcore) . 141

6.1 Definition of GETFIELD QUICK VM instruction 146

6.2 Simplified Tiger output for GETFIELD QUICK VM instruction specialised

with the immediate operand 0. 147

6.3 Recommended Specialisations for db Based on Static Exclusive Profiling 150

6.4 Speedup from adding different numbers of specialised instructions chosen

based on static frequency in other programs (static exclusive profiling). 151

6.5 Speedup from adding different numbers of specialised instructions chosen

specifically for a program (dynamic individual profiling). 151

6.6 Percentage change in indirect branch mispredictions from using spe-

cialised instructions chosen specifically for a program (dynamic individ-

ual profiling). 152

xv

6.7 Adding individually tailored superinstructions to the interpreter (dy-

namic individual profiling). 155

6.8 Adding statically selected superinstructions to the the interpreter (static

exclusive profiling). 158

6.9 Adding statically selected short superinstructions to the the interpreter

(static exclusive profiling). 159

6.10 Indirect branch reduction due to statically selected short superinstruc-

tions (static exclusive profiling). 160

6.11 Mispredicted indirect branch reduction due to statically selected short

superinstructions (static exclusive profiling). 161

6.12 Definition of ILOAD VM instruction . 163

6.13 Simplified Tiger output for ILOAD-IADD superinstruction 164

6.14 Example basic block . 165

6.15 Comparison of optimal versus greedy parsing strategies for statically

selected superinstructions (static exclusive profiling). 166

6.16 Adding statically selected non-quick superinstructions to our interpreter. 169

6.17 Adding individually tailored non-quick superinstructions across basic

blocks to our interpreter. 169

6.18 Original bytecode (left) and same bytecode with ILOAD-IADD superin-

struction (right). 170

6.19 Definition of a branch VM instruction 171

6.20 Adding individually tailored superinstructions across basic blocks to the

interpreter (dynamic individual profiling). 172

6.21 Adding static replications to improve branch prediction. 173

6.22 Speedup from replicated instructions chosen using dynamic frequency in

other programs. 175

6.23 Speedup from replicated instructions chosen using static frequency in

other programs. 176

6.24 Recommended Replications for db Based on Dynamic Exclusive Profiling 176

6.25 Reduction in indirect branch mispredictions from replicated instructions

chosen using dynamic frequency in other programs. 177

xvi

6.26 Timing results for mpegaudio with static replications and superinstruc-

tions on a P4; the line labels specify the total number of additional VM

instructions . 178

6.27 Indirect Branch Misprediction results for mpegaudio with static repli-

cations and superinstructions on a P4; the line labels specify the total

number of additional VM instructions 179

7.1 Code copying labels in Tiger-generated code 182

7.2 Code Replication with Relocatable and Non-relocatable VM Instructions 186

7.3 Quick Replication Gap During Dynamic Replication 190

7.4 Code Replication with Relocatable and Non-relocatable VM Instructions 194

7.5 Adding static superinstructions across basic-blocks to dynamically repli-

cated code . 200

7.6 Associating a single dynamic superinstruction with multiple quickable

instructions . 203

7.7 Varying the length of dynamic superinstructions without replication . . 205

7.8 Speedups of various interpreter optimisations on a P4 208

7.9 Performance counter results for mpegaudio on a P4 208

7.10 Performance counter results for compress on a P4 209

8.1 Broader context of the work in this thesis 217

xvii

Chapter 1

Introduction

1.1 Virtual Machines and Interpreters

Virtual Machines (VMs) are commonly used as execution platforms for many modern

high-level languages. Two important examples are the Java VM (JVM) [GJSB00],

intended for running Java applications, and Microsoft’s Common Language Runtime

(CLR) [Sin03], intended for executing .NET applications compiled from C#/VB.NET.

Most high-level conventional languages are compiled right down to the native code of

the CPU on which they are executed. Similarly, languages intended for execution on

virtual machines are compiled down to the native language of the machine they are to

be executed on; in this case virtual machine code.

Running application code on a virtual machine rather than a native one has two

main advantages [SN05]. Firstly, applications can be distributed in an architecture-

neutral format. To run an application on another architecture, all that is required is

to port the virtual machine. The work done in porting this one program to a new

architecture allows any application code for the virtual machine to be run on that

new architecture. Secondly, security checks can be implemented on a virtual machine

that are too complex or expensive to implement in hardware. For example, the JVM

has software checks to ensure that all variables are initialised before they are used. A

similar check in hardware would be too complex to implement efficiently.

Virtual machines have other smaller advantages too. Because the instruction sets

of virtual machines are idealised, and not the result of hardware constraints on a CPU,

1

they are often simpler. Such instruction sets are often high level, well organised code

that is an easy target for compilation. For example, it can be simpler to write a source

language to VM compiler and a simple implementation of the VM, rather than a source

to native code compiler. VM instruction sets tend to be much coarser-grained than

machine instructions, performing more work per instruction. This, coupled with the

stack-based architecture that is currently prevalent in virtual machine design, means

that the applications in virtual machine native code are quite compact. This compact

code is ideal for running on memory constrained systems or for transferring quickly

across a network.

In order to do its job, a virtual machine has to run virtual machine code. However,

the way a virtual machine is implemented has significant effects other than on the

ability to execute virtual machine code. The principal aspects of virtual machine

behaviour affected by implementation details are, unsurprisingly, speed and memory

requirements.

Like real machines, virtual machines have architectures which include components

responsible for memory management, program loading and execution. Of all these

components, the component responsible for the execution of the virtual machine code

has the greatest effect on both speed and memory requirements. This component, the

execution engine is commonly implemented in one of two ways: dynamic compilation

or interpretation.

Dynamic compiling execution engines are generally the fastest way to implement a

VM (apart from execution in hardware) [Arm98]. These engines compile VM code to

native machine code before execution. The most common strategy is to compile each

method in the program the first time it is executed. Such Just-In-Time (JIT) compilers

are often large, complex applications, particularly if they perform many optimisations.

Typically, JIT compilers are not quite as efficient as native compiled code, because:

1. there is some overhead in compiling the code and

2. JIT compilers have to be fast, so they perform fewer optimisations than regular

compilers.

Nonetheless, JIT compilers approach the speed of compiled C code [LN04], and are

typically around ten times faster than an efficient interpreter.

2

Interpreter-based execution engines act as an execution engine in a real CPU might

act, namely by a continuous fetch-execute cycle until the virtual machine terminates.

These execution-engines, or VM interpreters, are slower because they must incur the

cost of the instruction fetch and the cost of jumping to the code responsible for execut-

ing that virtual machine instruction. However, despite this speed penalty, interpreter-

based virtual machines have several advantages [MB99]:

• Interpreters do not require much memory. They can make significant memory

savings, because they operate directly on the compact virtual machine code with-

out translation to native code. This makes them an ideal choice where memory

is scarce, for example embedded systems.

• Interpreters are easy to port. Most interpreter instructions are quite simple, and

porting those instructions to a new architecture is usually straightforward. A

dynamically compiling virtual machine is inherently intertwined with the archi-

tecture it is compiling native code for.

• Interpreters are smaller and less complex programs than JIT compilers. As a

result it is easier to be confident that they are correct and they are easier to

maintain.

• Interpreters make it easier to provide VM-level programmer tools such as trac-

ers, profilers and debuggers. These tools are readily available for many popular

interpreters. This is due to the direct relationship between VM code and the

structure of the interpreter.

• Interpreters can actually be faster than dynamic compilers for some sections of

code. In particular, large sequences of infrequently executed code can be executed

more efficiently, because the cost of compilation before execution is not incurred.

Some dynamic compilers, such as Sun’s HotSpot JVM [Gri98], use interpreters

for certain regions of code to avoid compilation overhead.

In this research, we examine various possibilities for improving VM-interpreter per-

formance. To implement many of these optimisations we build an interpreter generation

tool, Tiger. This tool not only allows the implementation of these optimisations, but

also permits parameters of those optimisations to be changed easily.

3

1.2 Our Thesis

Two of the greatest benefits of interpreters are portability and simplicity. Perhaps their

greatest limitation is performance. Our thesis is that interpreters can be substantially

optimised in a platform general manner, and furthermore, that these optimisations can

be:

• Portable - by applying optimisations at source-code level.

• Simple for the interpreter writer - by a domain-specific language for specifying

interpreter cores and a tool for generating the cores from that specification.

Thus, we show how performance can be improved considerably without sacrificing

the benefits of portability and simplicity.

1.3 Contributions

• Tiger, a tool for building interpreters, applying optimisations and investigating

their effects.

Our first contribution to research into interpreter optimisation is the Tiger interpreter

generator, implemented in Java. This generator uses a domain-specific language to

solve a domain specific problem; namely interpreter construction and optimisation.

A wide range of optimisations are supported by this tool, which also permits the

debugging and profiling of running Java programs.

• Proving the effectiveness of portable source-code optimisations in an interpreter.

We prove that it is possible to optimise a Java interpreter using only high-level source

code optimisations which are highly portable. To do this, a less-optimised Java VM is

selected and its interpreter core is replaced with a new one that is constructed using

Tiger. Only high level portable source code optimisations are applied to this new

interpreter, rather than architecture-specific machine code optimisations. Results for

the new optimised interpreter, Fastcore, are presented and compared against a hand-

tuned highly-optimised JVM interpreter.

4

• Examining the effect of a number of static instruction enhancements to the Java

interpreter.

A number of optimisations which change the standard internal instruction set of the

Java interpreter are detailed. The effects these optimisations have on standard bench-

marks are examined using hardware performance counters. A direct threaded inter-

preter is used to allow our interpreter to work with a larger set of instructions than

the 256 instruction limit inherent in bytecode, adding up to 512 extra instructions to

the JVM core at any one time.

• Implementing and examining the effect of a wide range of dynamic code copying

optimisations for Java.

Using dynamic code copying techniques to improve interpreter performance has re-

ceived much interest since Piumarta et al [PR98] presented dynamic inlining of ex-

ecutable code. A number of variations of the basic technique are implemented and

evaluated and a detailed comparison and discussion follow. As dynamic code copying

is a technique that is similar in some ways to a JIT compiler, a comparison of the two

techniques is also supplied, both in terms of execution speed and memory requirements.

1.4 Collaborations

During the course of this research the author of this thesis has collaborated with several

colleagues. Andrew Beatty provided early support in terms of obtaining and setting

up suitable benchmarks for evaluating JVMs. He also obtained and compiled an off-

the-shelf JVM that nonetheless required some changes in order to work correctly. His

contributions are recognised in his joint authorship of [BCGN03]. Anton Ertl provided

much expertise and advice in addition to the vmgen tool that was the primary inspira-

tion for the Tiger tool and some of the optimisations it provides for. His contributions

are recognised in his joint authorship of [CGE05a, CGE05b, CGEN03]. He also collab-

orated with the author in the writing of a paper submitted to ACM Transactions on

Programming Languages and Systems (TOPLAS). This paper is composed of two sets

of work relating to optimisation. One section, relating to the JVM was implemented,

tested and documented by the author. The other section, relating to GForth is based

5

on work done on virtual machines for the Forth language by Anton Ertl and David

Gregg.

Both Andrew Nisbet and David Gregg provided invaluable advice, assistance and

guidance throughout the project. Their contributions are recognised in joint authorship

of [BCGN03, CGEN03] and [BCGN03, CGE05a, CGE05b, CGEN03] respectively.

Finally, the author provided assistance in the initial stages of the implementation

of a register-machine JVM. His work is recognised in joint authorship of [DBC+03].

1.5 Overview

The remainder of this thesis is structured as follows:

Chapter 2 This chapter examines the history of Java. The increased popularity of

embedded devices as Java platforms is identified as a trend that has renewed

interest in efficient interpreters. The Java Virtual machine and its components

are introduced and explained. A number of execution engine types are also

introduced, the most pertinent being the interpreter. In this chapter, pipelining

and branch prediction are singled out as important factors in an interpreter’s

performance.

Chapter 3 This chapter highlights some past and present work by others pertaining

to the performance and optimisation of virtual machine interpreters. Particular

attention is paid to work relating to the cost of dispatches in an interpreter

and optimisations designed to reduce those costs. Work relating to a number of

optimisations which reduce memory accesses during bytecode execution is also

examined.

Chapter 4 This chapter presents the Trinity Interpreter Generator (Tiger). This

tool, developed by the author, allows the automatic creation of an interpreter

core from a user-supplied specification file. This specification file can include a

selection of optimisations which will be applied to the Tiger-generated interpreter

core. The chapter introduces the tool, presents some important implementation

details and discusses some of the functionality of Tiger.

6

Chapter 5 In this chapter, the creation of a new optimised interpreter, Fastcore, is

documented. This new interpreter is created by extensively modifying a less

optimised interpreter, CVM. A new interpreter core is created in the Tiger tool,

and selected optimisations are applied. This chapter discusses the process, the

optimisations and examines the performance of the new optimised interpreter in

comparison to some of its peers.

Chapter 6 This chapter presents a number of interpreter instruction enhancements

designed to improve runtime performance. Specifically, three classes of instruc-

tion enhancement are examined; specialisation, replication and superinstructions.

For each class of enhancement, the methods used to select new instructions to

be added to the interpreter are discussed. Important implementation details

for each enhancement, many relating to so-called quickable instructions, are de-

tailed. Performance measurements are presented for each enhancement, and cer-

tain counter-intuitive results are obtained and explained.

Chapter 7 This chapter presents a selection of dynamic instruction enhancements.

The chapter begins with an explanation of the advantages of dynamic enhance-

ments over static enhancements. For each class of dynamic enhancement, the

basic method is explained and important implementation issues for that enhance-

ment class are discussed. Results are presented for the various types of enhance-

ment, and close attention is paid to the instruction cache performance and addi-

tional memory requirements of these enhancements. The chapter concludes with

an objective comparison between these optimisations and those provided for by

Just-In-Time compilers.

Chapter 8 In the last chapter, the results of the thesis are summarised, highlighting

some of the most notable contributions. Finally, we identify some interesting

aspects arising from the work that warrant further research.

7

Chapter 2

Background

2.1 Introduction

Eleven years after its inception, the use of Java [GJSB00] has become commonplace.

The number of Java-enabled devices is currently estimated at 2.5 billion and the number

of worldwide Java developers at 4.5 million. The nature of devices on which Java is

deployed has shifted recently towards embedded devices. At present the number of

Java-enabled handset devices exceeds the number of Java-enabled desktop PCs [LS05].

2.2 A Brief History of Java

Arguably the most attractive feature of Java, its portable virtual machine nature, has

been around in various guises for many years. This virtual machine is a program that

isolates an application from the hardware it is running on. To execute, the applica-

tion makes use of services provided by the virtual machine. This approach assists in

portable code, at least for the application developer. In order to support the same set

of services in a standardised way on several platforms, the virtual machine may have

to be completely rewritten. This does not concern the application developer, whose

application will run on any virtual machine that provides a standardised set of services.

Apart from the portability issue, another strength of virtual machines is that the

hardware resources of a machine can be shared among several users, each literally

getting their own virtual machine. This was the motivation for much of the early work

8

done in virtual machines by IBM in the 1960s in the development of IBM CP/CMS

operating system [Cre81] for the IBM 360.

Interpretive compiling, a process used by Java, is the method by which source

code for an application intended for running on a virtual machine is compiled into an

intermediate representation. This intermediate representation can then be executed

directly by the virtual machine. In a sense it is a compiler, not with the language of a

hardware machine as the target, but the language of the virtual machine as the target.

The first serious portable, interpretive compiler system evolved from the system

BCPL [Ric71] (a forerunner to the C language) in 1971. OCODE [HSS80] the assembly-

like intermediate language outputted by the Cambridge BCPL compiler was intended to

be run on the BCPL Virtual Machine, a stack-based VM. A few years later in 1976, the

UCSD P-system [BGCS82] was developed. This incorporated the Pascal-P language

which was compiled by the Pascal-P compiler into intermediate bytecode called P-

Code. Virtual machines existed for a number of architectures including the 6502, the

8080, the Z-80, and the PDP-11. As a result of this unprecedented portability it was

quickly adopted by users of these relatively new architectures. Of all the forerunners

to Java, it is the Pascal-P system with its portable P-code and stack-based VM that

most closely resembles the interpretive compiler system that Java uses. In a sense

it should be no surprise that such systems preceded Java so long ago. In the past,

hardware constraints made interpreters quite popular due to the compact intermediate

representation of application code. Indeed, these same hardware constraints are shared

by many current embedded devices such as mobile phones and smart cards.

This embedded market was the target of Sun Microsystem’s Oak programming lan-

guage [Sun05a]. This language was designed from the ground up as an object oriented

language for embedded devices. As such, common security and reliability issues were

important design constraints. This resulted in the elimination of multiple inheritance,

operator overloading and pointers. Renamed to Java for trademark reasons, and under

the control of the FirstPerson project at Sun, the language could not find acceptance

in the consumer electronics industry. As a result, the FirstPerson project was dissolved

by Sun in 1994.

Despite this, a few members of the project continued their efforts in finding a market

for Java. This changed when Bill Joy made the decision to get Java running inside

WWW browsers. Even though it was not the original target market for Java, the

9

features of Java made it a perfect fit for the World Wide Web. Seeing Joy’s work, Sun

Microsystems realised this, supported the project and announced Java and HotJava, a

Java-based Web browser in 1995 [Als95]. Netscape Inc [Ano95] and Microsoft [Lie95],

followed suit by announcing support for Java in their respective browsers, cementing

Java’s place on the Internet.

In the last few years, Java has essentially returned to its roots, being deployed on

many of the consumer devices for which it had been originally designed. Embedded

devices such as mobile phones, smart cards, car navigation systems, gaming systems

now run Java Virtual Machines as part or all of their processing functions.

2.3 The Java Virtual Machine

The Java system, at its most basic level consists of the Java compiler for compiling

Java source code into bytecode, a Java Virtual Machine (JVM) for running that byte-

code on a particular architecture, and the Java Class Libraries, a standard set of well

documented libraries. Figure 2.1 illustrates the relationship between Java source, Java

bytecode, the JVM and underlying architecture.

In Figure 2.1, a simple program Hello.java is compiled by a Java compiler. The

compiler outputs a Hello.class file containing the bytecodes, the machine code as it

were, for the Java Virtual Machine. These class files can be executed by a JVM on

the same machine upon which compilation took place, or they could just as easily be

transmitted across a network. They can even be run on a machine with a different

architecture as long as that machine has a JVM. No matter what JVM the Hello.class

file is run on, that JVM should have access to the standard Java Class Library.

When the Hello.class program is being executed, any external code dependencies

are loaded, typically from the Java Class Library. This external code is usually also in

the form of class files1. This process, an extended form of dynamic linking, is called

dynamic class loading. In combination with the bytecode format and the standardised

class library, this dynamic linking approach is one of the reasons Java class files are so

compact. This compactness is one of the attributes of Java bytecode that lends itself

to fast transmission through networks. As we saw in Section 2.2, this is a desirable

1These class files may or may not be stored in compressed form.

10

Java Bytecode

Java Virtual Machine

Java Compiler

class Hello
{
 public static void main(String args[])
 {
 System.out.println(“hello”);
 }
}

Hardware

Class Library

Virtual
Machine

Layer

Network

Hello.class

.class file(s)

Hello.java

Figure 2.1: Overview of the Java System

11

property of Java in its role of supplying and running dynamic web content for browsers2.

The bytecode itself is a stream of bytes, where each opcode is one byte long. Thus

there is a maximum of 256 opcodes numbered from 0-255. Each instruction in the

bytecode has a defined number of operands, also composed of bytes. Operands longer

than a byte, for example integers, are either spread over several bytes or stored in the

constant pool3. A limited number of types can appear as operands in the bytecode

stream. These are the seven so-called primitive types in Java; byte, short, int, long,

float double and char. Big endian ordering is used for operands that are split over

several bytes. In the bytecode, there is no explicit type information encoded with

operands. The number and type of operands in an instruction is implied from the

instruction’s opcode itself. For example the iflt (if less than zero) instruction is

followed by two operand bytes representing a single signed 16 bit integer.

In Figure 2.1 the JVM and underlying hardware can often be viewed as a single

machine designed for running Java, hence the grouping of the two logically into the

Virtual Machine Layer. When providing support for Java on a new architecture, the

only component that needs to be modified/rewritten is the only hardware dependant

part of the whole package, namely this JVM.

The JVM, the subject of this thesis, is typically written in C/C++ perhaps with

some assembly language for performance reasons. Regardless of the implementation

language, or the underlying architecture, JVMs have a universal structure, based on

the various roles it must carry out in its lifetime. Figure 2.2 illustrates this high-level

structure of a typical JVM.

2.3.1 Execution Engine

The main processing part of the JVM is the Execution Engine, responsible for the

execution of Java bytecode. There are a number of (potentially overlapping) methods

for implementing the Execution Engine:

Interpreter-based For embedded systems without a native Java instruction set, an

interpreter-based execution engine is a good choice as it requires little memory

2The Hello.java program above compiles to 401 bytes using j2sdk 1.4.2. In contrast a ‘C’ program
for doing the exactly same task compiles to 36,864 bytes on a Pentium 4 using MSVC 7.1.

3A repository for larger datatypes, stored outside the bytecode and indexed from the bytecode
wherever required. This approach yields more compact bytecode at the expense of run-time efficiency.

12

Java Bytecode

Dynamic Class Loader

OS/Hardware

Class Library

Native Method Library

Bytecode Verifier

Execution Engine

Native Interface

Garbage Collector

Application Code

Java Virtual Machine

Figure 2.2: The Java Virtual Machine Structure

13

during the execution of Java bytecode. The interpreter reads the bytecode in-

struction for an instruction code (opcode). It then looks up a table to find the

implementation code for this instruction code and then jumps (dispatches) to this

code. When the code for the instruction is complete, the bytecode interpreter

repeats the process beginning by reading the next instruction from the bytecode.

While interpreter-based approaches are slow, they do have some notable benefits

such as low run-time memory usage and are easy to port to new architectures.

Because of this compact nature, Embedded JVMs such as the Java Card Virtual

Machine [SZY00] are typically implemented as interpreters.

Ahead-Of-Time (AOT) compilation Ahead Of Time compilers, compile all the

Java code to native code before the JVM begins execution. This is an attractive

proposition where the bytecode to be run is known in advance. However because

some Java applications use custom classloaders or load components at runtime,

code from a fully-fledged AOT compiler must be augmented with a Java execution

engine such as an interpreter or a Just-In-Time compiler. The Gnu Compiler for

Java (GCJ) [GNU03] currently offers limited support for AOT compilation for

Java source code. The applications compiled to native code by an AOT compiler

will typically be much larger than the bytecode generated by a standard java

compiler.

Just-In-Time (JIT) compilation By far the most popular technique for implement-

ing an execution engine, this approach incorporates a Java to native code com-

piler into the running JVM. When a new bytecode method is encountered, the

method may be converted to native code, just in time, i.e. just before it is exe-

cuted. Because compilation to native code is expensive, some JITs only compile

frequently executed regions of bytecode (hotspots). This has two implications.

The first is that heuristics are needed to decide which regions of bytecode are

going to be executed frequently and are worth compiling to native code. The

second is that some bytecode will not get translated. This in turn implies that

the JIT compiler must have an execution engine for dealing with these bytecodes.

This secondary execution engine is usually implemented as an interpreter. Sun

Microsystem’s HotSpot JVM [Gri98] makes use of this dual-execution engine ap-

proach to combine execution of JIT compilation and bytecode interpretation in

14

an efficient manner.

CPU-based Java processors are processors with instruction sets and architectures

that match or closely match the virtual machines upon which Java bytecode

is to be run. Many, if not all, of the Java bytecode instructions are actually

implemented in hardware. Because of this, on these systems java bytecode is

native code. Some processors with Java support such as ARM processors with

the Jazelle extension [Por04] have near-JVM architectures with most Java in-

structions being implemented in hardware and others being emulated by short

sequences of processor native instructions. While Java processors are fast for

executing Java bytecode, they are not as flexible as many other processors, and

are more suitable for embedded devices rather than desktop/server machines.

2.3.2 Dynamic Class Loader

The job of the Dynamic Class Loader [GJSB00] is to load external classes, as and when

they are required by the currently executing Java bytecode. These external classes can

be in ROM, on a drive, or even in a remote location, accessed over a network. Once the

appropriate class has been located, the dynamic class loader will verify that the class

adheres to the class file format. The class file will then be loaded into the appropriate

data structure in memory and the class in memory will be prepared and initialised.

There can be multiple class loaders (implemented as classes) in Java. These classes

themselves need to be loaded by a class loader. This implies the need for a root class

loader, through which other class loaders can be loaded as the JVM executes. This

root class loader is called the primordial class loader. It is typically written in native

code and is platform dependent.

2.3.3 Bytecode Verifier

The Bytecode Verifier analyses the bytecode and checks for illegal activity. This en-

hances the security and the reliability of the JVM. In order to do its job, the bytecode

verifier carries out a number of phased checks of loaded classes. The first phase happens

immediately after the dynamic class loader has loaded a new class. This phase checks

a number of items such as ensuring each opcode is valid and has the correct operands,

15

that the operand stack is always the correct height at each point in the bytecode, and

that local variables are initialised before usage.

The next phase of the verification stage is often deferred until the individual byte-

codes in the class are executed for the first time. This stage verifies symbolic references,

resource identifiers for external classes, methods or fields. Many of these symbolic ref-

erences may be references to classes that have yet to be loaded, so they must be loaded

at this stage. When a symbolic reference is located, the bytecode verifier also checks

that it contains the specified class, method or field, depending on the symbolic refer-

ence. If the target for the symbolic reference can be found and loaded into the JVM

successfully, the corresponding symbolic reference can be replaced with a direct refer-

ence to the target. This will prevent further checking of the symbolic reference, since

it has already been verified.

These relatively costly checks are carried out to satisfy Java’s original intent to

provide secure, robust computation for embedded devices and for virtual machines

running in WWW browsers running code that may or may not be trusted.

2.3.4 Java Native Interface

The Java Native Interface [Lia99] is a part of the JVM which enables the JVM to

call native code. This code can support platform dependant features not supportable

through a JVM, pre-existing libraries that are too costly or unable to be ported to

Java, or frequently executed tasks that would be better implemented as native code

for performance reasons.

The JNI also has an important role, interfacing the JVM to JIT compilers. JIT

compilers are built and supplied as standalone native code, platform dependant mod-

ules. The JVM uses the native interface to call the various functions of the just-in-time

compiler. In addition, when methods have been compiled to native code by the JIT

compiler, calls to these native methods can be performed through the native interface.

Using the JNI enables native code to create new Java objects and manipulate them.

Native code can also access Java objects, even modifying Java objects that are passed

as parameters. Similarly the JVM is able to inspect and modify objects created by

native code using the JNI. The JNI also gives the native code the ability to catch,

handle and throw exceptions, to load Java classes, to get information about classes

16

and to do runtime type checking.

2.3.5 The Garbage Collector

Each time the new operator in Java is used to create a new object, memory for that

new object is allocated on the heap. In Java, unlike, for example, C++, memory

is not explicitly de-allocated. This means that allocated memory that is no longer

required must be freed through some other mechanism. This mechanism is the Garbage

Collector [Ven00].

The Garbage Collector typically runs in its own thread and scans through the

heap looking for objects that are no longer reachable. When such objects are found,

the Garbage Collector removes these objects from memory. The advantages for this

automatic allocation and deallocation of memory are a more secure JVM, and releasing

the programmer from the labour and potential bugs associated with memory allocation

errors. The disadvantage is that the garbage collection process consumes precious CPU

time since it is executed at certain times during a JVM’s execution.

The times when a Garbage Collector are to be run are not defined in the stan-

dard Java specification [GJSB00]. Indeed the Java specification does not even say how

the Garbage Collector should do its job, merely that the heap must be garbage col-

lected. This has led to a myriad of garbage collection algorithms being incorporated

into JVMs, experimental or otherwise. Garbage collection algorithms vary from ref-

erence counting [Bev87] to more sophisticated Mark-Sweep algorithms [GSaC05] and

copying algorithms such as the Semi-Space [Che70] and Generational [DKP00] algo-

rithms. Differences between the various algorithms are in how they deal with memory

fragmentation and how quickly they can find objects that require garbage collection.

Because no guarantees are made in the Java specification about the times when the

Garbage Collector is invoked, nor how long each invocation should take, Java is of-

ten seen as unsuitable for real-time applications. The Real-Time Specification for Java

(RTSJ) [BBG+00] provides for additional control over the Garbage Collector by the pro-

grammer. For example, it is possible to create threads called NoHeapRealtimeThreads

that never require garbage collection. The programmer can also, where possible, de-

termine for how long the current thread can be interrupted by the underlying Garbage

Collector. Another possibility the programmer has is to force the Garbage Collector

17

to execute at certain times4.

2.3.6 Threading Model

Threads are part of the Java standard, indeed, even in a single threaded Java applica-

tion, the Garbage Collector must run as a separate thread. Therefore a compliant JVM

must support threads. As with garbage collection, the mechanism of thread support is

not specified by the Java standard. There are typically two choices, with some JVMs

providing user selectable implementations of both:

1. Green threads (JVM-level threads) [New00]. In this approach, the entire JVM

occupies a single OS thread. Threads of execution must share this single OS

thread. This is sometimes called a many-to-one thread model.

2. Native threads. In this approach, the JVM can create multiple threads, one for

each Java thread, and threads for the Garbage Collector as required. This is

sometimes called a one-to-one threading model.

Both approaches have their strengths and drawbacks. Green threads cannot make

use of Symmetric Multiprocessor (SMP) systems and can be inefficient as each time

a blocking system call occurs, it must be wrapped in such a way that prevents the

entire JVM from blocking. On the other hand, a JVM supporting native threads is

less portable, but can exploit SMP. Additionally, the efficiency of native threads can

be very high, depending on the OS threading implementation. When it comes to

the creation, destruction or suspending of a Java thread, green threads still have the

performance edge, since all these operations can be performed without a system call,

unlike native threads.

For embedded systems, a green threads approach is normally the practice for two

main reasons. Firstly, a JVM that uses green threads is more portable and secondly,

the underlying OS (if indeed there is any) on an embedded system is unlikely to provide

threading support. Because of this portability and the JVM-level fine grained control

4The original non-RTSJ Java standard allows for two calls, System.gc() or Runtime.gc(). However
these are just recommendations from the programmer indicating that a garbage collection should
happen here. Being merely recommendations, a standardised JVM can simply ignore them. This is
not usually acceptable behaviour in real-time applications.

18

of Java threads, the green thread approach can make simpler the task of constructing

and optimising a JVM.

2.4 Modern Processor Architecture

CPUs have evolved considerably from the days of simple fetch-decode-execute cycle

based hardware. Various architectural improvements have been made to improve in-

struction throughput, even as the performance gap between memory and CPU widens.

Some of these architectural aspects of the CPU have a surprisingly large effect on an

interpreter’s performance. The two main aspects we identify are pipelining and branch

prediction.

2.4.1 Pipelining

When a sequence of instructions are independent of one another, they could be executed

in parallel without affecting the outcome of that instruction sequence. This property

called Instruction Level Parallelism (ILP) can be exploited in a number of manners,

the simplest of which is to build is a pipelined processor [HP03].

Pipelining divides machine instructions into a number of stages. In order to be

executed, an instruction must pass through each one of those stages. Because there is

now hardware to support several stages in the execution of an instruction, there is no

reason why several different instructions cannot be executing in the same CPU at the

same time. The sole restriction is that each of the instructions must be at a different

stage of execution. The effect of this is that several instructions can be executed in

parallel, all at different stages in the pipeline.

There are 5 main stages in a classic processor pipeline:

1. Instruction fetch (IF)

2. Instruction decode/register fetch (ID),

3. Execute (EX),

4. Memory access (MEM),

5. Write back (WB) of results to the registers.

19

Figure 2.3 shows this type of classic 5 stage processor pipeline from [HP03]. In the

first cycle, op1 is at the first stage of the pipeline. In the second cycle, op1 moves to

the second stage and op2 moves to the first stage. When all five stages of the pipeline

are full, five different operations will be active, all at different stages of execution.

IF ID MEM WBEX

time

stage 1stage2

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

op1

op2

op4

op5

op3

Figure 2.3: Classic processor pipeline

Pipelining requires a change in the way one considers the atomicity of the CPU

clock. In a simple CPU without pipelining, a clock-tick would only need to be as short

as the shortest instruction the CPU can execute. Once pipelining is introduced, the role

of the clock changes to synchronising the pipelining, each stage of which is relatively

short. Therefore pipelined CPUs tend to have faster clock rates. An interesting point

of note is that while clock ticks must be uniform, the amount of time required by each

stage of the pipeline can be different. In a sense, the pipeline can only be as fast as its

slowest stage. A significant challenge in pipeline design is to ensure that the various

stages are matched as closely as possible in terms of time required to do their job. A

nice example of this effect in action can be found inside the Pentium 4 [HSU+01]. The

pipeline in this CPU has two ‘drive’ stages which are solely for moving signals across

the chip. If these signals had not been given their own stages and instead incorporated

together or into another stage, the entire pipeline would have to be slowed down.

Some recent processors have even longer pipelines than the five-stage example in

Figure 2.3. For example, Intel’s P4 processor (Northwood core) has a 20 stage pipeline

[ISS05], which is achieved by dividing the normal pipeline stages into smaller steps.

Even more extreme is the Prescott core P4 processor with 31 pipeline stages [ISS05].

One advantage of a longer pipeline is that each stage takes a shorter amount of time,

allowing the clock frequency of the processor to be increased.

20

In an ideal world, a pipeline of length n will have n instructions at various stages of

execution, and complete one instruction per clock cycle. This rarely happens for a num-

ber of reasons, including dependencies among instructions and branch mispredictions

(Section 2.4.2). At a certain stage, the amount of extra Instruction Level Parallelism

(ILP) that can be exploited by extending the pipeline tails off. The exploitation of ILP

through pipelining does not come for free. As the length of the pipeline increases, the

synchronisation and the transfer of data from stage to stage also incurs more and more

overhead. Therefore choosing the optimal length of a pipeline becomes a balancing act

of trying to maximise ILP by extra pipelining stages, while trying to minimise the cost

associated with those extra stages. In the next section we highlight a significant cost

associated with longer pipelines.

2.4.2 Branch Prediction

We have deliberately deferred one significant source of pipeline stalls until this point,

namely stalls due to control flow changes. While pipelines work extremely well for

straight line code, once conditional branches start occurring, things become more dif-

ficult. In a pipelined processor when a conditional branch is read into the CPU’s

pipeline, the CPU does not know what the result of the condition will be, since the

condition has not actually been evaluated yet. The branch may need to pass through

several, even all, stages of the pipeline before the CPU knows where the next instruc-

tion should be fetched from. In order to keep the pipeline ‘fed’ with instructions, the

CPU guesses where the next instructions after the conditional branch will come from,

and starts feeding these instructions speculatively into the pipeline. This approach

is called speculative execution and its primary purpose is to keep the pipeline busy

[She04].

The problem with speculative execution is that it is only of value when the predic-

tion is correct. In cases where the CPU makes the wrong guess about the conditional

branch, it may have to clear out all the instructions that had been speculatively loaded

into the CPU. Worse still, some of these instructions may have been partially executed,

and any changes resulting from these partially executed instructions must be undone.

The latter problem is fixed by adding hardware support into the CPU for speculative

execution, to ensure that partial execution of an incorrectly guessed stream of instruc-

21

tions causes no problems. The former problem can only be fixed by guessing right all

of the time.

Unfortunately, predicting such branches correctly 100% of the time is not possible.

Furthermore, the problem of branch prediction is even more difficult than simply trying

to predict conditional branches. In these cases, the task of prediction is to determine

if a branch will jump or not. Indirect branches are much more complicated to predict.

These are instructions which jump to a computed address, and thus can have multiple

possible targets. The problem is exacerbated by longer pipelines, as a single mispredic-

tion by the speculative execution engine can result of the flushing of the entire pipeline,

and a delay of n cycles (where n is the length of the pipeline) until instructions are

being completed again. This is disastrous for instruction completion rates.

There are two reasons to be optimistic though. Firstly, not all applications contain

lots of unpredictable branches. For example media and games applications contain a

lot of predictable straight-line code with infrequent branches. Secondly, CPUs that

have speculative execution also have branch prediction and branch target prediction

algorithms and supporting hardware which enables better guesses to be made as to the

control flow of the program. Typically, the longer the pipeline (and hence the bigger

the branch misprediction penalty), the more sophisticated the prediction algorithms.

One of the simplest approaches to branch prediction is a static branch predictor

[Pat95]. Static branch predictors use a set of static rules to determine whether a branch

is taken or not. A simple static predictor might assume that a backwards branch is

always taken. This approach would work well for loops but would fail spectacularly for

other types of branches. Most modern branch target prediction algorithms are dynamic

and work on the basis of a history. A common version of dynamic branch prediction

uses a Branch History Table to guess whether a branch is taken or not. Simple 1-bit

BHTs make guesses about whether a branch is taken based on what happened the

last time the branch was encountered. Other BHT algorithms take more sophisticated

approaches, attempting to exploit patterns in a branches history.

For dealing with the addresses of indirect branches, a common approach is to include

hardware called a Branch Target Buffer (BTB) into the CPU [Fog01]. This BTB

maintains a list of previously encountered branches (hashed by their address) and their

previous target. If the branch is encountered again, a lookup to the BTB will find the

entry for that branch, and speculative execution will continue at the indicated address.

22

If later, that address turns out to be wrong (i.e. if a branch misprediction occurs), the

BTB entry for that branch will be updated with the correct address. BTBs are limited

in size, though, and even in a program with numerous predictable branches, the BTB

may not have space for all of them due to some of them being displaced out of the

BTB by more recent entries. These type of BTB misses are called capacity misses.

The best performing indirect branch predictors at present are two level predictors.

The first level is a global or at least partially shared set of history registers which store

a limited number of previous targets of branches. This table of registers is called a Path

History Register (PHR). The number of branches stored in the history at each entry

is called the path length. The second level is a table called the Pattern History Table

and is composed of 2-bit counters, each with an associated branch target address. It is

this 2-bit counter that decides whether to replace the associated branch or not, when

a misprediction occurs. First proposed by Driesen and Hölzle[DH98], these predictors

have yet to be implemented on a wide scale.

Looking at some current desktop CPUs, the Pentium 4 [HSU+01] has a pipeline

of 20 or 31 stages (depending on which CPU core one looks at). It has a BHT size

of 4096 entries and a similarly sized BTB. The branch prediction algorithm is not

public knowledge but appears to be quite efficient. The Pentium-M chip [GRA+03]

has an undisclosed pipeline depth estimated between 10-20 cycles and has an extra

piece of branch prediction hardware called a Loop predictor which is a specialised

BHT specifically for loops. Interestingly, the Pentium-M chip appears to have a two

level branch prediction unit that yields significant improvements in branch prediction

accuracy [GRA+03].

2.5 Conclusion

In this chapter we have presented some of the background and history of the Java

Virtual Machine. We have examined a number of types of execution engine, interpreter-

based execution-engines being of greatest interest to us due to their utility in embedded

systems. We have also examined some of the architectural features of a typical modern

CPU which will be seen to have a substantial effect on JVM performance in subsequent

chapters. In the next chapter we present a more detailed examination of the state of

the art in JVM optimisation, paying close attention to previous research in the area.

23

Chapter 3

Literature Survey

3.1 Introduction

The Java Virtual Machine uses a stack-based bytecode to represent the program. Exe-

cuting this bytecode is similar to executing normal machine code. The JVM fetches the

next instruction, and based on the type of instruction and its operands, some action

is performed. Thus the JVM must perform some action from a large number of alter-

natives, based on the value of the opcode. This is known as dispatching the bytecode

instruction.

Instruction dispatch typically consumes most of the execution time in virtual ma-

chine interpreters. The reason is that most VM instructions require only a small amount

of computation, such as adding two numbers or loading a number on the stack, and can

be implemented in a few machine code instructions. In contrast, instruction dispatch

can require up to 10-12 machine code instructions, and involves a time consuming in-

direct branch. For this reason, dispatch consumes a large proportion of the running

time of most efficient interpreters [EG01].

Switch dispatch is the simplest and most widely used approach. The main loop of

the interpreter consists of a large switch statement with one case for each opcode in

the JVM instruction set. Ertl [Ert95] presents a number of ‘C’ source code samples

and the corresponding compiled MIPS assembly language which we use in this chapter

to illustrate the various threading techniques. Figure 3.1 shows how this approach is

implemented in C, and Figure 3.2 shows the corresponding Mips assembly language.

24

typedef enum {
add /* ... */

} Inst;

void engine()
{
static Bytecode program[] = { iadd /* ... */ };

Bytecode *ip;
int *sp;

while (1)
switch (*ip++) {
case iadd:
sp[1]=sp[0]+sp[1];
sp++;
break;

/* ... */
}

}

Figure 3.1: Instruction dispatch using switch [Ert95]

25

$L2: #for (;;)
lw $3,0($6) #$6=instruction pointer
#nop
sltu $2,$8,$3 #check upper bound
bne $2,$0,$L2
addu $6,$6,4 #branch delay slot
sll $2,$3,2 #multiply by 4
addu $2,$2,$7 #add switch table base ($L13)
lw $2,0($2)
#nop
j $2
#nop
...

$L13: #switch target table
.word $L12
...

$L12: #add:
...
j $L2
#nop

Figure 3.2: Switch dispatch in MIPS assembly [Ert95]

Switch dispatch is simple to implement, but rather inefficient for a number of rea-

sons. First, most compilers produce a range check to ensure that the opcode is within

the range of valid values. In the JVM this is unnecessary, since the bytecode verifier

already checks this. Secondly, the break is translated into an unconditional jump back

to the start of the loop. Given that the loop already contains a jump, it would be

better to structure the loop as a set of routines that jump to one another.

3.2 Dispatch Techniques

Historically, interpreters have not been designed with efficiency in mind. A survey of

several interpreters by Romer et al [RLV+96] concludes that work to improve inter-

preters would be better spent at the software rather than hardware level. Ertl et al

[EG01] examine efficient interpreters however and find that they contain a substantial

26

hardware-related inefficiency. This inefficiency relates to the unpredictability of branch-

ing from one VM to the next (instruction dispatch) and the fact that most modern

CPUs are pipelined, some quite deeply. They found that 3.2%-13% of all executed

instructions are indirect branches. This, in itself, is not a surprise, since an indirect

branch will typically follow each VM instruction, while the VM instructions them-

selves are relatively simple operations, comprising a handful of machine instructions.

The most surprising result they present is the number of cycles that these indirect

branches consume, which is reported as 61%-79% of machine cycles. They highlight

the importance of a good predictor, reporting a speedup of 2.55 or more over no pre-

dictor. From a software point of view, they recommend replacing a standard switch

dispatch based scheme (Figure 3.3) with a direct threaded dispatch scheme.

Interpreter core:

bytecode INDEX_OF
(iload)

operand INDEX_OF
(iload)

operand INDEX_OF
(iadd)

……

0 1 2 3 4 ……

case iload:
<code>
IP+=2;
break;

executed
 code

case iadd:
<code>
IP+=1;
break;

0

2

4

5

switch(*IP)

 case ...

 break;

 case ...

 break;

 case ...

 break;
}

0

2

4

5
{

Figure 3.3: Switch Dispatch

27

3.2.1 Direct Threaded Dispatch

The first paper discussing threaded code was published in 1973 by James Bell [Bel73].

This technique was later rechristened direct threaded code in the light of many other

variations on the same theme. The paper describes a process where the instructions

in the code to be interpreted are represented by the address of their implementation,

rather than a string, index or other types of representation. Instruction dispatch then

becomes a process of retrieving the address of the next instruction from the instruction

stream and jumping to this address. This optimisation is dependant upon the ability

to treat labels as first class values (first-class labels). In cases where this support is not

present, one can either resort to a more portable dispatch method, or indeed resort to

writing sequences of machine code for the dispatch part of the interpreter instructions.

First class labels are not part of the ANSI-C standard. However, GCC, the popular

multi-platform GNU compiler has support for first-class labels. This feature allows the

addresses of labels to be treated like any other pointer. Figure 3.4 shows an example

of a threaded dispatch interpreter.

The advantages of direct threaded dispatch over switch dispatch are twofold. Firstly

direct threaded dispatch involves only a load and an indirect branch as opposed to the

slightly more complicated switch instruction. The switch instruction indexes a table

of branch targets which usually includes incurring the cost of a bounds check in addi-

tion to a load and indirect branch. Typically a direct threaded dispatch needs three

to four machine instructions, whereas the switch dispatch needs nine to ten machine

instructions [Ert94]. Secondly, and more importantly, because each VM instruction

gets its own dispatch code in the direct threaded approach, it means that there will

be more entries in the BTB. This has a massive contribution to the predictability of

branches. Instead of having a single indirect branch, branching to all possible instruc-

tions, a larger number of branch points exist, each branching to a subset of possible

VM instructions1. Consider the loop shown in Figure 3.6. The Figure shows the state

of the BTB after a complete iteration of the loop (including the branch backwards).

1This subset can be an effective subset resulting from the sequences of instructions seen in a
program. It can also be an absolute subset where the interpreter rules dictate that only certain
instructions can follow a particular instruction. For example in Java, if the iload instruction is
encountered (pushing an integer to the operand stack) one is guaranteed that the next instruction is
not fadd (add two floats on the top of the instruction stack).

28

Interpreter core:

bytecode INDEX_OF
(iload)

operand INDEX_OF
(iload)

operand INDEX_OF
(iadd)

……

0 1 2 3 4 ……

threaded
 code

&&iload operand &&iload operand &&iadd ……

0 1 2 3 4 ……

iload:
<code>
IP+=2;
goto **IP;

executed
 code

iadd:
<code>
IP+=1;
goto **IP;

0

2

4 5

Figure 3.4: Threaded Dispatch

typedef void *Inst;

void engine()
{
static void * program[] = { &&iadd /* ... */ };
Inst *ip;
int *sp;

goto *ip++;

iadd:
sp[1]=sp[0]+sp[1];
sp++;
goto *ip++;

}

Figure 3.5: Instruction dispatch using direct threading in GNU C [Ert95]

29

In a switch based dispatch scheme, each instruction dispatch will most likely cause a

branch misprediction. This is because no two copies of the same instruction occur in

succession and the BTB entry for the dispatch in the switch statement will never guess

correctly. However in the direct threaded approach because iload always follows iadd,

isub always follows iload etc. in the loop, each of the individual dispatches at the end

of a VM instruction is always to the same target. Overall Ertl et al [EG01] estimate

that threaded dispatch gives an increase in branch prediction accuracy of 2%-20% from

switch based dispatch to about 45% with threaded dispatch.

In work describing the efficient SableVM interpreter, Gagnon et al [GH01] de-

scribe the use of direct threading in their interpreter. Although they provide perfor-

mance comparisons between SableVM and othe VMs, they do not report any results

that are meaningful in terms of determining how much direct threading contributes to

SableVM’s performance. In later work Gagnon et al measure the speedup of a threaded

version of their interpreter over an atypically optimised2 switch-based version of their

interpreter. They measure the effect on running time using the SPECjvm98 bench-

marks [SPE98] and two object oriented applications soot [VRCG+99] and SableCC

[GH98], and obtain an average speedup of 1.12.

Gregg et al [GEK01] also describe the construction of an efficient Java interpreter

using direct threading dispatch. Although results are presented comparing the in-

terpreter’s performance in relation to a number of other interpreters, no results are

presented that measure the exact contribution of direct threading to that performance.

3.2.2 Token Threaded Dispatch

One valid criticism of direct threading is that it involves replacing instruction codes in

the instruction stream with the addresses of the instructions. Apart from the necessary

code translation, this also can cause code bloat in the interpreted code (bytecode bloat),

depending on the interpreter’s code representation and the size of a memory address3.

2The switch-based interpreter they used is actually switch-threaded. It uses a switch statement
but does not operate on bytecode, but on optimised word-sized code. Therefore the speedup obtained
by using direct threaded dispatch should be treated as a lower bound that one might obtain over a
normal switch-based interpreter operating on bytecode.

3For example in Java on a 32-bit x86 CPU, a single bytecode representing an instruction must be
replaced with 4 bytes (a single 32-bit address).

30

IADD ILOAD ISUB IFLT

DISPATCH TARGET

SWITCH &IADD

DISPATCH TARGET

IADD &ILOAD

ILOAD &ISUB

ISUB &IFLT

IFLT &IADD

BTB

BTB

Switch Dispatch:

Threaded Dispatch:

Code:

Figure 3.6: Switch Versus Threaded Dispatch

An alternative dispatch mechanism, token threading is shown in Figure 3.7. This

dispatch scheme avoids any modifications to the interpreter’s instruction stream. A

table of instruction addresses is used and, while each VM instruction still gets its

own dispatch code, the dispatch itself is changed. Each dispatch consists of using the

standard instruction code, found in the instruction stream, to lookup the address of

that instruction in the table. Once the address of the instruction has been loaded, an

indirect branch takes place to that address. Because token threading is identical to

direct threading, apart from the table lookup, it gives identical performance in terms of

branch prediction accuracy. Despite the table lookup, token threading could actually

improve performance due to the fact that it does not cause code bloat, and therefore

ought to give better cache performance.

3.2.3 Offset Threading

If one is concerned about the table lookup, another alternative is to use offset threading.

This approach attempts to address the bytecode bloat issue, but some instruction

stream translation is still required to replace instruction codes. This time however,

a base address is selected and shorter offsets to each instruction are stored into the

instruction stream instead of full memory addresses. For example, instead of storing a

31

Interpreter core:

bytecode INDEX_OF
(iload)

operand INDEX_OF
(iload)

operand INDEX_OF
(iadd)

……

0 1 2 3 4 ……

iload:
<code>
IP+=2;
goto *table[*IP];

executed
 code

iadd:
<code>
IP+=1;
goto *table[*IP];

0

2

4 5

table
Index

Address

…..

…..

 INDEX_OF(iload) &&iload

 …..

…..

 INDEX_OF(iadd)

&&iadd

…..

…..

Figure 3.7: Token Threaded Dispatch

32

typedef void *Inst;

void engine()
{
static Bytecode program[] = { iadd /* ... */ };

Bytecode *ip;
Inst dispatch_table = { &&nop, &&aload_null, };
int *sp;

goto dispatch_table[*ip++];

iadd:
sp[1]=sp[0]+sp[1];
sp++;
goto dispatch_table[*ip++];

}

Figure 3.8: Instruction dispatch using token threading in GNU C [Ert95]

lw $2,0($4) #get next inst., $4=inst.ptr.
addu $4,$4,4 #advance instruction pointer
j $2 #execute next instruction
#nop #branch delay slot

Figure 3.9: Direct threading in MIPS assembly [Ert95]

33

lhu $2,0($4) #get next inst., $4=inst.ptr.
addu $4,$4,4 #advance instruction pointer
addu $2,$2,$5 #add base pointer
j $2 #execute next instruction
#nop #branch delay slot

Figure 3.10: Offset threading in MIPS assembly [Ert95]

32-bit address A into the instruction stream, one could store a 16-bit offset B into the

instruction stream, where A = Base+B. Instead of a table lookup before the indirect

dispatch, a cheaper addition can take place. This cost of this addition can be cheaper

if one uses a variation of offset threading called segment threading. In this approach,

the segment register addressing mode of the host CPU is used.

The segment register is loaded with the code segment containing the VM instruction

core and offsets are stored in the instruction scheme as before. Because the addition is

absorbed into the addressing mechanism, it can be marginally faster than offset thread-

ing. Unfortunately this type of addressing is only available on x86 CPU derivatives

and even if it is available, may require assembly code to ensure it is used. Additionally

the offset requires 16-bit alignment.

The offset threading scheme was introduced by Barnhart [Bar83] where he proposed

a scheme for implementing a direct threaded interpreter on the 32 bit Motorola 68000

using only 16 bit addresses. The scheme allocates one register to be the “base pointer”,

which contains the starting address of the interpreter. All other addresses are offsets

relative to the base pointer. Thus, we need a 32 or 64 bit base address, and provided

that the interpreter code fits inside 64K, the threaded code can consist of a series of

offsets to that base address.

3.2.4 Indirect Threaded Dispatch

One way to reduce the size of direct threaded code is to factor our frequently occurring

immediate constants in the code. Typically, the same constants appear many times in

the code and the goal of indirect threaded [Dew75] dispatch is to have a special version

of each instruction for each immediate constant value that the instruction can have.

This is achieved by adding an extra level of indirection. Instead of the code consisting

34

lw $2,0($4) #get the next inst, $4=inst.ptr.
#nop #load delay slot
lw $3,0($2) #get the VM instruction address
addu $4,$4,4 #advance instruction pointer
j $3 #execute next instruction
#nop #branch delay slot

Figure 3.11: Indirect threading in MIPS assembly

of a list of addresses of executable routines interspersed with immediate operands, the

code becomes a list of pointers to structs. Each struct contains field with a pointer

to the routine to implement the instruction, and another field containing the immediate

operand.

Indirected threaded dispatch reduces the code size by factoring out multiple copies

of frequently used constants. However, the addition of a struct for each VM instruction-

operand pair offsets some of the savings in memory size. Furthermore, the extra level

of indirection requires an additional load to the compiled dispatch code when compared

with direct threading (see figure 3.11).

Some implementations of the Forth language, such as GForth [Ert93], use a hybrid

of direct and indirect threading. As with indirect threading a struct is created at

translation time for each combination of VM instruction and operand in the program.

However instead of the first field containing a pointer to the executable code, it contains

a machine language instruction to jump to this code. This combines many of the

benefits of direct and indirect threaded dispatch. Unfortunately, this scheme requires

that executable machine code be generated at run time, something that cannot be done

portably. Furthermore many architectures with separate instruction and data caches,

such as the Intel Pentium, impose a very heavy performance penalty if there are cache

lines containing both data and executable instructions. For these reasons, we do not

consider this scheme any further.

3.2.5 Other Threading Mechanisms

Call threading [Ert96] is threading mechanism which is viable for most compilers, even

those not supporting first-class labels. Instead it relies on indirect calls instead of

35

indirect jumps. Each dispatch involves a call and a return sequence. In addition

any shared data between VM instructions such as the stack pointer and instruction

pointers must be declared as global variables. Apart from the overhead of calls and

returns, without radical changes this approach is unsuitable for VMs that use multiple,

concurrent, OS-level threads. This is because a context switch between threads would

require the overhead of switching the shared data stored in global variables. With OS-

level native threads, this might not even be possible, since the JVM might not know

a context switch had occurred. Ertl [Ert96] provides measurements on the number

of cycles required for a dispatch on two processors, the R3000 and R4000, for switch,

direct and call threading. While call threading is not as efficient as direct threading,

it is a bit more efficient than switch-based threading.

Another variant is bit threading, a technique specific to the NOVIX NC4000. A

single bit in a 16-bit opcode determines if the opcode is a call to routine or an executable

instruction. This scheme allows a single-cycle call to a subroutine. A similar scheme

is used for returns. These processor-specific techniques are not portable and require

assembly language to implement them. We do not consider them further.

Subroutine threading [Kog82] is yet another variation on direct threaded code. First

presented by Curley [Cur93a, Cur93b] for Forth on the 68000, in this approach the

instruction stream is no longer interpreted. Instead it is composed of a sequence of

machine code call and ret(urn) instructions to/from various subroutines representing

VM instructions. A recent variation of subroutine threading termed context threading

has been developed by Berndl et al [BVZB05]. Each VM instruction is implemented

with a C function. Instead of interpreting bytecode or threaded code, a very simple just-

in-time compiler generates executable code for a sequence of calls to these functions.

This eliminates indirect branches completely from the dispatch of VM instructions, at

the cost of some loss in simplicity and portability.

3.3 Instruction Scheduling

One option to improve Instruction Level Parallelism and hence performance on deeply

pipelined architecture is to reorder instructions so that values are not used immediately

after they are computed. Avoiding this means avoiding pipeline stalls, which are ex-

pensive on pipelined architectures. This technique of re-ordering instructions is termed

36

instruction scheduling [CMC+91, CMW+94]. Typically performed within basic blocks,

the re-ordering is constrained by data dependencies, the violation of which implies the

changing of the semantics of the code. In short, not all orderings of instructions are

possible, and it is the job of the instruction scheduler to satisfy these constraints while

maximising ILP.

Software pipelining, a specific case of instruction scheduling attempts to overcome

memory latency in loops [RG81, Lam88]. It does this by overlapping pre-fetches for

a future iteration of the loop with the current iteration. This is something of a bal-

ancing act, as on one hand fetches must be early to avoid memory latency, but on the

other hand, if they are too early they may get flushed from the cache before they are

actually used. Because of the irreducibility of the interpreter loop [ASU86], software

pipelining must be performed manually. One such technique is to load the address of

the next dispatch as early as possible, even moving the load into the previous instruc-

tion [EG03b] (but may involve having an additional move instruction). This results

in a pipeline of two stages. Figure 3.12 shows a three stage pipeline optimisation (in-

Sequential Execution:
Time�

Bytecode i

Bytecode i+1

Incr/Fetch Execute/Decode Jump

Incr/Fetch Execute/Decode Jump

Pipelined Execution:
Time�

Bytecode i Incr/Fetch Decode Execute/Jump

Bytecode i+1 Incr/Fetch Decode Execute/Jump

Bytecode i+2 Incr/Fetch Decode Execute/Jump

Bytecode i+3 Incr/Fetch Decode Execute/Jump

Figure 3.12: Sequential and Pipelined Interpreters

crement/fetch, decode and execute/jump) which was applied by Hoogerbrugge et al

[HATW99] on the Philips Trimedia VLIW processor [SRD96]. Although they do not

isolate the performance benefits of the hand-coded software pipelining alone, they do

report an improvement from an average of 6.27 cycles per instruction without software

37

pipelining and stack caching to 4 cycles per instruction with both optimisations. In

subsequent work Hoogerbrugge et al [HA00] also report execution speed improvements

of 19.4% and a cycle reduction of 14.4% from pipelining their threaded, stack caching

JVM. Smaller optimisations for Prolog are also presented by Costa [Cos99].

These techniques can be of great assistance on pipelined architectures with delayed

indirect branches, a prepare-to-branch instruction or some equivalent. This includes

processors such as the Philips Trimedia and the Motorola PowerPC. On architectures

where branches cannot be resolved early, such as x86 CPUs, branches are predicted in

hardware and the programmer cannot control this prediction process directly. Even in

such processors, instruction scheduling can offer marginal performance improvements

by scheduling the load for the address of an indirect branch a couple of instructions

before the actual indirect branch. By the time the actual dispatch reaches the execution

stage, the load will have resolved. However a branch misprediction may still occur,

depending on what prediction the branch prediction unit has made for that indirect

branch. On such processors, this optimisation reduces the latency associated with

fetching these loads, but does not significantly contribute to reducing the frequency of

cost branch mispredictions.

Work exploiting ILP in Java has been examined in the context of just-in-time

compilers where the scheduling problem is more tractable due to the additional knowl-

edge of bytecode sequences at runtime. Suggestions for annotating bytecode allowing

an intermediate code compiler share information allowing better run-time instruction

scheduling (and other optimisations) is presented by Reig [Rei01]. The effect of run-

time exceptions on the ILP of JIT generated native code is examined by Arnold et al

[AHKR00]. Other work has concentrated on architectural models for exploiting ILP.

Watanabe et al [WCL01] present an architecture for exploiting ILP and Thread Level

Parallelism for Java. These results are promising as they present simulations that show

their architecture can achieve 7.33 Effective Instructions Per Cycle (EIPC) with 8 slots

and a 4 instruction scheduling window for each slot.

3.4 Stack Caching

Most operations in the Java VM access the operand stack, whether popping or/and

pushing a value. In order to speed up these operations, it would be advantageous

38

to employ some form of stack caching, keeping the stack contents in registers. Most

processors however have low numbers of registers available for the programmer to use

directly so keeping the entire stack in registers is simply not practical.

Fortunately, various studies have shown that the depth of the Java operand stack is

quite shallow [PWL04, Por04]. This implies that only a few registers would be required

to store a significant portion of the stack. Even if one were to just cache the topmost

item of the stack, this would give result in a stack-cache hit rate of over 50% [PWL04].

There are three classes of stack caching mechanism, differing in implementation

details and functionality:

1. Fixed-size stack caching.

2. Dynamic stack caching.

3. Static

3.4.1 Fixed-size Stack Caching

This approach to stack caching assigns a certain number of registers and an ordering

among those registers to hold items at the top of the stack. For example, if three

registers, R1, R2, R3 are assigned as a stack cache, then one register, say R3 must be

designated as the top of the stack at all times. Another, say R2 must be designated as

the second from top, and another as the third from top.

To support this approach, the VM must be redesigned. Firstly VM instructions

need to be rewritten so that stack accesses are to the registers. Secondly, code for the

maintenance of the stack cache must be introduced. If for example three items are

stored in the cache and a push occurs, then R3 must be flushed to memory, R2 must

be shifted to R3, R1 to R2 and then the push can take place to R1. Figure 3.13 shows

an example of the shifting of registers required when a push occurs when the stack

cache is full. Note that, apart from the register-register copies, there is only one store

to memory.

Similar complications can arise when an item is popped, as values need to be shifted

among registers, and this time a value must be read in from memory into R3. Apart

from this housekeeping, a stack caching Java interpreter must also flush its state to

memory at appropriate times, for example before a garbage collection occurs, or before

39

C

Stack

B
C
D

A

E
F
G

...

R3
R2
R1

mem+1
mem

mem-1

...

mem-2

Before Push:

Stack

A
B

E
F
G

...

R3
R2
R1

mem+1
mem

mem-1

D

mem-2

After Push:

Memory

CPU

Figure 3.13: Fixed Size Stack Caching with Three Registers

certain VM instructions. The major overheads of this form of stack caching are the

register-register moves which take place each time an instruction has a net effect on

the stack size. Other stack-size maintaining instructions benefit enormously from this

approach. For example the type conversion instructions in Java such as getfield

(which pops one object reference off the stack and pushes another) will find its operand

in a register and will push back to that register when done, all without register-register

copying.

Although there are still loads or stores each time a net change to the stack takes

place, the important feature is that these loads and stores do not represent data read

or written to/from the current VM instruction. The total number of loads and stores

executed may not be reduced. But when performing an operation such as an integer

add, the operands are immediately available in registers, rather than needing to be

fetched from memory. Thus the critical data dependence path in the code is shorter.

Values may need to be loaded, but these loads can be scheduled concurently with the

add, rather than the add having to wait for these loads to complete. Thus, the loads

40

are moved off the critical data dependence path. Hoogerbrugge et al [HATW99] use

a fixed size cache of two registers in a pipelined interpreter on the Philips Trimedia

VLIW processor (see Section 3.3 for results).

One configuration of fixed-size stack caching is much more practical than others.

This is to have a fixed-size cache of only one register. When the stack height changes,

no shifting of values between registers is needed, although the usual loads and stores

are required. This is the aproach used in the GForth interpreter. Ertl [Ert95] performs

an empirical comparison across a range of benchmarks in Forth. In this work it was

found that keeping a fixed number of items cached was inefficient except for the topmost

item. This is due to unnecessary loads and stores needed to maintain the constant size.

In the absence of a full implementation, results are presented in terms of eliminated

stores, loads and stack pointer updates.

Peng et al report an implementation of Xorp, a hybrid stack JVM on Intel’s XScale

processor in [PWL04]. In their implementation, they employed a fixed size cache of

two items. This choice was based on the fact that there are only seven callee-saved

registers, three of which were already required by the JVM (for the instruction pointer,

stack pointer and local variables pointer). Of the four that remained, one was required

for a code sharing (between stack-caching states) mechanism, and another was left free

in order for GCC to generate efficient code. According to their tests on selected J2ME

benchmarks, 80% of executed VM instructions read and write exclusively from/to the

stack. The novel contribution of this paper is their mechanism for sharing code be-

tween interpreter states, preventing the code-explosion problem associated with stack

caching. Their interpreter compares favourably to an un-cached threaded implemen-

tation, giving a 13.6% average speedup on their selected benchmarks.

3.4.2 Dynamic Stack Caching

The fixed-size stack cache approach, although relatively straightforward to implement,

has the overhead of a large number of register-register copies. For VLIW machines,

this may be an acceptable cost given the instruction scheduling opportunities that

arise. However, for non-VLIW, machines the benefits are not as great and therefore

the relative cost of these register-register copies is higher. An alternative approach that

avoids the register-register copies, is to allow the number of cached items in the stack

41

cache to vary. This means that a load or a store is no longer inevitable when a stack-

height changing VM instruction occurs. Loads will only occur when a VM instruction

cannot find the correct number of items in the stack-cache to pop (the stack cache is

empty), or when there is not enough room in the stack cache to push a result (the

stack cache is full).

Implementing such a variable-sized stack is a little more complicated, since the top

of stack can be any of the stack-cache registers (or none if the stack is empty). To

solve the problem, the concept of states is introduced. For example, if the interpreter

has a stack-cache of three registers R1, R2, R3, then the interpreter can be in one of

four states:

State 0 The stack is empty.

State 1 The stack-cache has one cached value. R1 is the top item.

State 2 The stack-cache has two cached values. R2 is the top item.

State 3 The stack-cache is full. R3 is the top item.

At any time the interpreter is in one of these states. In order to maintain the state in

an efficient manner, four sets of VM instructions (i.e. four interpreter cores) must be

defined, one for each possible state. For example, consider the iload instruction which

pushes an integer onto the stack. In State 0 there would be a iload0 instruction

that writes an integer to R1 and dispatches to the next instruction. However, it isn’t

that simple any more. Since there are now four copies of each VM instruction, it must

dispatch to the State 1 copy of the next VM instruction, since there is now one item

in the stack-cache. For example if the next instruction to be executed is also iload,

then a dispatch will take place to iload1, the State 1 copy of iload. Similarly, when

iload1 pushes to the stack, it writes to R2 and when finishes, dispatches to a State

2 copy of the next instruction. Also when the State 2 instruction iload2 pushes to

the stack, it writes to R3 and when finishes, dispatches to a State 3 copy of the next

instruction. The State 3 instruction iload3 is a little more interesting because the

stack is full in this state. One solution is to flush an item out of the bottom of the

stack (R1) into the in-memory stack. Then the other items in the stack (R2,R3) can

be shifted down. Finally the instruction can push the integer value onto the stack (i.e.

42

store it in R3). Because the stack was full, and is still full, there is no state change.

The iload3 instruction will dispatch to the State 3 copy of the next instruction.

Ertl [Ert95] discusses a number of other strategies for the case where the stack cache

becomes full.

...
iload0:

 R1=*(IP+1);
 IP+=+2;
 goto *tokens1[*IP];
...

...
iload1:

 R2=*(IP+1);
 IP+=2;
 goto *tokens2[*IP];
...

...
iload2:

 R3=*(IP+1);
 IP+=2;
 goto *tokens3[*IP];
...

...
iload3:

 *SP=R1; //Flush
 R1=R2; //Shift
 R2=R3; //Shift
 R3=*(IP+1);
 SP++;
 IP+=2;
 goto *tokens3[*IP];
...

State 0

R3:EMPTY
R2:EMPTY
R1:EMPTY

State 1

R3:EMPTY
R2:EMPTY
R1:INUSE

State 2

R3:EMPTY
R2:INUSE
R1:INUSE

State 3

R3:INUSE
R2:INUSE
R1:INUSE

tokens0

index address

0 &NOP0

... ...

21 &iload0

... ...

tokens1

index address

0 &NOP1

... ...

21 &iload1

... ...

tokens2

index address

0 &NOP2

... ...

21 &iload2

... ...

tokens3

index address

0 &NOP3

... ...

21 &iload3

... ...

Figure 3.14: Dynamic Stack Caching with Four States

Figure 3.14 shows the various implementations of the iload instruction, one for each

state. Note how switching from one state to another is implemented, namely by using

a table of dispatch target addresses. This is a variation of token threading, but we no

longer branch to an entry in a single array, tokens, to execute the code for instruction

i. Instead, there are now four arrays of tokens, and we must also specify the state j we

want to enter and branch to tokensj[i]. Because of this dependency on the tables of

43

dispatch target addresses, this type of stack-caching requires token-threaded dispatch.

Another point of note in the example is the omission of stack pointer updates in all

cases except where an item is being pushed out of the stack into memory. Although it

isn’t shown in the example, a stack pointer update will be performed when more items

are popped off the stack than are in the cache. For example, in State 0 when a pop

instruction occurs, the in-memory stack must be used and therefore the stack pointer

must be modified.

Dynamic stack caching has been used on hardware stack machines [Bla77, HS85,

HFWZ87, HL89, Koo89] and for improving procedure call performance on the Bell-Labs

Machine Project [DM82] and also at UC Berkeley [HP03, Fur88]. The first interpreter

work in this area was reported by Debaere et al [DV90] on Forth an Modula-2 VMs.

The experimental evaluation, unfortunately is limited to the sieve benchmark. The

speedups they report4 are quoted as 16% for Forth on an 8086, using a 2-register cache

and a speedup of 17% for the Modula-2 VM on a 68020, using a three register cache.

There are two problems with this stack-caching mechanism. As noted above, dy-

namic stack caching is dependant on token threaded dispatch. This precludes us from

using the faster direct threaded dispatch. An additional problem is one of interpreter

size. For a cache-size of n items there is a total of n + 1 states, and for each state a

copy of the interpreter core. This is referred to as the code-explosion problem.

In relation to Java, the HotSpot VM uses dynamic stack caching with one register.

So the stack cache can be empty, or can have one item cached [Gri99]. The HotSpot

VM has a separate state for each type that can be at the top of the stack. Because

only a limited set of instructions can operate on a particular type, each state in the

interpreter does not need to implement the full JVM instruction set. For example,

when the item at the top of the stack is an float, the JVM will be in an float-caching

state. The iadd instruction does not need to be implemented in this state, since it

cannot operate on a float.

4It isn’t quite clear from their paper what these speedups represent. It appears that the speedups
are intended to be from VMs with no stack items cached in registers.

44

3.4.3 Static Stack Caching

An alternative static stack caching mechanism static stack caching is presented by Ertl

[Ert95]. This approach removes the need for the interpreter to track the state of the

cache by transferring the bulk of the work to the compiler. The different instruction

cores, one for each state are still required as before, however. The main technique of

bytecode INDEX_OF
(iload)

INDEX_OF
(iload)

INDEX_OF
(iadd)

INDEX_OF
(istore)

operand ……

0 1 2 1 …..

threaded
 code

&&iload0 &&iload1

&&iadd2

&&istore1

operand ……

stack height����

State 0

R3:EMPTY
R2:EMPTY
R1:EMPTY

State 1

R3:EMPTY
R2:EMPTY
R1:INUSE

State 2

R3:EMPTY
R2:INUSE
R1:INUSE

State 1

R3:EMPTY
R2:EMPTY
R1:INUSE

operand

operand

operand

operand

Figure 3.15: Static Stack Caching with Three Registers

static stack caching is shown in Figure 3.15 where the code sequence iload 2 iload 1

iadd istore is shown before static stack caching and after. The stack height before

each instruction is shown above the instruction, and each threaded instruction is tagged

with a diagram showing the current stack-cache state. Note how the translated code

contains the stateful instruction sequence iload 20 iload 11 iadd2 istore1. Although

the code in the example is threaded code, this stack caching mechanism will also work

with token threaded dispatch.

This approach is possible, largely in part due to the strict rules Java has about stack

height. The height of a stack must be zero upon method entry and exit. In addition,

the stack height must be fixed at all points in the opcode. For example, if the height

of the stack is h immediately before an execution of an instruction in the bytecode,

45

then it will always be h at that point in the bytecode, even a backwards branch occurs

and previous instructions get executed again. This static knowledge of stack height

allows the compiler to determine which interpreter core to use for an instruction at

a particular point in the bytecode, based on the knowledge of the stack height for

that point. One positive side effect of such a scheme is that pop instructions can be

optimised away completely. Assuming a stack height of 3 on entry to the sequence

of bytecodes iadd pop iload, the static stack algorithm can convert this to either

iadd3 pop2 iload1 or simply iadd 13 iload1. In addition to this optimisation, Ertl

also reduces stack pointer updates which no longer need to be performed after each

VM instruction.

While the code-explosion problem is still present, it can be controlled by not pro-

viding for less frequent instruction-cache-state combinations. The compiler can avoid

entering these combinations by inserting additional stack manipulation code in the rare

case where the combination would normally be entered.

The previously published work detailed in this section points toward stack caching

as an effective optimisation, but there are two problems associated with the approach.

Firstly, it relies on a ready availability of registers. However, on register starved pro-

cessors such as x86 CPUs, there is unlikely to be enough registers to cache a significant

number of stack-items. Even if one could acquire enough registers for a stack cache,

the code generated by the compiler would degrade due to a likely increase in the num-

ber of register spills. Secondly, while several efforts above have addressed the code

explosion problem, it is still present and may cause serious problems with increased

branch mispredictions. In particular, we feel that the code-sharing approach presented

by Peng et al [PWL04], while clearly effective at reducing code-explosion, will cause

increased numbers of branch mispredictions. This opinion is based on the fact that

the optimisation increases the number of branch targets substantially in relation to the

number of dispatch points.

3.5 Instruction Specialisation

Although Java’s use of a stack architecture reduces the number of operands per instruc-

tion, a significant number of operands remain. In order to reduce some of the loads

associated with these operands and to contribute to more compact code, specialised

46

versions of many instructions in Java have become part of the standard instruction set

[GJSB00]. The loads and stores are particular targets for specialisation, based on the

presumption that certain combinations of instruction/operand combinations will occur

frequently. For example, the iload instruction copies an integer from a local variable

onto the stack. It takes one argument, namely the number of the local variable to be

copied from. The iload 0 instruction, on the other hand takes no arguments, loading

an integer from local variable 0 onto the stack. While specialised instructions are no

doubt an important addition to the Java VM instruction set, they are by no means

vital, since a generic version can always be used in the place of a specialised instruction

(as long as the appropriate operand is introduced into the bytecode scheme). Indeed,

some specialisations (such as fstore 0) are used so rarely that we cannot justify their

inclusion in the instruction set [DHPW01]. This raises the possibility of creating new

specialisations based on bytecode analysis. These new specialisations can be intro-

duced into the bytecode in a just-in-time manner, while the lesser-used specialisations

can be stripped out of the bytecode at the same time.

Such specialisation techniques have not been evaluated fully in Java before. Vengu-

pal et al [VMK02] proposed optimising Java interpreters for embedded systems using

semantically enriched code (sEc). The idea of sEc is to profile the application and

generate specialised instructions specially for that application. Unfortunately no im-

plementation was ever created and therefore no results are available. In contrast, an

implementation of the SICStus Prolog virtual machine with specialisation is presented

along with results in Nässén [N0̈1] and Nässén et al [NCS01]. While they experience

code space savings in the order of 8%-16%, instruction specialisation does “not yield

any speedup except in a few cases, contrary to expectations”. They report results for

both the i686 Celeron and SUN UltraSPARC architectures and note that specialisa-

tions give better performance on the i686, most likely due to its register starved nature.

This optimisation can alleviate some of that pressure. Specialised instructions tend to

compile, at least in part, to real machine instructions with immediate operands. This

frees up registers for other purposes, a behaviour which will have a greater effect on

register-starved architectures.

47

3.6 Static Replication

A novel technique presented by Ertl et al [EG03a] for improving branch prediction

on machines with BTBs is static replication. The concept is to create copies of com-

monly VM instructions at interpreter compile-time. At runtime the bytecode of the

interpreter is modified so that the interpreter will use the copies in a round robin fash-

ion. At a high level, one can view this optimisation as making more use of the BTB,

due to the fact that it now has more entries, the original indirect branches plus the

additional replicated ones. At a low level the optimisation can be viewed as mod-

ifying the bytecode so that each VM instruction is only likely to occur once in the

working set, and therefore branch mispredictions are less likely. Figure 3.16 illustrates

this effect for a simple loop where two replicas of the iload instruction, iload 0 and

iload 1 are available. Before replicas have been laid down, the loop in the example

will cause two branch mispredictions per iteration. After replicas have been laid down

in a round-robin fashion, there are no longer any branch mispredictions per iteration

of the loop.

To choose instructions for static replication, the authors profile running code and

select the most frequently executed VM instructions. The authors report a speedup

of up to 2.39 on GForth using this technique with 400 replications. This approach is

completely portable, but if there is to be any benefit must be used in combination with

a threading mechanism that moves the dispatches into the VM instructions (Section

3.2). Static replication on a switch-based interpreter would actually make performance

worse. The authors also note that they tried an alternative random placement for

replicas in the bytecode, instead of the round robin scheme. This proved to be an

inferior approach, due to the fact that random placement did not have the same spatial

separation between replicas, and thus the same VM instruction was more likely to occur

in a working set, for example a loop. If random placement was used in Figure 3.4 to

choose possible replicas for the iload instruction, both iloads could get replaced by

the same replica. This is just as bad as the case without replication, causing two branch

mispredictions per iteration of the loop.

48

Before Replication:

ILOAD IADD ILOAD ISUB IFLT

Round Robin:

ILOAD_A IADD ILOAD_B ISUB IFLT

Random (possible):

ILOAD_0 IADD ILOAD_0 ISUB IFLT

Figure 3.16: Adding static replications using Round Robin and Random placement.

49

3.7 Superinstructions

In a study on the structure and performance of interpreters, Romer et al [RLV+96] ob-

serve that Perl and Tcl interpreters are high-level interpreters; they execute thousands

of machine instructions per interpreted instruction. MIPSI [Sir], a MIPS interpreter

and the JVM are both low-level interpreters; they execute fewer than 100 (and for

most VM instructions, less than 10) real machine instructions per VM instruction on

average.

This implies a higher dispatch to real work ratio in the JVM interpreter. One

possible way to address this problem is to change the instruction set of the JVM,

introducing superinstructions which are larger instructions composed of commonly

occurring sequences of bytecodes. For example, in the JVM, the instruction sequence

aload getfield commonly occurs in the bytecode. It is possible to create a new

instruction aload getfield which does the work of both separate instructions. The

bytecode can then be modified (possibly in a just-in-time manner) to ensure the new

superinstruction gets used.

Superinstructions have been used for many years but the first cited work in this

area relates to superoperators, introduced by Hughes [Hug82]. These superoperators

are an optimisation based on λ-calculus expressions for functional languages. Proeb-

string [Pro95] introduces superoperators using hti, a token threaded hybrid transla-

tor/interpreter for ANSI ‘C’. The interpreter runs intermediate bytecode stored in lcc’s

intermediate representation [FH95]. The interpreter’s instructions are the nodes in the

Intermediate Representation tree (IR-tree). The author records that hti runs a factor

of 8-16 times slower than native code. By introducing superoperators, which coalesce

many atomic operations into a single operation, the performance of hti is boosted by

a factor of 2-3 times. However, to achieve this level of performance, superoperators

must be customised to suit a particular program. This means that the program to be

run must be available at the time that the interpreter is built. Similar performance will

not be reached on other programs. Proebstring also details that the heuristics chosen

for selecting superoperators gave a 78%-81% reduction in code size.

In later work, Wegdam [Weg96] improved the selection heuristics which were ap-

parently causing compilation times of several days. As the emphasis of this work was

on compact code generation, no execution times were presented. However a code size

50

reduction of 50%-70% is reported. With a similar purpose in mind, Hoogerbrugge et

al [HATW99] use superinstructions on a decision tree intermediate format compiled

from C/C++ code. They report that with only 150 superinstructions, code size can be

reduced by 30%. They observe that adding too many superinstructions can increase

the size of the interpreter and thus harm execution speed.

Nässén [N0̈1] and Nässén et al [NCS01] present some work they carried out on su-

perinstructions5 for the SICStus VM. Because the intent of their work was to specialise

interpreters for particular benchmarks, the selection of candidate superinstructions was

based on the profiling data for these benchmarks. They report that superinstructions

gives an average reduction in code size of about 9% and a reduction in execution time

of 8-10%. They also examine the effects of specialising superinstructions for commonly

occurring operands, but conclude that this approach has little positive effects beyond

those achieved by superinstructions alone.

The effect of superinstructions on branch prediction rates are examined by Ertl

et al [EG03a] in GForth [Ert93]. In this paper they identify and present results of

an additional benefit of using static superinstructions, namely that they expose larger

code windows to the compiler. Given two VM instructions A, B, with sizes |A| and

|B| respectively, an efficient compiler should generate code for the superinstruction

AB with a size |AB| < |A|+ |B|
They use the profiling and static superinstruction support built into their interpreter

tool vmgen [EGKP02] to extend the GForth instruction set. They use a dynamic

selection method, selecting the most commonly executed sequences of instructions in a

single benchmark. Then, using these superinstructions they evaluate the performance

of the new VM on benchmarks that the VM has not been specifically profiled for.

Their results indicate that superinstructions are good at reducing executed machine

instructions, but their greatest benefit is reducing branch mispredictions.

The problem of selecting an optimal set of superinstructions for a particular pro-

gram is NP-Hard [Pro95]. This problem and the task of parsing the bytecode for

superinstructions are essentially the same problems that arise during dictionary-based

text compression [BCW90], specifically selection of an optimal dictionary, and then ap-

plication of the compression itself. Ertl et al [EG03a] note that there are two possible

algorithms for parsing bytecode; greedy and optimal, although they only investigate

5The author(s) use the term instruction merging rather than superinstructions.

51

the former. Greedy parsing is easier to implement, involving applying the longest

matching superinstruction at each point in the bytecode. Optimal parsing is a little

more difficult, but fortunately the problem can be solved efficiently using dynamic

programming [Bel73].

A number of superinstruction selection algorithms are examined for Forth by Gregg

et al [GEW01]. They compared a number of selection heuristics basing their perfor-

mance on the number of dispatches eliminated. They found that selection based on

static occurrences gave substantially better performance than a dynamic one. They

conclude that the dynamic measure is not entirely suitable for selecting a universally

performing VM due to the tendency of loops in profiled code to skew superinstruction

frequencies in a way that was only likely to favour the code being profiled.

A Java specific analysis of the problem is examined by O’Donoghue et al [OP04]

where they analyse basic block profiling information from a modified version of the

JamVM [Lou03] running the CaffeineMark benchmark suite [Pen97]. They choose su-

perinstructions on the basis of dynamic occurrences but average them over several pro-

grams, avoiding bias towards any particular program. Applying an iterative selection,

they select the most common sequence and re-adjust the frequencies of the remaining

sequences and repeat until they have selected the required number of superinstructions.

Being limited to implementing the superinstruction codes in bytecode, they only had

a budget of 10 superinstructions to add to the JVM. However, this still resulted in a

speed improvement of 18% in a switch based version and 14% in a threaded version of

the interpreter.

In extensive work, Eller [Ell05] examines various issues regarding superinstructions

in Forth and Java, in particular the performance of optimal versus greedy parsing

algorithms and concludes that greedy parsing achieves near optimal results. Also

in the same work, Eller examines a number of superinstruction selection heuristics

and concludes when the number of superinstructions permitted is larger than about a

thousand, the best heuristic is simply to construct superinstructions from all possible

subsequences up to length 4.

52

Stack based bytecode Register based bytecode
iload1 move r10,r1
iload2 move r11,r2
iadd iadd r10,r10,r11
istore3 move r3,r10

Table 3.1: Conversion of bytecode to register code (with stack pointer=10)

3.8 Register Machines

There are two competing views as to the best architecture register or stack within

which to implement a VM. While register hardware has prevailed over stack based

hardware in more recent CPUs, stack based architectures still remain predominant for

virtual machines and is the chosen architecture for the two most currently prominent

VMs, the Java VM [GJSB00] and the Common Language Runtime, Microsoft’s com-

mercial implementation of the Common Language Interface (CLI) standard [ECM02].

This follows a long tradition of stack based virtual machines such as Pascal-P [Nel79],

Modula-2 [Woo93] and Forth[RCM96]. Typically the arguments for such an architec-

ture center around the fact that operands for VM instructions are implicit; they will

always be the items at the top of the stack. The main arguments stemming from this

characteristic of stack machines are that:

1. Compilers for stack based VMs are simpler than compilers for register based VMs

since they do not need to perform register allocation.

2. Stack VM code is more compact since operands and destination results are im-

plicitly consumed from and stored to the top of the operand stack.

More recently, interest in register based architectures has increased. Lua, the em-

beddable scripting langauge [IdC05] is implemented on a register based VM, and

the next version of Perl (Perl 6) will run on a register based Parrot VM [RST04].

Despite a continuing discussion over the years as to which architecture is superior

[Mye77, SM77, MB99, WP97] no quantitative comparison had been presented until

recently.

Davis et al [DBC+03] present a working system for translating stack based JVM

code to register based code. Table 3.1 illustrates a typical example of the type of

53

Before copy propagation:

move r10,r1 //iload1

move r11,r2 //iload2

iadd r10,r10,r11 //iadd

move r3,r10 //istore3

After copy propagation:

iadd r10,r1,r2 //iload1,iload2,iadd

move r3,r10 //istore3

Figure 3.17: Example of forward copy propagation

conversion they carry out. In the example the stack pointer is assumed be at 10 and

to push positively. Note the code growth as a result of the initial transformation.

They examine and discuss a number of design issues such as method handling and

copy propagation within or across basic blocks. It is this copy propagation procedure

which is used quite successfully to tackle the code growth issue in the translation from

stack to register based code. Figure 3.1 illustrates an example of applying the copy

propagation algorithm to the code generated in Table 3.1.

Empirical studies were carried out using the SPECjvm98 [SPE98] and Java Grande

[BSW+99] benchmark suites. Overall they found that translating to a register based

format decreased the number of executed VM instructions by 34.88% while increasing

the number of loads by 44.81%. In addition they found only a small reduction (1%)

in eliminated instructions when moving from copy propagation inside basic blocks to

copy propagation across basic blocks. Given the relative slow speed of copy propa-

gation across basic blocks, they recommend the former approach. With respect to

the increased loads, they point out the the average increase of 2.32 loads per dispatch

eliminated is a promising figure, given the high cost on deeply pipelined CPUs of the

branch mispredictions that result from dispatches.

Shi et al [SGBE05] built on the work presented by Davis et al [DBC+03] by building

an actual register machine JVM and making several improvements to the translation

from stack based to register based code. The actual translation takes place in a just-in-

time manner, although the authors note that this is not may not be the ideal approach

54

Before copy propagation:

iadd r10,r1,r2 //iload1,iload2,iadd

move r3,r10 //istore3

After copy propagation:

iadd r3,r1,r2 //iload1,iload2,iadd,istore3

Figure 3.18: Example of backward copy propagation

in the long term6. Backward copy propagation (and a second phase of forward copy

propagation) along with moving constant instructions out of loops are some of the

improvements they make. Figure 3.18 illustrates the effect of applying backward copy

propagation to the previously forward copy propagated code from Figure 3.17.

The new translation mechanism reduced the number of executed VM instructions

by 47.21%. They also report the number of additional loads at being approximately

1.07 times of the number of dispatches eliminated. As mentioned above, the cost of

these additional loads is negligible compared to the cost of the dispatches which no

longer needs paying. Runtime performance on the register based JVM they constructed

improved by approximately 30% over a corresponding stack based JVM. They measure

performance improvements on switch-based and threaded dispatch interpreters and

report a slightly better performance improvement for the switch based register JVM

over the switch based stack JVM (30.69% versus 29.36%). This is due to the additional

cost of dispatches (many of which are removed in a register architecture) in a switch

based interpreter.

While these recent results make a compelling argument in favour of register based

VMs, other work in the area attempts to address the criticisms levelled at stack-based

architectures. In particular VanDrunen et al [VHP01] present a scheme for replacing

loads and stores of local variables with stack manipulation instructions, a form of

stack allocation (as opposed to register allocation). Although they do not provide an

implementation, they report results on some transformations of a number of selected

benchmarks. The results point to a reduction of 2% to 25% of loads and stores as a

result of their optimisation. Other work in the area has been carried out by Maierhofer

6Although they estimate that the translation consumes less than 1% of execution time.

55

et al [ME98] and Koopman [Koo92]. We recall with interest the argument presented at

the beginning of this section; namely that compilers for stack based VMs are simpler

than compilers for register based VMs since they do not need to perform register

allocation. While this may be true, recent work suggests that compilers for stack

based languages ought to be doing stack scheduling instead.

3.9 Dynamic Code Copying Techniques

Although VM instruction set enhancements such as superinstructions, specialisations

and replication give good speedups, all these optimisations suffer from the same prob-

lem. Essentially they try to optimise the interpreter for all possible programs, based

on the profiling data of a limited set of programs. For any new program, the set of

instruction enhancements is hardly likely to be optimal. A dynamic VM instruction

optimisation, on the other hand, could respond at runtime by examining the bytecodes

of the program to be run, and modify the interpreter according to those bytecodes,

thereby tailoring the JVM to that particular program. Just-in-time compilers [DS84]

are an extreme form of this in action, translating bytecode to native code at runtime.

Using memcpy to construct new sequences of executable code from shorter sequences

of executable code at runtime may seem unrealistic. However, this is the approach taken

successfully by Piumarta et al [PR98]. In this work they present selective inlining, a

dynamic method of instruction optimisation based on code copying using malloc and

memcpy. To implement this technique, they start out with a threaded interpreter. They

divide up VM instructions into two sets, relocatable and non-relocatable, depending

on whether the implementation for the VM instruction can be copied to a new area of

memory and retain the same semantics. For example, a VM instruction containing a

call to a function relative to the program counter cannot be relocated to a new area

of memory since this would involve a changed program counter. They then create a

no-copying list to identify those instructions that cannot be relocated.

At runtime, they scan through the threaded code and try to find straight-line se-

quences of relocatable instructions, A1,A2,...,An. When they find such a sequence, they

reserve a new area of memory address, ADDR, for inlined code. Then for each instruc-

tion in sequence in the bytecode, they copy the implementing executable code for that

instruction from the VM interpreter core into the new area of memory, concatenating

56

the VM instruction implementations together in a new area of memory. Since the se-

quence of instructions A1,A2,...,An is a straight-line sequence, the dispatches at the end

of the instructions do not need to be copied. Therefore, after the copying routine, the

new area of memory will contain the concatenated code for a superinstruction (with

no dispatches). A single dispatch must still be added to the end of the copied sequence

of executable code however.

To ensure the new dynamically created superinstruction is used, the threaded code

sequence where A1,A2,...,An is located must be modified. As this sequence in the

threaded code is actually a sequence of addresses (perhaps with intervening operands) it

will actually read &&A1,&&A2,...,&&An. This is modified to ADDR,&&A2,...,&&An.

This will force a jump to the newly created superinstruction if this threaded code is

encountered during program execution. As with a regular superinstruction, this new

instruction maintains the interpreter’s program counter, so when the dispatch at the

end of the superinstruction is encountered, it will dispatch to whatever instruction oc-

curs after the sequence &&A1,&&A2,...,&&An. Figure 3.19 shows this process, before

and after the inlining process. The work presented here has two interesting behaviours

with respect to space. Firstly Piumarta et al do not attempt to compress the threaded

code by removing the redundant pointers &&A2,..., &&An. This would cause compli-

cations with instruction operand offsets and instruction pointer increments. Secondly,

to prevent the same dynamic superinstruction being created (replicated) several times,

they use a hash table into which they enter superinstructions that are created dy-

namically. When a new sequence of instructions that are suitable for superinstruction

creation is encountered, the hash table is consulted before superinstruction creation

starts. If the instruction sequence is found in the hash table, then the pre-existing

superinstruction is used. Therefore the same dynamic superinstruction might ‘cover’

a number of threaded code sequences. Piumarta et al evaluate their technique us-

ing both a fine-grained RISC-like interpreter and the coarser-grained Objective-Caml

interpreter [Ler97] over a number of benchmarks.

Even for the previously optimised Objective-Caml interpreter, the authors report

a minimum speed improvement over the non-inlined interpreter of 50% across the

Objective-Caml benchmark suite [Ler96]. The results for the finer-grained RISC-like

interpreter gave an average speedup across all tested architectures and benchmarks of

1.68. The authors conclude by noting that, as this technique is a dispatch elimination

57

Before Inlining:

Threaded
 Code

&&A1 operand &&A2

operand ……

&&An

operand

i i+1 i+2 i+3 i+4 i+5 i+6

……

……

After Inlining:

Threaded
 Code

&& A1’ operand &&A2

operand ……

&&An

operand

i i+1 i+2 i+3 i+4 i+5 i+6

Replicated
Code A1’ A2’

…… An’

……

……

VM
Interpreter Core

A1

A2

……

An

dispatch code &&A1’

&&A2’

……

&&An’

covered code

Code Replicator

Hash table

Figure 3.19: Dynamic Superinstructions (inlining) with threaded code.

58

technique, it will be of greater benefit to finer-grained interpreters with a high dispatch

to work rate.

In a description of the SableVM, Gagnon et al [GH01] note that they provide an

option for using Piumarta’s code copying technique for creating basic block sized dy-

namic superinstructions. In this work they do not present the details of how this was

implemented, nor of speedups from the technique7. In later work, Gagnon et al [GH03]

present preparation sequences, a method for supporting dynamic superinstructions in

Java. This technique is an efficient way to overcome some of the difficulties associ-

ated with quickable instructions (Section 5.4.4) and possible race conditions resulting

from multiple threads of execution. The technique itself does not change the type of

superinstruction that is created; they remain no more than one basic block in length.

They measure the effect of dynamic superinstructions on running time using the

SPECjvm98 benchmarks [SPE98] and two object oriented applications soot [VRCG+99]

and SableCC [GH98]. This speedup is given as an average of 1.39 over a direct threaded

version of SableVM without superinstructions.

The type of dynamic superinstruction introduced by Gagnon et al [GH03] is subtly

different to that created by Piumarta [PR98]. Piumarta’s technique re-uses dynamic

superinstructions when a new sequence of instructions is found to match a previously

inlined sequence. We use the term dynamic superinstructions without replication for

this approach. In contrast, Gagnon et al create a new dynamic superinstruction each

time an inlineable sequence of bytecodes is encountered, potentially creating multiple

copies of the same dynamic superinstruction. We use the term dynamic superinstruc-

tions with replication for this approach.

3.10 Conclusion

In this chapter we have seen many optimisations for interpreters, ranging from different

threading techniques to VM instruction enhancement and dynamic executable code

copying. In particular we have seen how dispatch times dominate the execution times

for interpreters and many of these optimisations attempt to reduce this effect. The

optimisations of greatest interest to us are those that will yield the greatest performance

7It appears by implication from their later work that they did not attempt to inline quickable
instructions, instead treating them as non-relocatable instructions.

59

across a number of architectures.

In the next chapter we present the Tiger interpreter generation tool which we will

use to apply some of these optimisations in order to generate a fast, optimised JVM

interpreter. This tool will allow us to generate a large portion of the code for the

interpreter automatically and thus permit more powerful research options later in this

thesis.

60

Chapter 4

Tiger - An Interpreter Generator

4.1 Introduction

Many of the optimisations discussed in this dissertation required extensive coding mod-

ifications to the CVM interpreter core. Therefore, a tool to automate these changes

is of great value to a researcher working in the area. This tool could accept a de-

scription of an interpreter core in some domain-specific language and emit the code for

the actual interpreter core, subject to the value of certain flags or parameters. These

flags or parameters can affect what sort of code is generated, turning on or off various

optimisations or even using particular variations of those optimisations. In addition,

debugging code can be inserted by the interpreter generator. Again, this can be turned

on or off as required. Similarly, other code such as profiling code can be injected into

the generated code whenever requested by the interpreter tool user. One such tool,

vmgen [EGKP02], allows the interpreter writer/researcher far greater power to include

variations and combinations of optimisations without extensive hand-modification of

the interpreter core.

In the initial stages of the project where we implemented threaded code and indirect

threaded code variants of the interpreter, vmgen was extremely useful. Additionally,

when profiling for simple superinstructions and including them in a new interpreter

core, vmgen was more than sufficient. However, we identified a number of features that

made vmgen a less than optimal choice. They were:

1. No built-in support for replication (static or dynamic).

61

2. No support for instruction specialisation.

3. Limited to sets of superinstructions where all prefixes are present.1

4. Greedy parsing only for superinstructions.

5. No support for replication of superinstructions.

6. No support for superinstructions across basic blocks.

In order to overcome these limitations we re-implemented vmgen in a way that

ensured it was easy to maintain. Java was selected as the implementation language

(vmgen was implemented in Forth) to encourage as wide a user-base as possible. In

this chapter we discuss some of the functionality of the Tiger tool and also discuss how

some of this functionality is implemented.

4.2 Tiger - Front-end Functionality

Tiger2, the Trinity Interpreter GEneratoR, takes a similar approach to vmgen in that,

the user supplies a file describing the interpreter core and the tool then compiles this

into a series of ‘C’ source files that can be included at the appropriate point in the

interpreter source code. The input language was changed considerably both to allow

for the extensions that were to be made, but also to increase clarity.

4.2.1 Definitions and Options

The Tiger source file begins with a number of definitions. Figure 4.1 lists some of

the more commonly encountered definitions. The data stack is marked by the DATA

keyword which is followed by the stack pointer, the type and the direction (increment

when a pop occurs). The instruction stream is marked by the INST keyword which

1For example, in vmgen, if one wishes to define a new superinstruction composed of instr1 instr2

instr3 instr4 in that order, one also needs to define two other superinstructions, one composed of
instr2 instr3 instr4 and another composed of instr3 instr4.

2The Tiger tool was presented at CC2005 [CGE05b]. The tool documented in that paper was
inspired by Ertl’s vmgen[EGKP02], and designed, implemented and applied to a Java VM and a small
‘C’ VM by the author of this thesis.

62

DATA SP StackVal32 1
INST IP Address -1
SIZE Uint32 4 SPEC
SIZE JavaVal32 4 SPEC
SIZE ClassBlock* 4
SIZE MethodBlock* 4
......
OPTION dispatchMethod token
OPTION earlyLoad off
OPTION stackUpdateCombining agressive
OPTION preferredOpcodes off
OPTION debugger off
OPTION profiling off
OPTION histogram off

Figure 4.1: Some definition and options in Tiger

is followed by the instruction stream pointer, the instruction stream type and the

direction (increment when an item is read).

A list of data type sizes follows the instruction stream and stack definitions. This

list contains all the types which are permitted to be stored in the instruction stream or

the stack. For each new type that is added, two pieces of information are recorded. The

first is the number of slots on the instruction stream or stack that the type occupies and

the second is whether operands of the type can be specialised or not (see Section 4.2.8).

The SPEC keyword indicates that it can, whereas absence of the keyword indicates that

it cannot.

A selection of options are then available to set, all of which use the OPTION key-

word. This keyword is followed by the option to be set and the desired value for that

option. Options exists for various behaviours such as the injection of profiling code

into the generated code and for many optimisations of the generated code.

4.2.2 General Syntax

A typical opcode defined in Tiger is depicted in Figure 4.2. The first token is the

opcode name, then followed either by the stack behaviour (SP) or the instruction

63

ADD SP(Int32 src1, Int32 src2 - Int32 dest) //Stack behaviour
IP(- next) //Stream behaviour
dest=src1+src2; //User Code

---------------------------------- //Separator

Figure 4.2: A typical opcode definition in Tiger

stream behaviour (IP). The stack behaviour specifies what types and instances needs

to be popped off the stack before the core of the opcode is to be executed and what

is to be pushed onto the stack after the core of the instruction has completed. The

‘-’ symbol represents the separator between what is to be popped and what is to be

pushed in the stack descriptor. The instruction stream behaviour allows us to specify

which operands are to be loaded from the instruction stream (none in this case). The

‘-’ symbol represents the end of the current instruction. The keyword next indicates

that another instruction will follow in the instruction stream. The absence of the

next keyword indicates that an unconditional control flow change will occur in the

instruction. Tiger uses the stack and instruction stream descriptors supplied, along

with the code core specified, to generate ‘C’ code for the instruction.

Ordering of behaviours: The order of popping and pushing to/from the stack and

the reading from the instruction stream is well-defined in Tiger. The order is:

1. Pop stack items

2. Read from instruction stream

3. After executing instruction, push to stack.

This ordering is important for clarity, because the same variable name can appear

in the stack popping/pushing and instruction stream behaviours. It can be useful

because we can sometimes put a lot of the work of an opcode into the stack and stream

behaviours, increasing the clarity of the code. For example, where a constant is being

loaded from the instruction stream onto the stack, we can take an approach similar to

that of Figure 4.3.

64

Tiger Code: PUSHC SP(- Int32 c)
IP(Int32 c - next);

--

Generated Code: PUSHC:
{

Int32 c;
vm_Int32_equals_Int32(c,IPPTR[1]);
vm_Int32_equals_Int32(SPPTR[0],c);
IPPTR=IPPTR+2;
SPPTR=SPPTR-1;
goto **IPPTR;

}

Figure 4.3: Reading a constant from the instruction stream onto the stack

4.2.3 Dispatch Method

There are three dispatch mechanisms supported in Tiger through the use of the dis-

patchMethod option. This option can be set by the user to be one of:

switch This option creates a switch-based interpreter core. Each instruction begins

with a ‘case’ statement and ends with a ‘break;’. The number associated with the

case is the index of the instruction, using the INDEX OF(instr) macro (Section

4.3.3). Thus, it is assumed that the switch guard variable holds an instruction

index.

token This option creates a token-based interpreter core. Each instruction instr be-

gins with a label. The address of this label is stored in the Tiger-generated

instruction address array VM LABELS (Section 4.3.4) at index INDEX OF(instr).

It is assumed that the instruction indices are stored in the instruction stream IP,

so a dispatch to an instruction involves getting the index from the instruction

stream (IP[0] or *IP) and dispatching to the address stored at that index in the

instruction address array (goto *VM LABELS[index]).

direct This option creates a direct threaded interpreter core. This time it is assumed

that the instruction address is stored in the instruction stream IP. A dispatch in

65

this case involves de-referencing the instruction stream and then dispatching to

this address (goto **IP). The VM LABELS array, used for the token threading

option above, can also be quite useful in this dispatch scheme at translation time

when the indices in the instruction stream are replaced by the corresponding

instruction addresses.

Figure 4.4 shows the different versions of the ADD instruction generated by each of

the options switch, token and direct.

4.2.4 Pushing of Expressions

To eliminate unnecessary variable declaration and to keep the Tiger source and gener-

ated code compact and readable, Tiger supports the pushing of expressions onto the

stack. The key to this is the +NODEC modifier. Typically, Tiger will declare all items it

sees in the stack and stream behaviours (variables for both reading and writing values).

The +NODEC modifier prevents this from happening. Then we can write instructions

such as in Figure 4.5.

Tiger will still push ‘a+b’ onto the stack, but it will not try to declare ‘a+b’.

The Int32 type associated with the expression is still important to have, since Tiger

is supposed to track stack pointer updates, and therefore must know what type (and

hence size) has been pushed onto the stack.

4.2.5 Eliminating Unnecessary Stack Writes

The vmgen tool provided a mechanism for eliminating unnecessary stack writes in

special circumstances [EGKP02]. This is useful, for example when generating code

that duplicates the topmost item on the stack (Figure 4.6). Normally this would

involve popping the topmost item off the stack and then pushing that item back onto

the stack twice. The first push is, strictly speaking, redundant since the item is already

at that position in the stack. Therefore, the first item doesn’t really require writing to

the stack. All that is required is to modify the stack pointer as if the item had been

written to the stack and then to proceed to write the second item as normal.

vmgen provides for this optimisation through the use of a special flag that can

be turned on or off, as required. When this flag is set, vmgen will ignore a push of a

66

switch based: case INDEX_OF(ADD):

{

Int32 b;

Int32 a;

Int32 c;

vm_Int32_equals_Int32(b,SP[0]);

vm_Int32_equals_Int32(a,SP[1]);

{

c=a+b;

}

vm_Int32_equals_Int32(SP[1],c);

SP+=(1);

IP+=(1);

break;

}

token threaded: ADD:

{

Int32 b;

Int32 a;

Int32 c;

vm_Int32_equals_Int32(b,SP[0]);

vm_Int32_equals_Int32(a,SP[1]);

{

c=a+b;

}

vm_Int32_equals_Int32(SP[1],c);

SP+=(1);

IP+=(1);

goto *VM_LABELS[IP[0]];

}

direct threaded: ADD:

{

Int32 b;

Int32 a;

Int32 c;

vm_Int32_equals_Int32(b,SP[0]);

vm_Int32_equals_Int32(a,SP[1]);

{

c=a+b;

}

vm_Int32_equals_Int32(SP[1],c);

SP+=(1);

IP+=(1);

goto *(IP[0]);

}

Figure 4.4: Different dispatch methods in Tiger

67

ADD SP(Int32 a, Int32 b - +NODEC Int32 a+b)
IP(- next);

--

Figure 4.5: Pushing an expression onto the stack

DUP SP(Int32 a - Int32 a, Int32 a)
IP(- next);

--

Figure 4.6: A candidate instruction for stack push elimination

variable of the same name, where that variable has been popped from the same position

previously in the instruction.

A slightly different approach is recommended in Tiger3. Support for this optimisa-

tion had already been introduced for other reasons. The +DEFER modifier (originally

created for deferred reads/writes - Section 4.2.7) is used as seen in Figure 4.7 and this

time prevents the actual push taking place (although the stack pointer is still modified

as if the push had been done).

DUP SP(Int32 a - +DEFER Int32 a, Int32 a)
IP(- next);

--

Figure 4.7: Stack push elimination in Tiger

4.2.6 Early Loading

An optimisation which can be turned on or off easily is early loading. This optimisation

allows for the early loading of the address of the next opcode in the instruction stream

3Tiger actually provides an option eliminatePushes that can be set to on in order to emulate the
behaviour of vmgen’s stack push elimination scheme. However the +DEFER modifier is preferred
because it is more explicit and can help avoid inadvertently eliminating critical stack pushes (for
example where a popped item of the same name is being pushed back to the same slot, but has been
modified by user-code in the meantime).

68

to a local variable, before the current opcode begins execution. All one needs to do

is to turn the feature on if it is required. Tiger knows when to apply early loading

(when the ‘next’ keyword is found in the instruction stream descriptor) to a generated

VM instruction. It knows the location to read in (since Tiger tracks the instruction

pointer) and finally it knows the type to read in (since it knows the base type for the

instruction stream).

The next keyword is useful, because the instruction to be dispatched to is not always

found in the instruction stream. For example, with relative branches, an offset will only

be found in the instruction stream. A more extreme example would be an opcode that

jumped to an address on the stack. In the absence of the next keyword, Tiger will not

attempt to do any early loading. However, when the next keyword is present in the

instruction stream behaviour, this indicates that the target of the dispatch at the end

of the current instruction is to the next instruction in the instruction stream. In such

circumstances (and when the earlyLoad option is on), Tiger generates code for early

loading.

Figure 4.8 shows the effect of turning the early loading option on and off using a

simple opcode definition. When early loading is off, it can be seen from the generated

code that the address of the dispatch is only loaded immediately before the dispatch.

When early loading is on, the address of the dispatch is loaded into a temporary variable

(VM EARLY DEST), at the start of the opcode and the dispatch is to the address in

this temporary variable at the end of the opcode.

4.2.7 Deferred Reading/Writing

Under certain circumstances, it may be desirable to prevent operands being read from

the instruction stream unless they are actually required. A common example would be

a conditional jump that only needs to read in the jump address/offset if the condition

evaluates to the appropriate value. In Figure 4.9 we see an iflt opcode that jumps if the

condition i1<0. The first version of iflt reads the offset to jump to from the instruction

stream into the variable skip, regardless of whether the jump is to be taken or not.

In the second deferring version, skip is flagged with a +DEFER modifier in the

instruction stream descriptor that indicates to Tiger that the user is taking the respon-

sibility for loading skip from the instruction stream, if it is required. In order to assist

69

Tiger Code: POP SP(Int32 a -)
IP(- next)

Generated Code With Early Load Off:

POP:
{

Int32 a;
vm_Int32_equals_Int32(a,SPPTR[0]);
IPPTR=IPPTR+1;
SPPTR=SPPTR+1;
goto **IPPTR;

}

Generated Code With Early Load On:

POP:
{

Int32 a;
void* VM_EARLY_DEST;
VM_EARLY_DEST=IPPTR[1];
vm_Int32_equals_Int32(a,SPPTR[0]);
IPPTR=IPPTR+1;
SPPTR=SPPTR+1;
goto *VM_EARLY_DEST;

}

Figure 4.8: Early loading of dispatch address in Tiger

70

Without Defer: iflt SP(Int32 i1 -)
IP(Int32 skip - next);

if(i1 < 0)
{

SET_IP(IPPTR+skip);
}
--

With Defer: iflt SP(Int32 i1 -)
IP(+DEFER Int32 skip - +DEFER next);

if(i1 < 0)
{

VMLOAD_skip_;
SET_IP(IPPTR+skip);

}
VMLOADnext;

Figure 4.9: Deferred reading in Tiger

71

the user, Tiger declares the VMLOAD offset macro automatically for any instructions

that may require it. When executed, this macro will read in the value for offset. In this

way we can prevent the unnecessary loading of operands, deferring them to a point in

time where the user deems them necessary in the instruction.

Note the second deferred item, namely next, which is the address of the next instruc-

tion. Tiger allows this item to be deferred and when the address is required, the user

can use a VMLOADnext macro which is defined automatically for them. A +DEFER

modifier for next only has meaning when early loading (Section 4.2.6) is on. Otherwise

the modifier is ignored and VMLOADnext is #defined to be nothing.

+DEFER works in the same way when applied to deferring popping items from

the stack. In these cases, Tiger declares a VMREAD varname macro instead of a

VMLOAD varname macro to prevent conflicts between stack reads and instruction

stream reads. In addition, Tiger permits deferred writing to the stack, by using a

+DEFER modifier in the push section of the stack behaviour. This time Tiger declares a

VMWRITE varname macro where required. Writing to the instruction stream (deferred

or otherwise) is currently not permitted in Tiger.

4.2.8 Instruction Specialisation

The Java Language Specification [GJSB00], contains a number of specialised instruc-

tions. These are versions of instructions that already exist, but where the operands

to the instruction have been ‘hardwired’ to a particular value. For example, the JVM

contains an iload instruction which retrieves an integer value from a local variable and

places it on the stack. The instruction takes one operand which identifies which local

variable to use. The JVM also contains a specialised version of this same instruction,

iload 0 which retrieves an integer value from local variable 0 and places it on the stack.

This version of the iload instruction takes no operands since the local variable involved

is known. For a more in-depth discussion of Instruction Specialisation, see Section 6.3.

Tiger allows the user to add specialised instructions to the instruction set through

the use of a +SPEC keyword, allowing the user to define new instructions in the Tiger

source file. Figure 4.10 shows the Tiger source for an unspecialised instruction ILOAD

and the corresponding generated code. Compare this to Figure 4.11 where the definition

for the specialised version is given. There are three points of note with respect to the

72

Tiger Code: ILOAD: SP(- Int32 a)
IP(Int32 index - next);
a=locals[index];

Generated Code: ILOAD:
{

Int32 a;
Int32 index;
vm_Int32_equals_Int32(index,IP[1]);
{

a=locals[index];
}
vm_Int32_equals_Int32(SP[-1],a);

SP+=(-1);
IP+=(2);
goto **IPPTR;

}

Figure 4.10: Unspecialised ILOAD opcode

Tiger Code: +SPEC ILOAD 7

Generated Code: #define index 7
TIGER_SPECIAL_ILOAD_index_7:
{

Int32 a;
{

a=locals[index];
}
vm_Int32_equals_Int32(SP[-1],a);

SP+=(-1);
IP+=(2);
goto **IPPTR;

}
#undef index

Figure 4.11: Specialised ILOAD opcode

73

Tiger source for the specialised instruction:

1. The actual definition for the ILOAD instruction has already been made. It does

not need to be made again.

2. The name of the specialised instruction is not specified. It is generated automat-

ically by Tiger.

3. The names of the operands are not given. Instead the operands to specialise are

listed as per their order in the instruction stream. If some operands are not to

be specialised a wildcard indicated by the ‘?’ character can be used.

In the generated code for the specialised version, it can be seen that a macro re-

placement is used for specialising operands. Instead of declaring the variable index and

reading its value from the instruction stream, a #define is used to define the token as a

‘7’. Apart from the #define, the omission of the declaration and reading of the value for

index, the code remains the same as the unspecialised version of ILOAD. To avoid com-

piler warnings about redefinitions of various macros and to prevent accidental macro

expansion elsewhere, there are #undefines at the end of any specialised instructions to

remove any definitions for specialised operands which are no longer required.

In its present form, Tiger creates non-compact specialisations. In other words it

will assume that even if an opcode has been specialised, the operand is still present in

the instruction stream. Thus, both ILOAD and the specialised version of ILOAD take

up the same amount of space in the instruction stream, although the latter ignores its

operand. Compact specialisations present greater difficulties for the interpreter-writer

due to the presence of code offsets (relative jumps/branches) in the bytecode. These

code offsets must be fixed if redundant operands of specialised instructions are removed

from the instruction stream.

4.2.9 Instruction Replication

Tiger provides support for the instruction replication optimisation (see Section 6.5). All

one needs to do is to use the +ALIAS keyword in the Tiger source file. This keyword

is then followed by the instruction which should be replicated and then by the number

of times that it should be replicated. For example, Figure 4.12 shows how to create

74

Tiger Code: +ALIAS POP 1;

Generated Code: POP_ALIAS_1:
{

IPPTR=IPPTR+1;
SPPTR=SPPTR+1;
goto *opcodes[*IPPTR];

}

Figure 4.12: Replicating the POP instruction

a single replica of the POP instruction. The replicas are named automatically, each

one guaranteed a unique name. The actual code generated is identical to that of the

original instruction which is being replicated, apart from the label which is unique for

each replica.

4.2.10 Superinstructions

Superinstructions can be defined easily in Tiger by specifying the name of the desired

superinstruction and the component instructions. The interpreter generator will then

concatenate the component instructions in the correct order to create the superinstruc-

tion. In reality, the code that is generated is not just simply a concatenation of the

component opcodes for several reasons:

1. In the superinstruction, updates to the instruction and stack pointers are com-

bined, and only made when exiting the superinstruction.

2. Stack items are normally stored in local variables for the duration of the superin-

struction. This stack-slot caching helps to speed up the superinstruction’s access

to stack items. Depending on the stack-slot caching mechanism used, changes to

the stack are often not flushed until the superinstruction is being exited.

3. Tiger contains a mechanism for superinstructions across basic-blocks. In the case

where there is a conditional branch, Tiger injects the code for updates to the

stack and instruction pointers just before the branch. Also, if stack-slot caching

is being used and some cached items need flushing, they will be flushed at this

75

point. Tiger can identify branches out of a superinstruction if they are flagged

by a SET IP macro.

Figure 4.13 shows how to define a new superinstruction super 1 in Tiger. Very little

extra code is required in the source file, just the name for the new superinstruction

and a list of the component instructions. Note that stack-slot caching is visible in the

generated code.

Specialised Superinstructions

Tiger also permits the definition of specialised superinstructions. A specialised su-

perinstruction is defined as a regular superinstruction, but any specialised operands

are specified in the superinstruction definition. When a specialised superinstruction

is being defined, it can be composed from a mixture of specialised instructions and

non-specialised instructions.

Tiger does not require that specialisations for any of the specialised component

instructions have been defined previously. If they are not present during specialised

superinstruction creation, Tiger will create them automatically (Strictly speaking Tiger

creates dummy versions termed dummy specialisations in cases like this. See Section

4.3.7 for details). Figure 4.14 shows an example of a simple specialised superinstruction

being defined in Tiger. The instructions iload 6 and iload 7 are specialised component

instructions, while aload is a non-specialised component instruction.

Stack-slot Caching Options

When concatenating a series of superinstructions, it can often be advantageous to load

frequently used stack slots into local variables. Then any instructions which normally

read from or write to the stack can read from or write to the local variables instead. At

the end of the superinstruction (or any appropriate point in the superinstruction), any

changes to the stack can be flushed as necessary by writing from the local variables

to the stack. Tiger provides for a number of stack-slot caching mechanisms. The

variations mostly relate to the scheduling of the caching and de-caching of stack slots

throughout the superinstruction. They are:

1. Off. This is where no stack-slot caching is used. All reads and writes occur

directly from/to the stack.

76

Tiger Code: super_1 = dup ldc_quick;

Generated Code:

super_1:
{

StackVal32 SPPTR_cached_minus1_;
StackVal32 SPPTR_cached_0_;
StackVal32 SPPTR_cached_1_;

// dup
SPPTR_cached_minus1_=SPPTR[-1];
vm_StackVal32_equals_JavaVal32(SPPTR_cached_minus1_,s1)
{

JavaVal32 s1;
vm_JavaVal32_equals_StackVal32(s1,SPPTR_cached_minus1_)
vm_StackVal32_equals_JavaVal32(SPPTR_cached_0_,s1)

}
SPPTR[-1]=SPPTR_cached_minus1_;
SPPTR[0]=SPPTR_cached_0_;

// ldc_quick
{

JavaVal32 s1;
vm_JavaVal32_equals_Address(s1,IPPTR[2])
vm_StackVal32_equals_JavaVal32(SPPTR_cached_1_,s1)

}
SPPTR[1]=SPPTR_cached_1_;

//Pointer updates and dispatch
SPPTR=SPPTR+2;
IPPTR=IPPTR+3;
goto **IPPTR;

}

Figure 4.13: Defining a new superinstruction in Tiger

77

super_1 = iload 6 aload iload 7;

Figure 4.14: A specialised superinstruction in Tiger

2. Simple. This is where all stack-slots involved in the superinstruction are loaded

into local variables at the start of the superinstruction. Any dirty cached stack-

slots are written upon exiting the superinstruction.

3. Conservative. This approach is similar to the simple approach but delays

caching stack-slots until they are needed and de-caches them as soon as they

are no longer needed. This is a useful approach to reduce register pressure. This

approach adds an additional constraint in that the reading and writing of stack

items must not violate the stack paradigm. For example the reading (caching) of

a slot under the topmost slot of the cache, followed by the reading of the topmost

slot of the stack is not permitted. The other way around, however would be fine.

4. Aggressive. This approach is identical to the conservative option, but dispenses

with the any ordering rules relating to the stack paradigm. Reads (caches) take

place as late as possible and writes (de-caches where the item is dirty) take place

as early as possible)

The choice of stack-slot caching mechanism is made by setting the option stackUpdate-

Combining to the desired value (off, simple, conservative or aggressive).

4.2.11 Preferred Instructions

Some instructions are unsuitable as components for superinstructions. For example

when stack-slot caching is on (i.e. when stack slots are stored in local variables), an

instruction that performs an optimised direct memory to memory copy, for example

to duplicate an item on the stack would cause difficulties. This could be solved by

rewriting the instruction to get it to read the item to be duplicated from the stack and

then to write it back in the normal way. This latter approach has the benefit that it

could be incorporated into a superinstruction, but as a standalone instruction, would

not be as optimised as the direct memory-to-memory version which cannot be included

in superinstructions.

78

In order to get the best of both worlds, Tiger permits what are termed preferred

instructions which are versions of instructions that are optimised for standalone usage

(ie outside superinstructions). Non-preferred instructions are versions of the same

instruction which are intended for usage only inside superinstructions. In this way,

two versions of the same instruction can be specified by the user, one for inclusion in

superinstructions, and one for standalone execution.

ldc2_w_quick SP(- JavaVal32 s1,JavaVal32 s2)
IP(JavaVal32 s1, JavaVal32 s2 - next);

+PREF ldc2_w_quick

SP(- +DEFER JavaVal32 s1,+DEFER JavaVal32 s2)
IP(+DEFER JavaVal32 s1, +DEFER JavaVal32 s2 - next);
memcpy64(SPPTR,(Uint32*)(IPPTR+1));

--

Figure 4.15: Preferred and non-preferred instructions in Tiger

In Figure 4.15, an example can be seen where preferred instructions might be use-

ful. The non-preferred version of ldc2 w quick leaves it up to Tiger to generate the

appropriate code to read from the instruction stream and push to the stack. On the

other hand, the preferred version of ldc2 w quick uses the +DEFER keyword to indi-

cate to Tiger that the reads and writes are to be handled by the user (although Tiger

will still generate the correct stack and instruction pointer updates at the end of the

instruction). Inside the preferred version of ldc2 w quick a 64-bit copy macro is used

to copy directly from the instruction stream onto the stack, which may be efficient but

which is unsafe inside a superinstruction.

4.3 Tiger - Back-end Functionality and Require-

ments

In the previous section, we saw an array of optimisations and code generation tech-

niques from the point of view of the Tiger source code file. Although it has been shown

that Tiger permits the addition of new instructions such as superinstructions, replica-

79

tions and specialisations, we have not yet discussed what mechanisms Tiger provides

for simplifying the incorporation of these new instruction into an existing interpreter.

In this section we focus on what the user has to do in order to integrate Tiger with

their interpreter and the features that Tiger provides to aid in this integration.

4.3.1 Generated Interpreter Core

A source input file to Tiger is of the form filename.vmj. When Tiger is run on this

file, it generates a ‘C’ file, filename-vm.i which contains the code for the interpreter

core. The user must include this file in the appropriate section of their interpreter

(simply by using a #include). All the VM instruction implementations (including

superinstructions, replications and specialisations) are present in this interpreter core

file. In a switch-based interpreter (Section 3.1) each instruction is preceded by a case

statement and ended by a break whereas in the case of a token threaded (Section 3.2.2)

or a direct threaded (Section 3.2.1) interpreter, each instruction begins with a label

and ends with the appropriate dispatch.

4.3.2 User-Supplied Type Conversion Macros

In the Tiger source file, the types for the stack and instruction stream are specified.

Any types that are stored in the instruction stream or stack are also listed in the Tiger

source file (Section 4.2.1) with the intention of telling Tiger how many slots each of

these types take up in the stream or stack. For example, in an interpreter with a stack

type of char, if a 32-bit value was to be stored on the stack, then that 32-bit type must

be registered with a size of 4.

Although no explicit stack or stream related type conversions are normally appar-

ent in the Tiger source file, many are automatically created in the generated code.

For example, every time type A is read from a stack or stream of type B, Tiger gen-

erates a vm A equals B(dest,source) macro. Similarly when type A is to be written

to a stack (no writing to instruction streams is currently permitted) of type B, a

vm B equals A(dest,source) macro is used by Tiger. These macros need to be supplied

by the user and included in the interpreter. Each of these macros performs an assign-

ment from source to dest (with the appropriate type conversions).

80

There are two important notes with respect to these type conversions. Firstly, even

when the source and dest are the same type, Tiger will use a macro to perform the

assignment. For example, if the type of the stack is A and we are reading an item of

type A from the stack, a vm A equals A(dest,source) macro will be used. This can be

useful in situations where A is a complex data type and might, for example, require a

deep copy for the assignment to be carried out correctly. Secondly, because multiple

stack or instruction slots may be involved when reading or writing larger data types,

these macros can often take multiple arguments for the source or destination, one for

each slot. For example, when reading a 32-bit integer from an 8-bit stack, the macro

used would be vm Int32 equals char(dest,source0,source1,source2,source3) where source0

to source3 are the stack slots holding the four bytes of the 32-bit integer. Figure 4.16

shows the generated code for the JVM instruction dload. The instruction stores a 64-bit

type JavaDouble into a stack composed of slots of a 32-bit type, StackVal32. Therefore

two stack slots are required for the destination in the vm StackVal32 equals JavaDouble

macro.

dload:
{

JavaDouble jd1;
Uint8 i;
vm_Uint8_equals_Address(i,IPPTR[1]);
{

jd1=jvm2Double(&locals[i]);
vm_StackVal32_equals_JavaDouble(SPPTR[0],SPPTR[1],jd1);

}
IPPTR=IPPTR+2;
SPPTR=SPPTR+2;
goto **IPPTR;

}

Figure 4.16: Multiple slot type conversions in Tiger

4.3.3 Instruction Indices

Each instruction generated by Tiger, whether it be a standard instruction, a specialised

instruction, a superinstruction, a replicated instruction or any combination of these,

81

is assigned a unique integer, its index, by Tiger. This index is critical to many func-

tions of the interpreter including parsing for superinstructions and also for obtaining

the address of an instruction for token threaded dispatch (in combination with the

instruction labels file - Section 3.2.2).

The indices are numbered contiguously from 0 and are to be found in the automat-

ically generated file filename-indices.i. The grouping of indices can be seen in Figure

4.17. This grouping permits the tables for parsing superinstructions to be as compact

Replicated
Super

Instructions

Standard
Instructions

Specialised
Super-

Instructions

Replicated
Standard

Instructions

Super-
Instructions

0

+

index

Specialised
Standard

Instructions

Figure 4.17: Indices in Tiger

as possible. An example of the indices file can be seen in Figure 4.18.

#define INDEX_OF(a) tiger_prim_index_##a
#define tiger_prim_index_aastore 0
#define tiger_prim_index_aconst_null 1
#define tiger_prim_index_aldc_ind_quick 2
#define tiger_prim_index_ldc_quick 3
#define tiger_prim_index_ldc2_w_quick 4
......

Figure 4.18: The Tiger-generated index file

82

Note the INDEX OF macro which uses token pasting to allow us to refer to the

indices of instructions in a simplified manner e.g. INDEX OF(aastore).

4.3.4 The Labels Array

In addition to generating a filename-indices.i file, Tiger also generates another file file-

name-labels.i which contains an array of labels for all of the instructions Tiger has

created. There is a direct one-to-one correspondence between the index of an instruc-

tion and its position in the labels array. Specifically, the index of the label of an

instruction in the labels array is the same as the Tiger-assigned index for that instruc-

tion, defined in the file filename-indices.i. Sample contents for the filename-labels.i file

and how to include the array in the interpreter can be seen in Figure 4.19. Two aspects

labels file: INST_ADDR(aastore),
INST_ADDR(aconst_null),
INST_ADDR(aldc_ind_quick),
INST_ADDR(ldc_quick),
INST_ADDR(ldc2_w_quick),
......

usage: void* mylabels=
{

#include "cvm-labels.i"
};

Figure 4.19: Using Tiger-generated labels

of this labels file are noteworthy:

1. The file only contains the contents of the array. If the user wants to create an

array using the labels file, they must choose an appropriate name for their array

and include the labels file in the correct place.

2. The labels file uses an INSTR ADDR macro to refer to the address of an instruc-

tion. This macro, defined by Tiger, uses token-pasting to expand the argument

out to an expression representing the address of the label for that instruction.

For GCC’s labels-as-values syntax, INSTR ADDR(instr) expands to &&instr.

83

The labels file is extremely useful during the translation process when implementing a

direct threaded interpreter or when performing a dispatch when using token-threaded

dispatch.

It should be noted that being able to store labels (or addresses of labels) is a

GCC extension termed labels-as-values. The ANSI-C standard does not support this

extension, although it can be found in other compilers such as Intel’s icc compiler

[Int04].

4.3.5 Instruction Names

To assist in debugging and profiling, Tiger also generates a typed, named and initialised

array in a file called filename-names.i. The name for this array is defined in Tiger as

VM OPCODE NAMES, with a type of char*. An example of the contents of this file

can be seen in Figure 4.20.

#define VM_OPCODE_NAMES_COUNT 610
char* VM_OPCODE_NAMES[VM_OPCODE_NAMES_COUNT]={
"aastore",
"aconst_null",
"aldc_ind_quick",
"ldc_quick",
"ldc2_w_quick",
......

Figure 4.20: The Tiger-generated names file

4.3.6 Replication File

A useful capability of Tiger is the automatic creation of a file called filename-alias.i

which consists of a set of macros to enable the support of replicated instructions.

This file contains the definition for ALIASED INDEX OF(instr index) which enables

an instruction with an index of instr index to be replicated. This macro provides

support for round-robin replication (Section 6.5) so that replications, if they exist,

are issued in a cyclical order. In Figure 4.21, you can see the definition for the

ALIASED INDEX OF macro. In this example, there are 6 copies of aastore, 5 copies

84

#define ALIASED_INDEX_OF(opcname) aliased_vm_index_##opcname

static int vm_ptr_alias[]={0,0,0};

const static int vm_alias_bipush[]={5,210,211,212};

const static int vm_alias_aastore[]={0,213,214,215,216,217};

const static int vm_alias_aconst_null[]={1,218,219,220,221};

#define aliased_vm_index_aastore vm_alias_aastore[vm_ptr_alias[1]=(vm_ptr_alias[1]+1)%6]

#define aliased_vm_index_aconst_null vm_alias_aconst_null[vm_ptr_alias[2]=(vm_ptr_alias[2]+1)%5]

#define aliased_vm_index_aldc_ind_quick 2

#define aliased_vm_index_ldc_quick 3

#define aliased_vm_index_ldc2_w_quick 4

#define aliased_vm_index_bipush vm_alias_bipush[vm_ptr_alias[0]=(vm_ptr_alias[0]+1)%4]

......

Figure 4.21: A Tiger-generated replication file

of aconst null and 4 copies of bipush. For each replicatable instruction instr , an ar-

ray vm alias instr [] of the indices of all replications of that instruction is declared in

the replication file. For example, vm alias bipush[] is declared and initialised to be a

list of the indices of all copies of bipush. Additionally, there is an array of indices,

vm ptr alias, containing one element for each replicatable instruction. In the given ex-

ample, vm ptr alias[0] is used to point to the element of vm alias bipush that will be

returned the next time ALIASED INDEX OF(bipush) is called. The effect of calling

ALIASED INDEX OF(bipush) will be to add to vm ptr alias[0] (or reset it to 0) and to

return the index of the next copy of bipush.

For a non-replicated instruction instr , calling ALIASED INDEX OF(instr) equates

to aliased vm index instr which in turn equates to the index of instr . So effectively,

calling ALIASED INDEX OF(instr) for a non-replicated instruction is equivalent to IN-

DEX OF(instr).

4.3.7 Specialisation File

In order to support any generated specialised instructions, Tiger generates a file file-

name-special.i. This file contains a number of automatically-generated macros which

enable specialisation. For each instruction instr an automatically-generated macro

vm specialise instr(...) is defined in the file. This specialisation macro takes a variable

number of arguments representing specialisable operands in the instruction stream.

After determining if instr can be specialised (by inspecting the operands supplied), the

85

macro then evaluates to the index of the specialised instruction if one was found or to

the index of instr if no specialisation was found.

Strictly speaking, the macro tries to alias the instruction through the replication

macros (in filename-alias.i) after it attempts to find a replication, and so the macro

can evaluate to an aliased instruction.

#define vm_specialise(_opcode,...) vm_specialise_##_opcode(__VA_ARGS__)
#define vm_specialise_aastore(...) \

(INDEX_OF(aastore),ALIASED_INDEX_OF(aastore))
#define vm_specialise_aconst_null(...) \

(INDEX_OF(aconst_null),ALIASED_INDEX_OF(aconst_null))
#define vm_specialise_bipush(_value0)\

((((_value0)==4))? (INDEX_OF(vm_spec_bipush_i_4),\
ALIASED_INDEX_OF(vm_spec_bipush_i_4))\

: ((((_value0)==7))? (INDEX_OF(vm_spec_bipush_i_7),\
ALIASED_INDEX_OF(vm_spec_bipush_i_7))\

: (INDEX_OF(bipush),ALIASED_INDEX_OF(bipush))))
......

Figure 4.22: A Tiger specialisation file

Figure 4.22 shows a sample of a typical filename-special.i file. In the example, the

aastore and aconst null instructions have no specialisation associated with them. A

call to vm specialise aastore or vm specialise aconst null will simply attempt to alias the

instruction. On the other hand, there are two specialisations for bipush (bipush 4 and

also bipush 7). The macro vm specialise bipush examines the supplied operand using

a cascaded conditional statement and returns an alias of either vm spec bipush i 4,

vm spec bipush i 7 or simply bipush in the case where there is no specialisation for that

operand with bipush.

The cascaded conditional approach works quite well in practice but for large num-

bers of specialisations it may be unsuitable, due to the possibly high number of compar-

isons required to determine if an instruction is specialisable. In such circumstances, a

hash-table approach might be a more efficient approach. More advanced compilers may

actually perform the transformation from cascaded conditional to hash-table automati-

cally. Alternatively, the cascaded conditional could be rephrased as a switch-statement,

which in turn might be better optimised by the C compiler.

86

Dummy Specialisations

As noted in Section 4.2.10, when an attempt to specialise a superinstruction takes

place, Tiger checks to see if the individual specialised instructions that make up the

specialised superinstruction actually exist. If they do, Tiger has nothing extra to do.

If not, Tiger has to create them.

In order to avoid creating numerous specialised instructions purely to support the

creation of specialised superinstructions, Tiger creates dummy specialisations. These

dummy specialisations are different to regular specialised instructions because there is

no unique corresponding instruction emitted by Tiger for the dummy specialisation.

However, a dummy specialisation does get assigned an instruction index which is used

later during the superinstruction parsing process. When a dummy specialisation is

encountered in the instruction stream, the instruction that is executed is the original

non-specialised instruction. For example if vm spec bipush i 9 was a dummy special-

isation, then when it is encountered in the instruction stream, the actual instruction

that will get executed will be bipush since there is no implementation for the dummy

specialisation.

4.3.8 Superinstruction Parsing

In order to support parsing bytecode for superinstructions (Section 6.4.3), Tiger creates

a filename-parse.i file. This file contains hash-tables for a unified Deterministic Finite-

State Automata (DFA) for all superinstructions, with accepting states corresponding to

a successful parse to a superinstruction. In order to reduce the number of transitions

in the DFA, nodes with single transitions between them are unified. An important

aspect of the DFA that Tiger generates, is that it is designed for parsing backwards

through a method.

Figure 4.23 illustrates a simple DFA with unified single-transition states. The

numbers represent the indices for component instructions of the DFA. The states with

a thicker solid line around them are final states that emit a superinstruction index,

when entered. Note how two single transitions have been absorbed into state 5, thereby

eliminating two other states. Once state 5 is entered, it will only be exited when the

symbols 7 and 6 and then either 5 (leading to state -1) or 7 (leading to state -2) are

read in.

87

indices: #define INDEX_OF(a) tiger_prim_index_##a
......
#define tiger_prim_index_bipush 5
#define tiger_prim_index_sipush 6
#define tiger_prim_index_fload 7
......
#define tiger_prim_index_super_0 210
#define tiger_prim_index_super_1 211
#define tiger_prim_index_super_2 212
#define tiger_prim_index_super_3 213
......

superinstrs: super_0 = bipush sipush fload bipush;
super_1 = fload sipush fload bipush;
super_2 = fload sipush;
super_3 = bipush sipush;

5 7,6 7

5

6
7

Start

Emit: 211

Emit: 212

Emit: 210

�

�

�

-�

-�

-�

-�
Emit: 213

5

Figure 4.23: A sample superinstruction-parsing DFA in Tiger

88

Although the idea of using a collapsed-state DFA is relatively straightforward, the

data structures in the filename-parse.i file require some explanation. In order to be as

efficient as possible, the parse file consists of a number of hash-tables so that, during

a superinstruction parse, one simply needs to hash on the current state and symbol

(instruction) to get the next state. Each state gets its own hash-table so in reality,

when one has a symbol/state pair, it is necessary to first find the appropriate hash

table using the state and then hash using the symbol to get the new state.

Collapsed states are handled differently, since they contain internal transitions.

Each collapsed state has an internal pointer to keep track of what the next required

internal symbol is. If the new symbol read by the DFA does not match the required

symbol, then that DFA stops. If the symbol matches the next required symbol, this

internal pointer is moved on to the next symbol. If there is no next internal symbol,

the next symbol to be read will result in a transition to a new state or the termination

of that DFA.

#define VM_SUPER_START 210
#define VM_MAX_LEN 4
#define VM_SUPER_COUNT 4
static int mergedSizes[]={0,0,0,0,0,2,0};
static int mergedOffsets[]={0,0,0,0,0,2,2};
static int mergedSymbols[]={7,6};
static const Int16 entryPoints[]={-1,0,0,0,0,-5,-4,0};
static const node sharedTable[]={{5,-1},{6,-4},{5,-2},{6,-3},{0,5},{0,6}};
#define VM_SHAREDTABLESIZE 6
static int vm_codes[]={0,210,211,212,213};
#define VM_MAXSTATES 7

Figure 4.24: A sample DFA-based parsing file in Tiger

In Figure 4.24 the corresponding Tiger-generated parse file for the superinstruc-

tions in Figure 4.23 can be seen. Some of the simpler items to describe in this file

are VM SUPER START (the index of the first superinstruction), VM MAX LEN (the

length of the longest superinstruction) and VM SUPER COUNT (the total number of

superinstructions).

Next, we consider how collapsed-states are implemented using the mergedSizes,

89

mergedOffsets and mergedSymbols arrays. For each state i mergedSizes[i] holds the

number of internal transitions for that state (0 for non-collapsed states with no internal

transitions). The value stored in mergedOffsets[i] gives the index in the mergedSymbols[]

array where the list of symbols for internal transitions occur. You can see in the

example that mergedSizes[5] is 2. The entry in mergedOffsets[5] is 0. Therefore if we

look at mergedSymbols[0] we will find the first symbol corresponding to the first internal

transition for state 5. This is followed by the next symbol mergedSymbols[1] required

for the next internal transition for state 5.

Construction of the Parse File

Much of the contents of the parse file are straightforward to implement. However, the

motivations and mechanism for the shared hash-table deserve some explanation. The

most important feature required from the hash, as with any hash, is speed. Considering

a hash-table for a single state i, that hash-table must store the new state entered when

a symbol s is read. Given that the indices of states in Tiger are contiguously allocated

and represent a reasonably tight range of numbers, there is no real need for a modulus

operator to be applied to the symbol (i.e. the index of an instruction). The hash lookup

is simply to use the symbol s as an index into an array representing the hash-table. If

that entry j in the array is non-zero, then there is a transition {i,s}Õj. This type of

hash is perfect but quite sparse (i.e. most entries in the array will be 0).

In order to compact the sparse hash tables, they are all consolidated or rather

overlaid onto a single hash table. Because the overlaying procedure can move a hash

table, a separate array (entryPoints) is required to keep track where the hash table for

each state begins in the shared hash table. Each entry in the shared hash table is now

an ordered pair consisting of the owning state and the original contents of the owning

state’s hash table in that order. Figure 4.25 shows a small example, where three hash

tables are overlaid on top of each other. Note how there are no gaps in the shared hash

table. This is not always the case, but Tiger does attempt to minimise the sparseness

of the shared hash table. (See Appendix 8.6 for more details).

The data structures supplied by Tiger to assist with the parsing of bytecode do

not force the interpreter writer to implement the parse in either a greedy or optimal

fashion (see Section 6.4.3).

90

Hash for
State 0 8

 4

 7

 10

0 1 2 3 4 5 6 Symbol ����

Hash for
State 1

6

 12

 5

0 1 2 3 4 Symbol ����

Hash for
State 2 9

0 1 2 3 4 5 6 Symbol ����

Entry
Points 0

1

1

...

0 1 2 ... State����

Shared
Hash

{0,8}

{1,6}

{0,4}

{1,12}

{0,7}

{1,5}

{0,10}

0 1 2 3 4 5 6 Symbol ����

{2,9}

7

Figure 4.25: Overlaying of Hash Tables in Tiger

91

4.3.9 Global Definitions

In addition to the files above, Tiger also generates a filename-globals.i file which contains

a number of miscellaneous definitions. For each of the option-value statements in the

interpreter source file (Section 4.2.1), a symbol VM OPTION option value is defined in

the global definitions file. This can be useful where the interpreter writer wants to

have additional code in their interpreter only when a certain option is set in Tiger. In

essence it provides a method for the interpreter writer to determine which options have

been set in Tiger.

In addition, Tiger also declares a number of interpreter and thread start-up and

shut-down macros which should be invoked at the appropriate time by the interpreter-

writer. These macros are useful in a number of circumstances such as various profiling

operations which need to be initialised on startup and have their data written on

termination.

4.4 Interpreter Diagnostics

When generating code, Tiger can insert certain kinds of diagnostic code, depending

on which options are set in the Tiger source file. In this section, we examine each of

them in turn, including how to set them, how Tiger implements them, and how to

understand the data that is generated.

4.4.1 Histogram

The most simple of the diagnostics is the histogram. This histogram option inserts

code into the generated interpreter core that increments a counter associated with each

instruction, each time that instruction is executed. When the interpreter terminates

the histogram data is written to a file containing these counts. To turn on the histogram

generation the histogram option is set to on in the Tiger source file. This triggers some

changes in the way Tiger generates code. Specifically, the VM startup macro is modified

to declare and initialise the histogram, while the VM shutdown macro is modified to

write the histogram data to the file histogram.dat. In addition, a small amount of code

is added into the implementation of each instruction implementation in the interpreter

core, to modify the histogram counts each time the instruction is executed.

92

Figure 4.26 illustrates sample contents of this histogram file. The contents are

sorted according to instruction index (in increasing order). A Java tool, BarChart, is

supplied with Tiger that reads in this file and generates a Scalable Vector Graphic

[TB02] representation of the histogram. Figure 4.27 shows sample output for the tool.

......
DUP 30915493
DEREF 98972729
POSTINC 7015269
POSTDEC 14952
POP 41926355
ASSIGN 15501107
EXIT 1
PUSHAL 102705447
PUSHAA 2406
PUSHAG 18794450
PUSHAC 60960609
ALLOC 0
JUMP 7608795
JFALSE 64735992
PUSHS 6
RETURN 12
CALL 1877
......

Figure 4.26: Sample from histogram.dat

4.4.2 Dispatch Tracking

Much of the research for which Tiger was developed has focussed on the effect and

elimination of branch mispredictions in interpreters. In order to instrument interpreters

more comprehensively, Tiger offers an option branchData that, when set to on, tracks

the calling sequence for each dispatch in the interpreter core.

In its present form, branchData tracking adds code to each dispatch point in the

generated interpreter. This extra code records the target each time the dispatch is

invoked and increments a misprediction estimation counter every time the current

target differs from the target the last time this dispatch was invoked. Tiger can track

93

Figure 4.27: SVG representation of histogram.dat

94

multiple dispatch points inside a single instruction, as might occur in an iflt instruction

(Figure 4.9).

In addition to estimating the mispredictions on a per-branch basis, Tiger also records

a histogram of all targets for each branch. Thus for each branch we get:

1. An estimation of the number of mispredictions at that point.

2. A histogram of all targets jumped to from that point.

The misprediction rate, although at first glance naive, is a good estimator (at least

on a global level), even for architectures with more sophisticated branch prediction

algorithms. Preliminary experiments with the Pentium 4 using the misprediction rate

from the hardware performance counters in comparison to the global estimated mis-

prediction count from Tiger (i.e. the sum of all misprediction counts for all dispatch

points) suggest that the Tiger estimate is within 10% of the real value.

The real value of the branchData option is that it does give a more fine-grained

measure of mispredictability than the hardware performance counters. This informa-

tion could then be fed back into more advanced static replication schemes that select

replications based on mispredictability rather than static occurrences.

Figure 4.28 shows the output of the branchData option, which can be found written

to the branchdata.dat file after the interpreter has terminated. For each dispatch point,

various information is recorded in the output file:

1. Source. The address in the memory where the dispatch lies.

2. Owner. The name of the instruction to which the dispatch belongs.

3. Ref. The address in the memory where the dispatch lies.

4. Mispred. The estimate for branch mispredictions at this dispatch.

5. Count. The total number of times this dispatch point has been used.

6. Rate. This is the misprediction estimate divided by the count.

7. Dispatch Target Information. For each new dispatch target from the current

dispatch point, the following is recorded:

95

......

source:0x804b9ec owner:JUMP ref:745 mispred:59688 count:7604668 rate:0.007849

target:0x804b9b2 name:JUMP count:29840

target:0x804bbd6 name:RETURN count:1

target:0x804b745 name:PUSHAA count:103

target:0x804b6a5 name:PUSHAL count:7574724

source:0x804ba94 owner:JFALSE ref:779 mispred:25012008 count:27335561 rate:0.914999

target:0x804b7d4 name:PUSHAG count:3555803

target:0x804b9b2 name:JUMP count:2716578

target:0x804bbd6 name:RETURN count:9

target:0x804b745 name:PUSHAA count:276

target:0x804b3a6 name:DUP count:5694211

target:0x804ba32 name:JFALSE count:5825348

target:0x804b863 name:PUSHAC count:11

target:0x804b6a5 name:PUSHAL count:9543325

source:0x804bae8 owner:JFALSE ref:790 mispred:22900937 count:37389283 rate:0.612500

target:0x804b7d4 name:PUSHAG count:3719088

target:0x804b745 name:PUSHAA count:867

target:0x804b581 name:POP count:19394695

target:0x804b863 name:PUSHAC count:66

target:0x804b6a5 name:PUSHAL count:14274567

source:0x804bb90 owner:PUSHS ref:820 mispred:0 count:6 rate:0.000000

target:0x804bcb0 name:CALL count:6

......

Figure 4.28: Sample from branchdata.dat

7a. Target The address to which the dispatch is going.

7b. Name The name of the instruction at that point.

7c. Count The number of times to which the dispatch has jumped to that point.

Tiger is supplied with a Java tool, DispatchGraph, which creates a Scalable Vector

Graphic (SVG) dispatch-graph from the generated file branchdata.dat by using the

GraphViz [EGK+02] package. There are various options for graph generation, the

most important of which is the specification of a minimum threshold of dispatches

which must be reached before a dispatch edge is drawn between two nodes. This is

quite useful when one wishes to eliminate less frequent dispatches in order to simplify

the visual representation. Nodes with no edges after the application of the threshold

are eliminated. An example of the output of this tool can be seen in Figure 4.29.

Note the way in which the two dispatch points for JFALSE are aggregated into

a single node representing the entire JFALSE instruction. Each node in the graph

represents the implementation of an instruction in the interpreter core. Each box in a

node represents a dispatch point in that node. The first number indicates the number

of times that dispatch has been invoked. Alongside this number is the percentage of

96

N
O

T

11
,5

20
,7

95
0%

JF
A

L
SE

27
,3

42
,3

07
91

%

37
,3

93
,6

85
61

%

64
,7

35
,9

92
74

%

11
,5

20
,7

95

PU
SH

A
L

10
2,

70
5,

44
7

37
%

9,
54

8,
55

8
14

,2
78

,6
93

PO
P

41
,9

26
,3

55
21

%

19
,3

94
,9

70

N
E

G

9,
50

2,
25

6
77

%

E
Q

11
,1

83
,4

06
0%

11
,1

83
,1

23

A
SS

IG
N

15
,5

01
,1

07
0%

15
,5

01
,1

07

A
D

D

26
,4

77
,3

64
58

%
7,

67
9,

70
4

D
E

R
E

F

98
,9

72
,7

29
84

%

18
,7

65
,7

20

80
,2

04
,6

12

PO
ST

IN
C

7,
01

5,
26

9
0%

7,
01

5,
24

1

PU
SH

A
G

18
,7

94
,4

50
0%

11
,5

19
,5

56

9,
49

9,
91

7
11

,5
34

,4
78

9,
59

6,
38

0

PU
SH

A
C

60
,9

60
,6

09
89

%

49
,3

17
,1

92

L
E

11
,5

49
,4

74
51

%

11
,5

49
,4

74

11
,1

81
,3

42
7,

68
0,

25
8

M
U

L

11
,5

21
,0

69
66

%

11
,5

20
,5

20

G
T

7,
87

5,
69

6
0%

 7
,8

75
,1

46

L
T

22
,6

05
,5

71
76

%

18
,7

35
,2

97
7,

67
9,

70
4

D
U

P

30
,9

15
,4

93
74

%

7,
87

5,
13

4

11
,5

20
,7

95

19
,3

94
,6

98

11
,0

86
,0

15

11
,5

19
,5

56

7,
01

5,
24

1

37
,0

65
,7

45

JU
M

P

7,
60

8,
79

5
0%

7,
57

7,
06

2

18
,7

94
,4

49

Figure 4.29: SVG representation of branchdata.dat

97

mispredictions for that dispatch point. Nodes with multiple dispatch points also have

a total sum of the number of times all dispatches in that node have been invoked,

along with the average misprediction rate across all those dispatch points. Directed

edges from dispatch points to instructions represent a dispatch from the source point

to the target point (an instruction). These edges are labelled with the number of times

that particular dispatch jumped to the target instruction. Adding up the weights of all

edges out of a dispatch point does not always add up to the total number of dispatches

at that point. This is due to the minimum threshold of times that a dispatch must be

made from a dispatch point before the edge gets displayed (a user-specified argument

to the DispatchGraph tool).

The support code in the global definitions file generated by Tiger to deal with

branchData is shown in Figure 4.30.

......

#include "support/branchData.h"

#define VM_BRANCHLABEL VM_BRANCHLABEL2(__LINE__)

#define VM_BRANCHLABEL2(a) VM_BRANCHLABEL3(a)

#define VM_BRANCHLABEL3(a) VM_BRANCHLABEL_##a:

#define VM_ADDRESSOFBRANCH VM_ADDRESSOFBRANCH2(__LINE__)

#define VM_ADDRESSOFBRANCH2(a) VM_ADDRESSOFBRANCH3(a)

#define VM_ADDRESSOFBRANCH3(a) &&VM_BRANCHLABEL_##a

#define VM_BRANCH(a) VM_BRANCHLABEL \

vmjen_branch_process(VM_CURRENT_OPCODE,__LINE__,(a),VM_ADDRESSOFBRANCH);

//---

#define VM_ON_EXIT vm_branch_dump(VM_OPCODE_NAMES,VM_OPCODE_COUNT,VM_LABELS);

#define VM_ON_ENTRY vm_branch_init();

#define VM_THREAD_ON_EXIT

#define VM_THREAD_ON_ENTRY

......

Figure 4.30: Global definitions to support the branchData option

The main features are the inclusion of the branchData.h file, the initialisation of

the appropriate data-structures in VM ON ENTRY (vmjen branch init) and the writ-

ing of all the collected branch data in VM ON EXIT (vmjen branch dump). Also the

VM BRANCH macro (and supporting macros) is defined here. The inclusion of this

macro in the generated interpreter core and how it is expanded by the ‘C’ preprocessor

can be seen in Figure 4.31.

Note in Figure 4.31 how the macro expands to a call to vm branch process, which is

98

Before Expansion:
......

#define VM_CURRENT_OPCODE "JFALSE"

JFALSE:

{

Int32 a;

short b;

vm_short_equals_char(b,IP[2],IP[1]);

vm_Int32_equals_Int32(a,SP[0]);

{

if(a)

{ ; }

else

{

IP=((mem+b));

SP+=(1);

VM_BRANCH(VM_LABELS[IP[0]]);

goto *VM_LABELS[IP[0]] ;

}

}

SP+=(1);

IP+=(3);

VM_BRANCH(VM_LABELS[IP[0]]);

goto *VM_LABELS[IP[0]];

}

#undef VM_CURRENT_OPCODE

......

After Expansion:
......

JFALSE:

{

Int32 a;

short b;

vm_short_equals_char(b,IP[2],IP[1]);

vm_Int32_equals_Int32(a,SP[0]);

{

if(a)

{ ; }

else

{

IP=((mem+b));

SP+=(1);

VM_BRANCHLABEL_788:

vm_branch_process("JFALSE",788,(VM_LABELS[IP[0]]),&&VM_BRANCHLABEL_788);

goto *VM_LABELS[IP[0]] ;

}

}

SP+=(1);

IP+=(3);

VM_BRANCHLABEL_796:

vm_branch_process("JFALSE",796,(VM_LABELS[IP[0]]),&&VM_BRANCHLABEL_796);

goto *VM_LABELS[IP[0]];

}

Figure 4.31: Sample from generated interpreter core with branchData option

99

the function that records all information associated with the branch. The most critical

aspect of this macro is the automatic creation of a label VM BRANCHLABEL lineno

where lineno is the line on which the branch occurs. This facilitates the unique identi-

fication of each branch that is being profiled.

4.4.3 Debugger

Tiger provides a debugger option that, when set to on, inserts code into the interpreter

core. For each instruction, this additional code dumps the instruction name to stderr ,

along with any operands read from the instruction stream. Any items that are read

from or written to the stack are also written to stderr . The output of the debugger

can be seen in Figure 4.32. A section of the additional code generated by Tiger can be

......
ifeq
SP:pop:i1:=0
IP:read:skip:=8

monitorexit
SP:pop:directObj:=0x824e2dc

goto
invokenonvirtual_quick
IP:read:tmb:=0x8269184
IP:read:tcb:=0x8156d80

ifnonnull
SP:pop:o1:=(nil)

fload
IP:read:i1:=5
SP:push:f1:=(nil)

return
......

Figure 4.32: Sample debugger output

found in Figure 4.33.

For each type read from the instruction stream or stack and each type written to

the stack, the interpreter-writer must supply a vm dump type(inst) macro that writes

an instance inst of that type to stderr . Figure 4.33 illustrates some sample definitions.

These macros must be included in the interpreter when the debugger option is turned

on. In order to permit pointers to be dumped using macros, the ‘$’ character is used

100

User-supplied Macros for Debugging

.......
//Macro for dumping a Int8*
#define vm_dump_Int8$(x) fprintf(stderr,"%p",x);
//Macro for dumping a Int16*
#define vm_dump_Int16$(x) fprintf(stderr,"%p",x);
#define vm_dump_Int16(x) fprintf(stderr,"%d",x);
#define vm_dump_Uint8(x) fprintf(stderr,"%u",x);
#define vm_dump_ArrayOfChar(x) fprintf(stderr,"%p",x);
......

Sample Interpreter Core with Debugger Code

......
iflt:
fprintf(stderr,"iflt\n");
{

//--
#define VMLOAD_skip_ fprintf(stderr," IP:read:skip:="); \
vm_Int32_equals_Address(skip,IPPTR[1]) \
vm_dump_Int32(skip) \
fprintf(stderr,"\n"); \
//---
Int32 i1;
Int32 skip;
fprintf(stderr," SP:pop:i1:=");
vm_Int32_equals_StackVal32(i1,SPPTR[-1])
vm_dump_Int32(i1)
fprintf(stderr,"\n");
{

if(i1 < 0)
{

VMLOAD_skip_;
SET_IP(threadedPc+skip);

}
}
IPPTR=IPPTR+2;
SPPTR=SPPTR-1;
goto **IPPTR;

}
#undef VM_CURRENT_OPCODE
......

Figure 4.33: Interpreter core with debugging code inserted

101

in substitution for the ‘*’ character. For example, the vm dump Int8$ macro is used to

dump instances of Int8*.

As can be seen from the iflt example shown in Figure 4.33, the debugger option

is compatible with deferred reading and writing. In this example, skip may or may

not be read in from the instruction stream, depending on the value of i1 . In order to

ensure the debugger only dumps skip if, and when, it is read in, Tiger places the code

responsible for dumping the value of skip directly into the VM LOAD skip macro.

4.4.4 Profiler

In order to support the profiling of executed instructions and instruction sequences,

Tiger provides a profiler option which can be set to on, when required. This profiling

is supported by extra code inserted by Tiger into the interpreter core, along with a

support library packaged with Tiger. The output of the profiler is a file profiler.dat

that is written upon interpreter termination. Figure 4.34 illustrates a short section

......
From: 0x805802c To: 0x8058040 Count:14952
PUSHAL 5
POSTINC
POP
JUMP 8214
From: 0x8058040 To: 0x8058040 Count:14920
JUMP 8214
From: 0x805804c To: 0x80580b4 Count:1
PUSHAL 5
DEREF
PUSHAL 3
DEREF
GT
JFALSE 8878
PUSHAC 10
PUSHS 8
CALL 2
......

Figure 4.34: Profiler Output Using Tiger Profiling Option

from a typical profiler.dat file. This file records contiguous sequences of executed

instructions and selected operands. The starting address and ending address for each

102

Global Definitions

......
#define VM_EXPORT(_buf,_type,_inst) vm_export_##_type(_buf,_inst)
#include "support/disassembler.h"
#include "support/profiler.h"

#define VM_ON_EXIT VM_PROFILER_EXIT
#define VM_ON_ENTRY VM_DISASSEMBLER_ENTRY\

VM_PROFILER_ENTRY

#define VM_THREAD_ON_EXIT
#define VM_THREAD_ON_ENTRY VM_DISASSEMBLER_PER_THREAD_INIT \

VM_PROFILER_PER_THREAD_INIT \
......

Sample from Interpreter Core with Profiler Code

......
#define VM_CURRENT_OPCODE "JFALSE"
#define VM_DISASSEMBLER_GENNAME strcpy(VM_DISASSEMBLER_NAME,"JFALSE"); \
vm_short_equals_char(b,IP[2],IP[1]); \
VM_EXPORT(VM_DISASSEMBLER_NAME+strlen(VM_DISASSEMBLER_NAME),short,b); \

JFALSE:
{

Int32 a;
short b;

vm_short_equals_char(b,IP[2],IP[1]);
vm_Int32_equals_Int32(a,SP[0]);
VM_PROFILER_HEADER(IP)
VM_DISASSEMBLER_HEADER(IP,VM_DISASSEMBLER_GENNAME)
{

if(a)
{ ; }
else
{

IP=((mem+b));
SP+=(1);
goto *VM_LABELS[IP[0]] ;

}
}

SP+=(1);
IP+=(3);
VM_PROFILER_FOOTER
goto *VM_LABELS[IP[0]];

}
#undef VM_CURRENT_OPCODE
#undef VM_DISASSEMBLER_GENNAME
......

Figure 4.35: Support Code for the Profiler

103

code sequence is recorded, as is the number of times that sequence was executed.

The output of the profiler can be used to select candidate instructions for replica-

tion, specialisation (due to the recording of selected operands) and superinstructions4.

Operands are recorded by the profiler only when the type of the operand is registered

with Tiger as being specialisable by using the SPEC modifier (see Section 4.2.1). Thus

the profiler only records operands that could form part of a specialised instruction.

An example of the support code generated by Tiger for the profiler can be seen in

Figure 4.35. Two files are included to support profiling, namely profiler.h and disassem-

bler.h. The disassembler code is responsible for the recording of specialisable operands,

while the profiler handles everything else. Interpreter and thread initialisation code for

profiling is inserted into the VM ENTRY and VM THREAD ON ENTRY macros and

the code responsible for dumping the data collected by the profiler into profiler.dat

is inserted into the VM ON EXIT macro. The most important feature of the code in-

serted by Tiger into the interpreter core is the use of the VM PROFILER HEADER and

VM PROFILER FOOTER macros to keep track of when an old contiguous sequence of

instructions has been completed and a new one is starting. In order to achieve this,

Tiger keeps a flag that when set, indicates that a control flow change (i.e. a branch) has

occurred. At the start of each instruction, a call to VM PROFILER HEADER sets this

flag, assuming that a control flow change will occur. At the end of each instruction,

a call to VM PROFILER FOOTER clears this flag, since a control flow change has not

occurred if this point has been reached. Each time a call to VM PROFILER HEADER

occurs, and before it sets the flow of control flag, it checks this flag and if the flag has

not been cleared, it assumes a control flow change has occurred. If this happens, then

the old sequence is ended and a new sequence is started (using the argument, IP, as an

key for the hash-table of sequences that the profiler stores).

4.5 Conclusion

In this chapter, we have presented the Tiger tool. This tool was critical to the majority

of the optimisations implemented in the Java interpreter to facilitate the experimental

work presented in this dissertation. Both the various options in Tiger for code genera-

4No timing information is recorded by the profiler at present, its primary purpose being to deter-
mine which sequences of code are run most frequently.

104

tion and the underlying support mechanisms have been described in detail. Although

the development of Tiger has been with one specific purpose in mind, namely investi-

gation of various Java interpreter optimisations, we believe that many, if not all of the

features, will be of use to a number of researchers and students working on interpreter

optimisation5. In the next chapter we describe the creation of a new Java interpreter

core using many of these optimisations, and present a critical analysis of those same

optimisations.

5Since the completion of this project, the author has completely re-developed the Tiger program to
provide all of the features described in this chapter into a freeware tool, vmJen. vmJen uses an XML
front-end at present and is packaged with the oc interpreter, along with a set of tools for creating
superinstructions, specialisations and replications.

105

Chapter 5

Construction of an Optimised Java

Interpreter

5.1 Introduction

In this chapter1 we describe our work carried out building a JVM interpreter that is

both portable and efficient. These two properties do not always go hand in hand,

as many JVMs such as Sun Microsystem’s HotSpot interpreter engine [Gri98] contain

assembly code to optimise it for the particular architecture on which it runs. At the

other end of the spectrum, we have the Kaffe Virtual Machine[Wil98], which is highly

portable, but not so efficient. We believe however, that portability and efficiency are

not necessarily mutually exclusive. By carrying out much of our optimisations at the ‘C’

source code level we can guarantee a high-level of performance while also maintaining

a high level of efficiency.

To demonstrate this, we needed to select a JVM for optimisation. We required this

JVM had specific properties, namely:

1. Easy access to interpreter ‘C’ source code.

2. Good documentation and commenting.

1Our early work in constructing an optimised Java interpreter has been published in SAC 2003
[BCGN03]. This early work documents the experimental results of a JVM interpreter the author of
this thesis implemented using the vmgen tool. The work documented in this chapter describes the
implementation of a JVM interpreter the author implemented using Tiger, and as such represents a
superset of the previously published work.

106

3. Availability for multiple platforms

4. Industrial grade Virtual Machine.

The Virtual Machine we chose for modification was Sun Microsystem’s Connected

Virtual Machine (CVM) [Sun01]. Although other candidates were considered, such as

the Kaffe Virtual Machine and Sun’s KVM [Sun00], the CVM stood out as an obvious

choice. The entire Kaffe Virtual Machine’s runtime engine was too slow while Sun’s

KVM could not run the full range of benchmarks we deemed necessary to evaluate the

performance benefits of our interpreter enhancements2.

The CVM was designed for embedded devices such as pagers, PDAs and set-top

boxes. As it is implemented as an interpreter, it is ideal to run in a compact environ-

ment. The memory subsystem has also been designed with embedded devices in mind,

with a requirement of 2Mb RAM and about 2.5Mb ROM to be made available to the

virtual machine environment [Sun05b]. Some of the main features of the CVM are:

• Optimised Interpreter.

• Fast Java Synchronisation

• Native Thread Support

• Compact and complete memory system

• ROMable Classes

• Small Class Footprint

• 1.3 VM Support

• Java 2 Security support

• Highly portable with a well documented Porting Layer

• Limited Stack Usage

2During the course of the work in this thesis, the Sable VM [GH01] has become a more attractive
choice, as its development has progressed.

107

5.2 Customisation Options

The CVM comes with a number of choices for the profile, a standard set of features and

libraries for the virtual machine. The choices were Mobile Information Device Profile

(MIDp), Foundation profile, Personal Profile and RMI profile.

The Foundation profile was chosen, primarily because it was the most compact

VM that enabled all our selected benchmarks from Spec98 and Java Grande to be run

successfully. The main attributes of this Foundation profile are:

1. A J2SE-based class library.

2. No GUI support

3. A CLDC 1.0 compatibility library

The CVM also comes with a choice of garbage collector, namely generational, mark-

sweep and semispace. The default option, generational, worked well and gave reason-

able results in our early tests, while the marksweep garbage collector was inoperative in

the reference implementation. This fact that this collector was broken did not concern

us much, since marksweep would be expected to be the slowest of all three garbage col-

lection methods. The final method, semispace, gave us marginally better performance

than generational across all our selected benchmarks and remained our choice for all

subsequent experimentation.

5.3 Building a Basic Interpreter Core in Tiger

In order to gain access to the code generation options of Tiger, it was necessary to con-

struct a new interpreter core. In order to perform this construction in an incremental

manner we used CVM in switch mode and Tiger in switch mode at the same time. The

Tiger-generated core was then included next to the CVM core.

We then implemented small groups of instructions in the Tiger interpreter core and

removed the corresponding implementations from the original CVM interpreter core.

Each time a handful of instructions had been implemented in Tiger and removed from

the original CVM core, Tiger was run, generating the new core. Then CVM was rebuilt,

108

and the interpreter tested on a number of benchmarks to ensure the instructions had

been implemented correctly in the Tiger-source.

It was not always evident how to implement instructions in Tiger due to the fact

that the actual implementation of instructions in the CVM interpreter core itself was

not always clear. This was due to the heavy use of macros in the CVM core. In cases

where it was not clear how the macro-expanded instruction might look, we used the

GCC ‘C’ preprocessor to expand the macro definitions for examination.

During the implementation of instructions in Tiger, it was necessary to add the

type conversion macros required by Tiger (Section 4.3.2), each time a new type was

being read from the stack or instruction stream or a new type was being written to the

stack. The original interpreter core also had some fall-through code (for example the

implementation of jsr fell-through to the implementation of goto). Instructions such

as these were implemented as separate instructions (with no code sharing) in Tiger.

A feature of the old interpreter core that we retained was that some instruction

implementations shared the same code (and hence the same label or case statement).

For example aload, iload and fload all had the same implementation. This feature was

implemented in the Tiger interpreter core for a number of reasons including the fact

that it improved interpreter core compactness and also increased the possibility for

creation of superinstructions in the bytecode (Section 6.4).

The end result of this stage was a switch-based interpreter generated by Tiger that

had the same functionality as the original CVM. At this point we also performed a test

by getting Tiger to emit code for a token-threaded interpreter. This token-threaded

interpreter passed all correctness tests and performance was more or less equivalent

to that of the CVM in token threaded mode. The fact that the performance of our

new interpreter core was equivalent to the original CVM was not surprising, since no

optimisations had yet been turned on in Tiger.

5.4 Choice of Dispatch Method

The Java Virtual Machine uses a stack-based bytecode to represent the program. Inter-

preting a bytecode instruction consists of accessing arguments, performing the function

of the instruction, and dispatching (fetching, decoding and starting) the next instruc-

tion.

109

aldc ind quick in CVM

......
CASE opc_aldc_ind_quick: { /* Indirect String (loaded classes) */

ObjectICell* strICell = cpGetStringICell(cp, pc[1]);
ID_icellAssignDirect(ee, &STACK_ICELL(0), strICell);
UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);

}
......

aldc ind quick in Tiger

......
aldc_ind_quick SP(- JavaVal32 s1)

IP(ObjectICell* oic - next);
ID_icellAssignDirect_reloc(ee, s1.r,oic);

......

Figure 5.1: Translating aldc ind quick from CVM to Tiger

Instruction dispatch typically consumes most of the execution time in virtual ma-

chine interpreters. The reason is that most VM instructions require only a small

amount of computation, such as adding two numbers or loading a number onto the

stack, and can be implemented in a few machine code instructions. In contrast, in-

struction dispatch can require up to 10-12 machine code instructions, and involves a

time consuming indirect branch. For this reason, dispatch consumes a large proportion

of the running time of most efficient interpreters [EG01].

Section 3.1 introduced a number of dispatch techniques which Tiger supports,

namely switch, token threaded, and direct threaded. Of these direct threaded is con-

sidered the most efficient, reducing the code to implement instruction dispatch to just

three machine instructions on most architectures. It is the most commonly used scheme

where interpreter speed is important and is the threading variation we selected for our

optimised Java interpreter, Fastcore.

In order to build the proof of concept implementation in a more efficient manner,

it was decided to retain the original bytecode and put the translated direct-threaded

code into the method descriptor for each method alongside the original bytecode. The

direct-threaded code was to be composed of words rather than bytes. Although it

would have been possible to have the direct-threaded code stored as bytes, it would

have resulted in a huge number of non-aligned reads for the instruction addresses in

110

the instruction stream. The downside of this word rather than byte approach is that,

since the code is more sparse, the instruction cache miss rate increases. However, this

is mitigated by the potential for performing various optimisations on the operands of

the instructions.

The time chosen to perform the translation for a method was just before a method

was run for the first time. In this way we can be sure that the overhead of translating a

method is only incurred for methods that will actually be run. To support this Just-In-

Time translation, a stub was placed in the threaded code for each Java method. This

stub contains a single VM instruction (THREADCODE) which translates the method

from bytecode to threaded code.

For the direct-threaded interpreter, each time a method is run, a dispatch takes

place to the first instruction address in the direct-threaded code. For a method being

run for the very first time, this means a call to the translation stub. This involves

a call to the ‘C’ function responsible for performing the translation. As part of its

work, the translation function replaces the initialised direct-threaded code with the

direct-threaded version of the bytecode of the method. When the translation function

returns, the method is re-launched by dispatching to the first instruction address in

the direct-threaded code. This should now be the translated version of the method’s

bytecode.

5.4.1 Supporting Data Structures

Figure 5.2 shows the addition of the threaded code pointer field to the method de-

scriptor, the initialisation of that field and the THREADCODE instruction definition

in Tiger. In Figure 5.2 also shows four other fields that are initialised by the code

threading routine. They are:

1. Length of threaded code (threadedLength). This field stores the length of the

threaded code (in machine words). The length of the threaded code may be

shorter or longer (in terms of words) than the bytecode (in terms of bytes), so

the length of the threaded code will often be different than the length of the

bytecode.

2. The offsets array (offsets). The position of the program counter is critical to

certain operations within the CVM, for example garbage collection and exception

111

Fields added to the method descriptor

......
struct MethodDescriptor
{

....
Address* threadedCode; /* direct-threaded code ptr */
Uint16 threadedLength; /* length of direct-threaded code */
ExceptionHandler* threadedExceptionTable;
Int16* offsets;
Uint16* instList;
....

};
......

Initialisation of code threading stub

......
Address THREADCODE_stub[]={ &&THREADCODE };

......
MethodDescriptor newMethod;
newMethod.threadedCode=THREADCODE_stub;

......

The THREADCODE instruction in Tiger

......
THREADCODE;

MethodDescriptor* temp=//Get method descriptor...
/* The threading routine */
threadCode(temp,methodBlock,constantPool);
/* Dispatch to threaded code */
SET_IP((temp->threadedCode));

......

Figure 5.2: Support for direct-threaded code in Tiger

112

handling. However, because there is not always a one-to-one mapping from the

byte-offset of an item in the bytecode and the word-offset of an item in the

corresponding threaded code, it is not always easy to determine the position of

the true bytecode program counter from the position of the threaded program

counter. This situation arises when we start to allow instructions in the threaded

code to be a different size than instructions in the bytecode.

A number of solutions to this problem were considered:

• The first was to maintain a bytecode program counter in addition to the

threaded program counter, but this was too costly.

• The second option was to perform a deep-modification to the CVM, tracking

any places where the original bytecode program counter was required and

modifying and dependent data structures (for example stackmaps).

• A third, safer option was to generate the original bytecode program counter

any time it was required (which is reasonably infrequently). In order to do

this, an array of offsets is created by the code threading function. This array

of offsets allows the determination of the bytecode program counter from the

threaded program counter. For example, if the threaded pointer offset is i,

the bytecode pointer offset is given by i+offsets[i]. Figure 5.3 shows an

example of the offsets array. The bytecode is shown over the threaded code

equivalent. Note how the new quick instruction takes up fewer slots in the

threaded code than in the bytecode3. This causes subsequent instructions in

the threaded code to be shifted in relation to the corresponding instructions

in the bytecode. The offsets array records these changes.

3. Instruction indices list (instList). Since threaded code does not always have a

direct one-to-one mapping to the bytecode, one needs to parse the threaded code

directly, when looking for superinstructions. A difficulty in this regard is that

the instruction addresses are stored in the threaded code and not the instruction

indices. Unfortunately the data structures Tiger supplies for assisting with the

parse, rely on the instruction indices. There were a number of solutions to this

3This is because a two byte operand in the bytecode is combined into a single 32-bit address and
stored as a single word in the threaded code.

113

problem, but the most efficient was to maintain a list of instruction indices in an

array matching the threaded bytecode array. This new array is of the same size

as the threaded code array but is composed of unsigned 16-bit integers according

to the following rules.

(a) instList[i]=0 if threadedCode[i] contains an operand.

(b) instList[i]=INDEX OF(instr)+1 if threadedCode[i] contains an opcode.

The advantage of this approach is that, when parsing for superinstructions, the

location and indices of instructions in the threaded code can be easily determined.

Once formed, the instruction index array is unaffected by either replication or

superinstruction creation in the method. It is modified, however, when an instruc-

tion is quickened or specialised. This behaviour is not arbitrary and is critical to

superinstruction parsing.

bytecode INDEX_OF
(dload)

operand INDEX_OF
(new_quick)

operand operand INDEX_OF
(pop)

……

0 1 2 3 4 5 ……

threaded
 code

&&dload operand &&new_quick operand &&pop …… ……

0 1 2 3 4 5 ……

offsets 0

0

0

0

1

1

……

0 1 2 3 4 5 ……

instList INDEX_OF
(dload)+1

0 INDEX_OF
(new_quick)+1

0 INDEX_OF
(pop)+1

…… ……

0 1 2 3 4 5 ……

Figure 5.3: Relationship of Bytecode, Threaded Code, Offsets and Instruction Index
arrays.

4. Threaded exception table (threadedExceptionTable). Due to the offsets of instruc-

tions changing during translation from bytecode to threaded code, exception

handling needed some additional support. Typically an entry in the exception

114

handling table contains a lower bound and upper bound for the bytecode pro-

gram counter offset, and an offset to jump to if the program counter is in that

range when an exception occurs. Since the bytecode program counter was no

longer in use, some modifications to this behaviour were necessary. Two options

were considered. The first was to translate the threaded program counter offset

to the bytecode offset (using the offsets array) each time an exception occurred.

Although this would be quite adequate in terms of performance, it was decided to

create a threaded version of the exception table, with all the offsets recalculated

so that the new table would work with the threaded code offset instead. The

extra space required by maintaining this threaded version of the exception table

was minimal since most exception tables consist only of a few entries.

5.4.2 Code Translation

Once the appropriate data structures had been put in place for supporting direct

threading, the next step was to perform the actual translation work. This work was

carried out by the code threading function which took the method descriptor as an

argument. All necessary data, such as the bytecode and the bytecode size for the

method were available through this method descriptor.

The job of the code threading function was to construct the threaded code from the

bytecode. Before any instruction size modifications (Section 5.5) were carried out, there

was a one-to-one mapping between bytes in the bytecode and words in the threaded

code. This meant that the translation from bytecode to threaded code involved moving

through the bytecode, byte by byte. If byte i represented an operand, it was copied

into the ith position of the threaded code. If byte i represented an opcode, the address

of that instruction is obtained from the labels array VM LABELS (defined using the

labels file generated by Tiger - Section 4.3.4). This address is then written to the ith

position of the threaded code.

The net effect of this procedure is that the threaded code and the bytecode have

similar contents, except in the threaded code, all instruction indices have been replaced

by instruction addresses. At this point in time, there was a direct one-to-one mapping

between items in the bytecode and items in the threaded code. It was not until later

when we started optimising operands in the direct threaded code and consequently

115

changing their sizes (Section 5.5) that this one-to-one relationship was violated and

the offsets array became necessary. Figure 5.4 shows the results of a simple translation

from bytecode to threaded code.

bytecode INDEX_OF
(dload)

operand INDEX_OF
(new_quick)

operand operand INDEX_OF
(pop)

……

0 1 2 3 4 5 ……

threaded
 code

&&dload operand &&new_quick operand operand &&pop ……

0 1 2 3 4 5 ……

Figure 5.4: Results of Code Threading

To perform this translation efficiently, a token threaded translation routine was

incorporated into the code threading routine. The alternative, a switch based trans-

lator, would have been substantially slower without necessarily being much easier to

implement. The code threading routine consists primarily of a set of labels, one for

handling each possible instruction index that can be found in the bytecode. An array

of labels (threadLabels) is initialised in the function so that ith element of this array is

the label responsible for handling instruction index i. Pseudo code for the translation

procedure is shown in Figure 5.5.

5.4.3 Branch Offset Patching

Although not an issue until the one-to-one relationship between bytecode and threaded

code is violated (Section 5.5), we describe the mechanism for fixing jump offsets in the

threaded code here. When this one-to-one mapping is gone, there is no longer any

guarantee that the target for a branch or jump in the threaded code is the same as

in the bytecode. The solution taken here was to mark all instructions in the threaded

code that contained jump offsets (e.g. iflt, goto) and perform a second pass once the

whole threading process had completed. Since the offsets array is constructed during

the threading process, this is available to help in the recalculation of offsets in the

second pass.

On the second pass through the threaded code, each time an offset (whether relative

or absolute) is found, the translation routine determines where the target of the offset is

116

void* threadLabels[]={
&&thread_nop,
&&thread_aconst_null,
&&thread_iconst_m1,
......

};
int i=0;

while(i<byteCodeSize)
{

goto *threadLabels[byteCode[i]];

thread_nop:
threadedCode[i]=&&nop;
/* No operands */
i++;
continue;

thread_aconst_null:
threadedCode[i]=&&aconst_null;
/* No operands */
i++;
continue;

thread_iconst_m1:
threadedCode[i]=&&iconst_m1;
/* One operand */
threadedCode[i+1]=byteCode[i+1];
i=i+2;
continue;

......
}

......

Figure 5.5: Pseudo-code for Code Threading Procedure

117

in the bytecode. The old bytecode offset for the branch is used to find the target of the

branch in the bytecode. Then, by examining the offsets array, it can be determined how

much the branch source and branch target have moved in relation to each other during

the threading process. This figure is added to the branch offset in the threaded code,

thus correcting the branch. Figure 5.6 illustrates pseudo-code for this offset-correction

procedure.

While the actual branch offset patching procedure is a bit more complicated (due to

different types of offset and the lookupswitch and tableswitch instructions), the actual

algorithm used is quite similar to that presented in the example.

......
char branch[]=
{

/* Initialised during threading */
/* branch[i]=1 if threadedCode[i] contains an offset */
/* else branch[i]=0 */

};

Uint16 offsets[]=
{

/* Initialised during threading */
};

int i=0;
while(i<byteCodeLength)
{

if(branch[i]==1)
{

int offset=threadedCode[i]; // The branch to be fixed

int byteSource=i+offsets[i];
int byteTarget=byteSource+offset;

// Calculate how much threaded offset need to be adjusted by
int delta=offsets[byteSource]-offsets[byteTarget];

threadedCode[i]+=delta;
}

}
......

Figure 5.6: Branch Offset Patching

118

5.4.4 Quickable Opcodes

The threading process does much of the work required for getting bytecode translated

into direct-threaded code. Quickable instructions present a particular challenge to this

process though. These quickable instructions are instructions that can be replaced by

faster, more optimised instructions, but only after (usually immediately after) they are

executed for the first time. Thus, the replacement of a quickable instruction occurs

essentially in a Just-In-Time manner. This replacement process is called quickening

and the instruction replacing the quickable instruction is called a quick instruction.

Typically a quick instruction will perform essentially the same work as the quickable

instruction it replaces, minus some checks that are only necessary the first time the

instruction is executed.

Quickable instructions, even if they are translated to their quickable threaded equiv-

alents at translation time, will need to undergo a further translation if and when they

are quickened (i.e. executed for the first time). Quickable instructions in the instruction

stream presented so many difficulties, particularly with superinstructions (see Section

6.4.4 for a discussion), that we experimented with prematurely quickening instructions

during translation to direct-threaded code. Unsurprisingly this broke the virtual ma-

chine. The main cause of this was that sometimes, in order to determine what some

non-quick instructions were ultimately going to be quickened to, it was necessary to

run static initialisers for a class. Thus sections of code were being executed long before

they should normally be.

Having decided against premature quickening, it was necessary to modify the quick-

ening routines to ensure they wrote the correct threaded code for instructions that had

been quickened. The first step to support direct-threaded quickening is performed

during translation. It was necessary to store information such as the index of the

quickable instruction. In order to do this, a structure NonQuickInfo was created specif-

ically for this purpose. As each quickable instruction had at least one operand, this

operand was absorbed into the NonQuickInfo structure and then the address of the

NonQuickInfo structure was written over the operand. Finally, instead of writing the

instruction address for a dedicated quickable instruction, a generalised quickable in-

struction, QUICKEN OPCODE was written to the instruction stream. Figure 5.7 shows

an example of this, where the quickable instruction new is replaced by the instruction

119

QUICKEN OPCODE in the threaded code.

bytecode … INDEX_OF
(new)

operand1

operand2 INDEX_OF

(pop)
…

… i i+1 i+2 i+3 …

threaded
 code

… &&QUICKEN_
OPCODE

&nqi

operand2 &&pop

…

… j j+1 j+2 j+3 …

index=INDEX_OF(new);
clobbersCpIndex=CVM_FALSE
replacedSlot=operand1
……

NonQuickInfo nqi

Figure 5.7: Threading for Non-Quick Instructions in Fastcore

Later, during execution of the method, if the QUICKEN OPCODE instruction is

encountered, this means that it is time for the instruction it replaced to be quickened.

The QUICKEN OPCODE instruction retrieves the NonQuickInfo structure through the

pointer (its first operand). Once it has access to the structure, it retrieves the original

operand from inside the structure and restores it, overwriting the pointer to the Non-

QuickInfo structure in the instruction stream. It then retrieves all the other information

required for quickening and then calls the quickening routine. Upon completion, the

quickening routine writes the address for the appropriate instruction over the address

for the QUICKEN OPCODE instruction in the instruction stream. It also writes any

modified operands to the instruction stream. Finally, when the quickening code is

writing the address for quickened opcode instr at offset i, it also updates the instList

array (Section 5.4.1) by setting instList[i]=INDEX OF[instr]+1. This is essential to the

static superinstruction parsing process.

There were alternative approaches to quickening than to use a single quickable

instruction (QUICKEN OPCODE) in combination with the NonQuickInfo structure. For

example, it would have been possible to have tailored quickable instruction code for

each of the possible quickable instructions. However, the approach taken was deemed

to be more flexible and slimmed down the interpreter core a little, due to only one

120

quickable instruction being implemented there. This NonQuickInfo structure proved to

be useful again later, when dynamic replication was being implemented (Section 7.4.1).

5.4.5 Threaded Exception Handler

The last significant task in the bytecode threading function was to construct the

threaded exception table. For each method, this threaded exception table has identical

structure and size of the standard bytecode exception handler with the exception of

the code offsets. Each row in an exception handler consists of a lower bound (startpc),

an upper bound (endpc), an exception type (catchtype) and offset of the code for han-

dling the exception (handlerpc). If an exception of catchtype occurs when the program

counter is between the upper bound and the lower bound, then the program counter

is set to the exception handler, handlerpc. In order to convert the exception handling

table of a method to a threaded version, all that is required is to move through the

table, row by row, changing offsets for startpc, endpc and handlerpc. These offsets only

need to be changed due to the possibility of instruction offsets changing during the

translation from bytecode to threaded code. Once more, the offsets array, produced

by the threading process, is used. Figure 5.8 illustrates the code required to create the

threaded exception table.

5.4.6 Stackmaps and Garbage Collection

After translation to threaded code, the dispensing of the bytecode pointer and the

violation of the one-to-one mapping between bytecode and threaded code, the garbage

collection process was effectively broken. The two solutions to this problem were ei-

ther to recalculate the stackmap for the threaded code or to map the threaded program

counter back to a bytecode counter whenever the stackmap entry for the current pro-

gram counter was required. In the end, the latter approach was chosen, as the overhead

of threaded program to bytecode program conversion was minimal and relatively in-

frequent. This conversion took place, as with previously described program counter

conversions, by using the offsets array stored in the method descriptor.

121

......

ExceptionHandler* teh;

ExceptionHandler eh;

JavaMethodDescriptor* jmd;

jmd= /* The method descriptor for the method being translated */;

eh= jmdExceptionTable(jmd); //Get bytecode exception table

ehEnd= eh + jmdExceptionTableLength(jmd); //Get bytecode exception table length

/* Create enough space for new threaded exception table */

teh=(ExceptionHandler*) malloc(sizeof(ExceptionHandler)* jmdExceptionTableLength(jmd));

/* Store the new threaded exception table in the method descriptor */

jmd->threadedExceptionTable=teh;

/* Patch up all the rows in the exception table */

for (; eh < ehEnd; eh++)

{

teh->startpc=eh->startpc-offsets[eh->startpc];

teh->endpc=eh->endpc-offsets[eh->endpc];

teh->handlerpc=eh->handlerpc-offsets[eh->handlerpc];

teh->catchtype=eh->catchtype;

teh++;

}

......

Figure 5.8: Threaded Exception Table Creation in the Fastcore interpreter

122

5.5 Initial Optimisations

Once the interpreter had been imported into Tiger successfully, a number of optimisa-

tions were applied to the code. Individually, many of these optimisations had only a

minimal effect, but cumulatively the increases in performance were substantial. Per-

formance results for the optimised VM are presented at the end of this section.

5.5.1 Multiple Dispatches for Conditional Branches

In the original interpreter, conditional instructions have a single dispatch shared re-

gardless of whether the branch is taken. If the single dispatch is split into two, one for

when the branch occurs and one for when the fall-through path is taken, the overall

branch misprediction rate is improved considerably. Figure 5.9 shows how the Tiger

definition for the iflt instruction looks before and after this optimisation. In both ex-

amples, there is an implicit dispatch added to the end of the instruction by Tiger.

Additionally in the multiple dispatch example, the SET IP macro ends in a dispatch.

5.5.2 Operand Modification

A number of modifications to the instruction stream were possible after conversion to

threaded code. This possibility is attributed to the fact that each byte that represents

an operand in the bytecode is copied into a 32-bit word in the threaded code. In order

to make the most of this extra space, the first optimisation we applied was to con-

vert multiple byte values in the bytecode into single word values in the threaded code.

For example, the bytecode contains a large number of 16-bit numbers spread over two

bytes. During conversion to threaded code, the 16-bit number is reconstituted and

stored in a single word in the threaded code. Figure 5.10 shows the translation of the

invokesuper quick instruction during the threading process. In the example, a 16-bit

number is retrieved from two byte-sized slots in the bytecode using the GET INDEX

macro (defined elsewhere). This number is then stored in a single slot (word) of the

threaded instruction stream. When the translation is finished, the bytecode pointer is

incremented by three bytes (the opcode index and two bytes for the number) while the

threaded pointer is only incremented by two words (opcode address and one word for

the number). Note that, because of the new operand layout, some minor modifications

123

Single Dispatch:
iflt SP(Int32 i1 -)

IP(Int32 skip - next);

if(i1 < 0)
{

IPPTR=IPPTR+skip;
}
//Implicit dispatch at end of instr
--

Extra Dispatch:
iflt SP(Int32 i1 -)

IP(Int32 skip - next);

if(i1 < 0)
{

//The SET_IP macro contains a dispatch
SET_IP(IPPTR+skip);

}
//Implicit dispatch at end of instr

Figure 5.9: Adding an extra dispatch to the iflt instruction

124

to the affected instructions are required in the interpreter core. This type of optimisa-

tion was the first to break the one-to-one mapping between items in the bytecode and

items in the threaded code.

......
thread_invokesuper_quick:
{

//Store the opcode address in the threaded code
threadedCode[threadedPtr]=&&invokesuper_quick;

//The GET_INDEX macro gets a 2-byte number from the bytecode
threadedCode[threadedPtr+1]=GET_INDEX(bytecodePtr+1);

//Note the difference in the pointer increments
threadedPtr+=2;
bytecodePtr+=3;

//Continue translation
THREAD_NEXT;

}
......

Figure 5.10: Operand combining

5.5.3 Constant Pool Inlining

Quite a number of instructions in Java access items in the constant pool. The mo-

tivation behind the constant pool is primarily one of code compaction. Rather than

storing a large item as an operand in the bytecode, the large item could be placed in

the constant pool and an index to the item can be placed in the instruction stream.

While this does have the advantage of code compaction, it increases the overhead each

time an instruction needs to fetch an item from the constant pool, as it must first get

the index from the instruction stream and then look up the appropriate entry in the

constant pool.

After the translation to threaded code, there was some spare capacity in the in-

struction stream. For this reason, it was decided to inline any 32-bit sized items from

the constant pool into the threaded code. This meant that there was no code expan-

sion since we were only using the spare capacity (and that of the eliminated operand

125

holding the index to the item in the constant pool). For any items larger than 32

bits we performed a compromise procedure by storing the address of the item in the

constant pool into the instruction stream, rather than using an index. This resulted

in slightly faster constant retrieval times than the index to constant pool approach.

More importantly, this removed the need for a local pointer variable for the constant

pool in the main interpreter function. Since local variables are often stored in regis-

ters, this in turn reduced the pressure on registers in our interpreter loop, allowing us

to use those registers in a more optimal manner (Section 5.5.9). Figure 5.11 shows

the translation for the new quick instruction. Normally this instruction would expect

an index for the constant pool that holds the address of a class block. However, the

translation procedure for the new quick instruction retrieves the address of the class

block and stores it directly into the threaded instruction stream as an argument for

the new quick instruction. As with operand combining above, this type of optimisation

entails some minor modifications to the interpreter core. In this case the modification

is a simplification since the code required to do a constant-pool retrieval is no longer

necessary.

5.5.4 Conditional Loading of Operands

In the original version of our interpreter, many instructions loaded their operands,

whether or not they were required. Most notable were the conditional instructions

which loaded branch offsets from the instruction stream regardless of the result of the

condition that was being tested. All the instructions where this situation existed were

rewritten so that operands were only loaded if and when they were required. The

deferred loading capability of Tiger (Section 4.2.7) made this possible. Figure 5.12

shows the ifgt instruction before and after the application of this optimisation. Note

how, after the optimisation, the variable skip is only loaded if the condition is true

(by using the Tiger defined macro VMLOAD skip). Unlike the previously discussed

optimisations, this particular type of optimisation works equally well for switch, token

threaded and direct threaded dispatch interpreters.

126

......
thread_new_quick:
{

Uint16 index;

//Store the opcode address in the threaded code
threadedCode[threadedPtr]=&&new_quick;

//The GET_INDEX macro gets a 2-byte number from the bytecode
index=GET_INDEX(bytecodePtr+1);

//The cpGetCb macro takes the constant pool address and an index...
//...into the constant pool. It returns the entry at that address.
threadedCode[threadedPtr+1]=cpGetCb(constantPool,index);

//The pointer increments
threadedPtr+=2;
bytecodePtr+=3;

//Continue translation
THREAD_NEXT;

}
......

Figure 5.11: Constant Pool Inlining

127

Before Optimisation:

ifgt SP(Int32 i1 -)
IP(Int32 skip - next);

if(i1 > 0)
{

SET_IP(IPPTR+skip);
}
--

After Optimisation:

ifgt SP(Int32 i1 -)
IP(+DEFER Int32 skip - +DEFER next);

if(i1 > 0)
{

VMLOAD_skip_;
SET_IP(IPPTR+skip);

}
VMLOADnext;

Figure 5.12: Conditional Loading of Operands

128

5.5.5 Redundant Stack Push Elimination

As outlined in Section 4.2.5, it is possible to eliminate redundant stack updates using

Tiger. For our interpreter, two instructions contain redundant pushes, namely dup,

which duplicates the topmost item on the stack and dup2 which duplicates the two

topmost items on the stack. By using the +DEFER modifier to prevent Tiger adding

code to perform the redundant pushes, the implementation of these instructions can

be made more efficient. Figure 5.13 shows the Tiger source and generated code for

the dup2 instruction with the redundant stack pushes eliminated. Note how only two

non-redundant pushes occur in the generated code.

5.5.6 Synchronised Method Instructions

In Java, a block of code can obtain three kinds of lock:

1. An instance lock, associated with a particular object.

2. A static lock, associated with a particular class.

3. No lock.

If a method is synchronised, it is associated with an instance (object) lock or a

static (class) lock. In either case, upon invocation, the execution of such a method

will block until the lock can be acquired. When the method completes the lock must

be released. Thus there is some synchronisation overhead when invoking methods and

also when returning from them.

Before the invocation of each Java method, the original interpreter checked to see

if the method was synchronised or not. Although this check was not too costly, it

was rendered unnecessary through the introduction of a new instruction, sync which

performed all the work required to synchronise a newly launching method. Handling

the return from a synchronised method was dealt with in a similar manner. Return-

ing from a method was only possible through two instructions, dreturn and return.

Two additional instructions, dreturn sync and return sync were created. These new in-

structions contained all the work required to handle the return from a synchronised

method. The main benefit of these new instructions is that they gave a slight per-

formance improvement and simplified the method invocation and return code in the

129

Tiger Source:
......

dup2 SP(JavaVal32 s1 JavaVal32 s2
- JavaVal32 s1,JavaVal32 s2,JavaVal32 s1,JavaVal32 s2)

IP(- next);
/* Duplicate the top item on the stack */

......

Tiger Generated Code:
......

dup2:
{

JavaVal32 s1;
JavaVal32 s2;
vm_JavaVal32_equals_StackVal32(s2,SPPTR[-1])
vm_JavaVal32_equals_StackVal32(s1,SPPTR[-2])
{

/* Duplicate the top 2 items on the stack */
vm_StackVal32_equals_JavaVal32(SPPTR[0],s1);
vm_StackVal32_equals_JavaVal32(SPPTR[1],s2);

}
IPPTR=IPPTR+1;
SPPTR=SPPTR+2;
goto **IPPTR;

}
......

Figure 5.13: Optimised dup2

130

interpreter function. Figure 5.14 shows the translation of the dreturn instruction. Note

how the current method in translation is tested to see if it is synchronised. If it is, the

dreturn sync instruction is used. If not, the normal dreturn instruction is used instead.

As with the previous optimisation, this particular type of optimisation works equally

well for switch, token threaded and direct threaded dispatch interpreters (although the

translation process looks slightly different).

......
thread_dreturn:
{

if(mbIsSynchronised(currentMethod))
{

threadedCode[threadedPtr]=&&dreturn_sync;
}
else
{

threadedCode[threadedPtr]=&&dreturn;
}

//The pointer increments
threadedPtr+=1;
bytecodePtr+=1;

//Continue translation
THREAD_NEXT;

}
......

Figure 5.14: Translation of dreturn

5.5.7 Faster Java Method Dispatch and Return

There are a number of different types of method in the interpreter. They are Java

methods, JNI methods, CNI methods, abstract methods and miranda methods4. Of

all of these methods, the Java methods, the standard interpreted method is by far the

most common. Table 5.1 shows counts for the various method types encountered for

selected benchmarks from the SPECjava98 suite. Lazy methods are JNI methods from

4A Miranda method is an automatically created method. In the case of CVM Fastcore, these
methods are used to deal with missing interface methods and cases where a non-public method shares
a name with an interface method.

131

dynamically loaded classes that must be resolved the first time they are invoked. Once

resolved, these methods are invoked as per usual and thus are included in the JNI

count in addition to the Lazy count. Note from the table how Java methods dominate

all other types of method (representing 98.88% of all types of method). The next most

common type of method is JNI (representing 1.12% of all types of method).

Type Jack Mpeg Compress Javac Jess Db Mtrt %
Java 49,568,419 108,508,878 225,997,430 96,391,709 110,983,653 117,322,713 286,117,020 98.88
JNI 2,797,053 1,253,789 8,434 4,233,584 2,675,315 82,230 200,034 1.12
CNI 2,659 2,091 1,285 6,536 4,497 982 1,517 0.00
Lazy 5 5 5 5 5 5 5 0.00

Table 5.1: Method types encountered in the SPECjava98 suite.

Normally when invoking a new method from the interpreter, the invocation opcode

jumps to a label callmethod which is shared by all of the invocation opcodes. The code

at this callmethod label examines the type of method being invoked and performs all

the initialisation work required before dispatching to that method.

It was decided to streamline the interpreter by moving the invocation code for

Java methods into the actual invocation instructions themselves. If the invocation

instructions find that the method to be invoked is not a Java method, they still jump

to the callmethod label, as before. The major benefit here is that a single dispatch

point at the end of the callmethod label’s code is no longer being used for all the Java

methods. Instead, the dispatch point at the end of the invoking instruction is being

used. This has the effect of reducing the overall branch misprediction rate somewhat.

A similar approach to reducing mispredictions was taken with the instructions re-

turning from a method. Typically the return instruction would perform minimal work

before jumping to a common label for all return instructions. The code at this label

handled most of the work of the return and then dispatched to the appropriate instruc-

tion. Once again, we had a dispatch that was shared among several return instructions

such as dreturn, areturn and return. In order to increase branch prediction accuracy, we

removed the shared code for handling returns from methods and gave each instruction

its own copy of the return handling and dispatch code.

132

5.5.8 Software Barrel Shifting

A barrel shifter has been incorporated into most 32-bit processors in use today. This

barrel shifter enables left/right shift and rotate operations to be completed in one

clock cycle and is essential for the speed of operations such as multiplication and table

lookups. Despite having incorporated fast barrel shifters into their previous Pentium

processors, along with their 486 and 386 processors, Intel removed the barrel shifter

from their Pentium 4. Thus a typical shift operation, that on a previous processor

would have taken only one cycle, now takes 4 to 6 cycles on a Pentium 4.

During translation of the bytecode, the opportunity exists to alleviate some of the

speed losses due to the lack of a barrel shifter. Consider for example the fload in-

struction which has an operand representing the index of the local variable that it

is supposed to place onto the stack. At some stage the fload instruction will access

locals[operand]. This is equivalent to accessing the item stored at memory location

locals+(operand*sizeof(LocalVarType)) where LocalVarType is the type of the local vari-

ables array. Unfortunately, this operation is slower on a Pentium 4 due to the lack of

a barrel shifter. Instead of incurring this overhead each time fload is executed, it is

better to incur it just once, at translation time. Thus, during translation, the operand

to fload is replaced with operand*sizeof(LocalVarType), negating the need for a costly

multiplication later. When the fload instruction is retrieving the local variable using

this new pre-shifted operand, one must be careful to avoid simply adding the new pre-

shifted operand to the base of the locals array, since the ‘C’ compiler will interpret this

as pointer arithmetic and will perform a multiplication on the already shifted operand.

Figure 5.15 shows the technique for pre-shifting at the translation stage and also shows

the correct way to use the pre-shifted operand in the implementation of the fload in-

struction in the interpreter core. This technique is only used with direct-threaded

dispatch since the pre-shifted operands take up more space in the instruction stream.

In direct-threaded dispatch this extra capacity is already available. In the other meth-

ods of dispatch, the bytecode would need to be expanded, most likely wiping out any

possible benefits of pre-shifting.

133

Pre-Shifting at Translation Time

......
thread_fload:
{

//Store the address for the instruction
threadedCode[threadedPc]=&&fload;

//Pre-shift the operand
threadedCode[threadedPc+1)=bytecodePc[1]*sizeof(SlotVal32);

//Increment pointers
threadedPc+=2;
bytecodePc+=2;

//Translate next instruction
THREAD_NEXT;

}
......

Implementation of fload in the Interpreter Core

......
fload SP(- SlotVal32 f1)

IP(Uint8 i1 - next);

//Must convert locals to a byte-sized pointer...
//...before addition of pre-shifted operand
f1=*((SlotVal32*) (((char*) locals)+i1));

--
......

Figure 5.15: Pre-Shifting Operands

134

5.5.9 Optimising Register Allocation

In order to speed up the interpreter, it is desirable to hold some of the more heavily

used variables such as the stack pointer and instruction pointers in registers. Simply

declaring them as local variables can get the variables held in registers, but not as often

as one would wish. Firstly, the register allocator in the compiler decides which items

get stored in registers and which do not. Secondly, even if a register is allocated to a

particular part of the code there is no guarantee that a register will be allocated to the

same variable later in the same function.

In order to ensure that as many registers are available for the local variables that

really count, it was decided to limit the number of local variables to the bare minimum.

Strategies such as Constant-Pool Inlining (Section 5.5.3) and removing little-used local

variables did improve performance but not greatly. Where it was not possible to remove

a local variable entirely, its scope was reduced to a minimal level.

The register allocator in GCC has a difficult time optimising the interpreter core’s

code due to its non-contiguous nature. It was possible to assist the GCC register alloca-

tion routine with the task, however. After local-variable removal from the interpreter

core, it became possible to allocate registers explicitly to the important local variables

that were left behind5.

In order to force GCC to keep a specific variable in a register, it is not sufficient to use

the register keyword. One must also specify the actual register to be used by using the

asm() directive. Figure 5.16 shows an example of how this is done in the interpreter

on the x86 platform6, with the threaded program counter being allocated to the bx

register. This explicit register allocation is essentially guesswork since, by explicitly

allocating registers, one is reducing the number of registers the compiler’s register

allocator has to work with. After experimentation, it was found that allocating a

register to the threaded program counter was optimal. Allocating a dedicated register

to the stack pointer degraded performance a little and allocating other registers to

the stack pointer resulted in register spill errors during compilation. Later, as the

5When explicit register allocation is attempted while register pressure is too high, the compile will
fail with a register spill error when the compiler finds it cannot keep the requested variables in the
specified registers. This was invariably the case when explicit register allocation was attempted before
we started to eliminate local variables from the interpreter loop.

6Platforms based on x86 compatible CPUs from companies such as Cyrix, Intel and AMD.

135

......
register Address* threadedPc asm("%ebx");
......

Figure 5.16: Declaration of Register Variable

interpreter was more heavily modified, it was found that explicitly allocating registers to

the threaded program counter was sometimes decreasing performance. This illustrates

nicely the unpredictability of register allocation. The approach that we have taken is

to construct two versions of the interpreter at each stage, one with explicit register

allocation, and one without. Profiling each of the running virtual machines yields

useful data, not only in terms of time but also in terms of loads, stores and instruction

cache misses. Typically the better (i.e. faster) interpreter has fewer loads, stores and

instruction cache misses due to better register allocation.

It must be stressed that explicit register allocation not only yields unpredictable

results but is also architecture dependant. On the other hand, sometimes the gains

are considerable, and the additional porting work required when moving to another

platform is negligible.

5.6 Discarded Optimisations

Not all of the optimisations that were tested proved to be effective. One such optimi-

sation, Speculative Java Method Invocation was implemented but proved to be a failure.

Essentially it involved invoking every method as if it were a Java method. Non-Java

methods would contain a single Java instruction NONJAVA METHOD which would

undo all the speculative invocation work and re-do the invocation, correctly this time.

Unfortunately, the work required to undo the speculative invocation was too great and

incurred too frequently. As a result, this optimisation actually slowed the interpreter

somewhat.

Another optimisation which was attempted was Absolute Addressing. In this optimi-

sation, the offsets for branches in conditional instructions were replaced by the actual

memory address of the branch targets. When the branch was to occur, a dispatch to

that address would take place. Unfortunately, the measured performance benefits were

136

minimal, even on the Pentium 4 without the barrel shifter. After tests, it was decided

to dispense with this particular optimisation because it would have reduced the scope

for instruction specialisation without necessarily giving much of a benefit.

Finally, another optimisation which we examined was optimised Forward Branch In-

structions. Normally on a branch, the interpreter performs a check to see if the branch

is a backwards branch. If so, it checks if garbage collection needs to run. If it does, ex-

tra code needs to be run to spill variables such as the stack pointer from local variables

back to memory. To save the cost of the backwards branch check, two sets of branch

instructions were added to replace the previous branch instructions. One set was used

for forward branches where no check was required and another set was used for back-

ward branches. Thus for the iflt instruction, there was now two versions, iflt forward

and iflt backward. The determination of which version of instruction was performed

at translation time. Figure 5.17 shows an example of how the translation for iflt was

carried out. Unfortunately the results for this optimisation were inconsistent at best

and at worst slowed the interpreter. Due to the debatable nature of this optimisation

it was later removed. During our research on static replication we realised that adding

forward branch instructions was akin to adding small numbers of replicated instruc-

tions. For reasons discussed in Chapter 6, this can frequently degrade the performance

of the interpreter.

5.7 Experimental Results on the Optimised Inter-

preter

The importation of CVM into Tiger and the optimisation of the interpreter core was

with a specific purpose in mind: to prove that interpreters can be made much faster

by applying modern compiler optimisation techniques to them, without the need to

resort to assembly language. Interpreters optimised in this way tend to be much more

portable as the optimisations are all applied at the ‘C’ source level.

To test our thesis we compared our new optimised interpreter against a number

of other small JVMs using the SPECjvm98 (Table 5.2) and Java Grande (Table 5.3)

137

......
thread_iflt:
{

//Get the offset for the branch from the bytecode
Int16 offset=getInt16(bytecodePtr+1);

//Which version of the branch should we use?
if(offset<=0)
{

threadedCode[threadedPtr]=&&iflt_backwards;
}
else
{

threadedCode[threadedPtr]=&&iflt_forwards;
}

//Store the offset in the threaded code
threadedCode[threadedPtr+1]=offset;

//Update pointers
bytecodePtr+=3;
threadedPtr+=2;

//Continue translation
THREAD_NEXT;

}
......

Figure 5.17: Forward Branch Introduction at Translation Time

138

benchmarks to examine performance7. These benchmarks consist of several large pro-

grams with real data, which are intended to be representative of a wide range of Java

applications.

Program Description
201 compress modified Lempel-Ziv compession
202 jess Java Expert Shell System
209 db small database program
213 javac compiles 225,000 lines of code
222 mpegaudio an MPEG Layer-3 audio stream decoder
227 mtrt multithreaded ray-tracing program
228 jack a parser generator with lexical analysis

Table 5.2: Spec98 Benchmark programs used to evaluate VM performance

Program Description
euler computational fluid dynamics
moldyn molecular dynamics simulation
monte Monte Carlo simulation
raytrace 3D ray tracer
alpha alpha-beta pruned search

Table 5.3: JavaGrande Benchmark programs used to evaluate VM performance

Using these benchmarks, we also examined the performance of the original un-

optimised interpreter in token threaded mode, its fastest possible configuration out

of the box. Although it would have been possible to run the original interpreter in

switch mode, our experiments showed it to be 17% to 52% slower. As a result, we

do not present results for the switch-based interpreter here. In the case of the origi-

nal unoptimised interpreter and our direct-threaded optimised interpreter, we used the

semi-space garbage collector rather than the generational one due to the 1% to 3%

speed improvement it offered.

7In later testing, we found it more practical to resort to fewer benchmarks for code maintenance
reasons. We found that the Spec98 benchmarks were sufficient and, more importantly, were more
acceptable as a broad measure of performance than the JavaGrande suite. Previous work [BDGW02]
has found that the JavaGrande benchmarks spend a considerably greater amount of time in program
methods, which, as we enhanced our VM interpreter would have likely resulted in overly optimistic
speedups (due to the fact that program method execution speed is closely tied to dispatch speed).

139

For comparison, we also measured the speed of the widely used Kaffe JVM. Kaffe

is a freely available, robust, highly portable JVM which is available under the GNU

General Public License. A commercial version of Kaffe is sold for use in embedded

systems. It is important to note that the results we present are for the public version

not the commercial one, although the two versions share much code. With Kaffe,

we tested both the interpreter and the JIT compiler. The results show what can be

expected from a simple, unoptimised interpreter, and a small, portable JIT compiler.

Finally, we measured the performance of Sun Microsystem’s desktop implementation of

Java 2 Standard Edition (J2SE) interpreter from the Hotspot Client VM. Hotspot uses

a sophisticated interpreter [Gri98], coded in hand-tuned assembly language. In addition

to careful assembly language programming, it also uses a number of optimisations, such

as combining common sequences of bytecode instructions into superinstructions, and

processor specific (x86 CPU) optimisations for floating point operations. It also stores

the topmost elements of the stack in registers and uses a complicated stack-caching

system for managing the various states of the stack. To avoid code explosion due to

stack caching states, the machine code of the interpreter is generated in memory at

run time. The result is that, although the Hotspot interpreter is fast, it is complicated

and quite unportable.

Figure 5.18 shows the running times of the benchmarks running on each of the

implementations of the JVM, relative to our interpreter (Fastcore, whose speed is

represented as 1). The most striking result is for the Kaffe interpreter which is, on

average, 5.76 times slower than our interpreter. The Kaffe interpreter is not at all

optimised. In particular, it resolves method names and constant pool references every

time they are used, rather than just once - the first time they are used. The Kaffe

interpreter demonstrates very well that it is easy to write a very inefficient interpreter.

The original CVM interpreter is an average of 31% slower than our optimised in-

terpreter. It does particularly well on db, where it is only 16% slower. We investigated

the reason for this variance by profiling the code. We found that in the original CVM,

only 87% of the time for the db benchmark is spent in the interpreter. The rest of the

time is spent in the run time system, on garbage collection, synchronisation and native

methods. In contrast 98.74% of the time for mpeg and 99.89% of the time for compress

is spent in the interpreter. So, although the speedup in the interpreter core is similar

across all programs, the overall speedup for db is lower, since there is no change in the

140

0

1

2

3

4

5

6

7

8

9

10

jac
k

m
pe

g
jes

s db
jav

ac m
trt

co
m

pr
es

s
eu

ler

m
old

yn

m
on

te

ra
ytr

ac
e

alp
ha

Kaffe int CVM CVM fastcore Hotspot int Kaffe JIT

Figure 5.18: Benchmark running times on various JVMs relative to our interpreter
(Fastcore)

execution time of the run time system. For this reason, programs such as compress

(38% faster), mpeg (44% faster) and raytrace (71% faster) give a better indication of

the relative speeds of the interpreter cores.

The Hotspot interpreter is on average 20.4% faster than our Fastcore interpreter.

There are two main reasons for this. Firstly, Hotspot has a much faster run time

system than CVM. This can be seen especially strongly in the db benchmark, which

runs 34% faster on Hotspot. The Hotspot runtime system is large and sophisticated,

and would not be suitable for an embedded system. Furthermore, much effort has

been put into tuning the Hotspot run time system as it is used more widely than

CVM. The second reason that Hotspot outperforms our Fastcore interpreter is that the

Hotspot interpreter is faster than our interpreter. Its dynamically-generated, highly-

tuned assembly language interpreter is able to execute bytecodes more quickly than our

portable interpreter written in ‘C’. The difference in speeds of the interpreter core can

be seen by examining the benchmarks that spend most of their time in the interpreter

core: compress is 9.1% faster and mpeg is 5.2% faster on the Hotspot interpreter. Our

141

interpreter is actually a little (1.9%) faster on euler.

Finally, the Kaffe just-in-time (JIT) compiler is, on average, more than twice as

fast as our Fastcore VM. In fact, the results for mpeg and compress demonstrate that

it is four to eight times faster at executing bytecodes than our interpreter. On other

benchmarks, its poor run time system slows it down to the extent that it is actually

substantially slower on the jack benchmark. This demonstrates clearly that a JIT

compiler does not always guarantee better performance than an interpreter. The run

time system must also be considered. It should also be noted is that the Kaffe JIT

compiler does not produce especially fast code. In particular, the mixed-mode Hotspot

compiler/interpreter for desktop machines is usually more than twice as fast. However,

the Kaffe JIT compiler is simple, and similar to the commercial version which is used

in embedded systems.

5.8 Conclusion

In this chapter we have detailed the construction of the Fastcore VM, a portable

optimised interpreter. We have highlighted our reasons for our choice of the CVM

as a base JVM, targeted for optimisation. We have explained how the implementation

was modified with the assistance of Tiger, our interpreter generator. A number of

optimisations that we experimented with were described in some detail. Many of these

optimisations were highly successful and were retained. Others optimisations that

yielded little or no positive improvements were discarded. Finally the results of our

new interpreter were presented over a suite of representative benchmarks. The results

of Fastcore against other interpreters and JIT compilers has justified our belief that

it is possible to construct an optimised portable Java interpreter that can compete

with non-portable hand-tuned assembly langauge interpreters such as Hotspot, and on

certain benchmarks outperform certain JIT compilers such as the Kaffe JIT on selected

benchmarks.

While the optimisations presented in this chapter have yielded some impressive

results, they do not represent the full extent of optimisations that can be applied.

In subsequent chapters, we present more elaborate and powerful optimisations that

improve the performance of Fastcore by a considerable amount.

142

Chapter 6

Static Instruction Enhancement

6.1 Introduction

While the JVM instruction set is well-defined in terms of the instructions available

and their behaviour, there are no restrictions on the actual instructions that may be

implemented by a Java interpreter loop. Once bytecode has been read in, it can be

modified, have instructions replaced or removed, or even moved around. The important

thing is only that the semantics of the original bytecode are preserved.

The JVM instruction set itself comprises of 203 instructions. Even if one is limited

to running one byte opcodes, this leaves another possible 53 instructions that could be

added to the bytecode at runtime by a virtual machine designer. Typically the type of

instructions that might added are quick instructions (Section 6.4.4) which are optimised

versions of certain quickable bytecode instructions such as getstatic and putstatic.

In direct-threaded code we do not have the same limitation of 53 extra instruc-

tions. Instead we can have as many extra instructions as will fit in memory. The

32-bit address of each instruction is now stored in the instruction stream rather than

a single byte instruction index. This gives us considerable scope for static instruction

set enhancements.

In the rest of this chapter1 we present various instruction set enhancements that

are made to the interpreter core at compile-time. All of these enhancements are the

1Some of this work in this chapter has been published in SCOPES 2003 [CGEN03]. A technical
report detailing some our more recent work in the area is also available [CGE05a]. These papers
describe optimised JVMs constructed and tested by the author of this thesis.

143

result of careful profiling of Java bytecode. For each class of enhancement presented,

we discuss the manner of profiling in some detail as it is critical to the success of these

enhancements.

6.2 Profiling Methods

All the instruction enhancements described in this chapter are based on information

gained during a profiling phase, running the Fastcore interpreter on various programs.

During this phase the interpreter gives information about the bytecodes executed dur-

ing execution. This information can be used to select the best instructions to add to

the JVM in order to improve performance.

Since the method of profiling ultimately determines the selection of instructions to

be added to the JVM, we describe the four possible methods here. For the purposes

of the explanation, assume the JVM to be enhanced will be run on benchmark X. X

will typically be an element of a set, S of benchmarks, for example SPECjvm98. Let

S −X represent all other benchmarks in the set of benchmarks.

1. Dynamic individual. The profiling data is obtained by running an unoptimised

JVM in profiling mode on benchmark X. The data returned is the instruction

and instruction sequences, along with the number of times they were executed.

2. Static individual. The profiling data is obtained by running an unoptimised

JVM in profiling mode on benchmark X. The data returned is the instruction and

instruction sequences, along with the number of positions they were encountered

in the bytecode.

3. Dynamic exclusive. The profiling data is obtained by running an unoptimised

JVM in profiling mode on all benchmarks in S − X. The data returned is the

instruction and instruction sequences, along with the number of times they were

executed.

4. Static exclusive. The profiling data is obtained by running an unoptimised

JVM in profiling mode on all benchmark S − X. The data returned is the

instruction and instruction sequences, along with the number of positions they

were encountered in the bytecode.

144

Target Benchmark Individual Profiling Exclusive Profiling
jack jack mpeg, compress, javac, jess, db, mtrt
mpeg mpeg jack, compress, javac, jess, db, mtrt
compress compress jack, mpeg, javac, jess, db, mtrt
javac javac jack, mpeg, compress, jess, db, mtrt
jess jess jack, mpeg, compress, javac, db, mtrt
db db jack, mpeg, compress, javac, jess, mtrt
mtrt mtrt jack, mpeg, compress, javac, jess, db

Table 6.1: Individual versus Exclusive profiling for the SPECjvm98 suite.

Each of the profiling methods have their benefits. For example, when attempting to

determine the maximum benefit of an instruction enhancement technique, one should

use either the dynamic individual or static individual technique. By using profiling

data from either of these techniques, one is tailoring the JVM specifically for that

benchmark. For a better indication of how an instruction enhancement might work in

general, either of the exclusive techniques would suffice. This is because when we are

enhancing a JVM to be run on benchmark X, we will be not be using profiling infor-

mation garnered from an execution of X, thus avoiding tailoring the JVM specifically

for that benchmark.

Table 6.1 illustrates the difference between the individual and exclusive profiling

techniques, as applied to the SPECjvm98 suite of benchmarks. Note that when we

are testing a new optimisation on the SPECjvm98 suite, it will require seven different

JVMs, each targeted towards a particular benchmark in the suite and constructed on

the basis of the appropriate profiling data.

6.3 Instruction Specialisation

Many JVM instructions take immediate operands from the instruction stream when

executing. Fetching these operands from memory is part of the overhead of interpreta-

tion. Specialised instructions are new versions of existing instructions with commonly

occurring operands hardwired into them, to reduce operand fetching. Typically, the

machine code for a specialised instruction can be much more efficient, not only because

it usually eliminates a load, but also because the compiler can optimise the code for

145

that particular constant.

6.3.1 Implementation

GETFIELD_QUICK SP(Object* directObj -- JavaVal32 result)
IP(Uint8 offset -- next);
{

if (directObject != NULL)
result = *(directObject + offset);

else
NULL_POINTER_EXCEPTION();

}

Figure 6.1: Definition of GETFIELD QUICK VM instruction

Figure 6.1 shows the Tiger definition for GETFIELD QUICK, which is used to fetch

the value of a field within an object. This instruction takes an immediate argu-

ment from the instruction stream which specifies the offset of the field within the

object. GETFIELD QUICK is one of the most frequently executed instructions in our

JVM (around 8% of all instructions). The offsets are most commonly one of just a few

values, so it may make sense to generate specialised versions for each of these constants.

Figure 6.2 shows the Tiger definition and the generated C code for GETFIELD QUICK,

specialised with the immediate operand 0 (a particularly common case). Whereas the

generated code would normally load the offset from the instruction stream, in the

specialised version it is simply set to the chosen constant. Although this code looks

long and complicated, the C compiler will optimise it well. In particular, constant

propagation will eliminate the addition of the offset entirely in this case.

Interestingly, the JVM instruction set includes quite a number of already specialised

instructions. For example, there are four versions of each of the load and store instruc-

tions for local variables, for each of the first four local variables. However, we have cho-

sen to convert these specialised instructions into their generic form (de-specialisation),

and implement our own generic system for creating specialised instructions. There are

three main reasons for this decision.

1. First, by converting to generic versions, we increase the opportunities for using

146

Tiger Code: +SPEC GETFIELD_QUICK 0

Generated Code: #define offset 0
TIGER_SPECIAL_GETFIELD_QUICK_offset_0:
{

Object* directObj;
JavaVal32 result;
vm_Object$_equals_StackVal32(directObj,SPPTR[-1]);

{
if (directObject != NULL)

result = *(directObject + offset);
else

NULL_POINTER_EXCEPTION();
}

vm_StackVal32_equals_JavaVal32(SPPTR[-1],result);
IPPTR=IPPTR+2;

goto **IPPTR;
}
#undef offset

Figure 6.2: Simplified Tiger output for GETFIELD QUICK VM instruction specialised
with the immediate operand 0.

147

superinstructions. For example the sequence ILOAD 0 IADD could use the su-

perinstruction ILOAD-IADD, whereas it is not practical to have large numbers of

specialised superinstructions, such as ILOAD 0-IADD.

2. Secondly, the standard specialised instructions in the JVM appear to have been

chosen on an ad hoc basis, with little attention to how often it appears in real

code. For example, the instruction FSTORE 0 does not appear even once in all

the SPECjvm98 benchmarks [Wal99]. We would like to choose the instructions

to specialise based on real measurements rather than presumed usefulness.

3. Finally, the immediate operand is not known for many VM instructions until the

first time they are executed, so they cannot be specialised in JVM bytecode. For

example, the offset for a GETFIELD instruction may not be known until the first

time it is executed, because it may access another class which might not yet be

loaded. Given that field access instructions account for about 16% of executed

instructions in the SPECjvm98 benchmarks, this greatly reduces the potential

for exploiting specialisation.

Tiger supports specialised instruction in three ways. First, it allows us to automat-

ically generate a version of the interpreter which profiles the value of all immediate

operands for each instruction as it executes. Based on this profiling information, we

can choose the best combinations of instructions and immediate operands to specialise.

Secondly, Tiger generates C source code to implement specialised instructions, from the

instruction definitions and the output of the profiler. Finally, Tiger also generates C

routines to automatically replace VM instructions and their operands with specialised

versions. Thus, almost the entire process of creating specialised instructions is auto-

mated.

It is worth mentioning here that this process of introducing specialised instructions

into the instruction stream does not affect the list of instructions (Section 5.4.1). This

list of instructions is used for superinstruction parsing, contains all instruction indices

after de-specialisation and before specialisation. This enables superinstruction pars-

ing to be applied in as many places as possible in the bytecode without specialised

instructions interfering in the parsing process.

148

6.3.2 Specialised Instruction Selection

An important question is how specialised instructions will be chosen. If we want to

customise the interpreter for a particular program, we just choose the most commonly

executed combinations in a test run of that program. If, on the other hand, the program

is not available, then we would like to choose a representative set from profiles of several

other programs.

We evaluated the instruction specialisation optimisation using our interpreter sys-

tem and the SPECjvm98 benchmarks. We selected specialised instructions using three

strategies:

1. Counting the dynamically most frequently executed combinations for this partic-

ular program (dynamic individual)

2. Counting the dynamically most frequently executed combinations in all of the

SPECjvm98 programs except this program (dynamic exclusive)

3. Counting the most frequent combinations appearing statically in the code of all

other programs (static exclusive).

Of the three approaches, the latter two are the most realistic. If one was to extend

the JVM instruction set by adding specialisations, the most logical approach would be

to profile a massive set of Java programs to ensure that the new specialisations occur

frequently in as many Java programs as possible. Clearly, this is not feasible for our

experiments. The next best solution was to take our working set of benchmarks and

profile each of them for potential specialisations.

In contrast, the first approach is doing precisely that; optimising the JVM for the

benchmark in question. While this is not a good measure of how specialisations might

work in practice, it gives us an upper bound on the performance improvements that

specialised instructions would give for that particular benchmark.

Figure 6.3 shows the ten most recommended specialisations for the db benchmark

based on approach (3). The specialisations are listed in order of decreasing importance,

with the most important (i.e. frequently occurring) listed at the top. Note how the

standard Java specialised instructions load 0 and load 12 are re-introduced first. The

2This load instruction is a generic version of the Java instructions aload, iload and fload.

149

first non-standard specialised instruction is a version of vinvokevirtual quick whose sec-

ond parameter is being specialised to 2u (the ‘u’ represents an unsigned literal). The

first parameter for this instruction remains unspecialised (denoted by a ‘?’).

+SPEC load 0u;
+SPEC load 1u;
+SPEC vinvokevirtual_quick ? 2u;
+SPEC load 2u;
+SPEC vinvokevirtual_quick ? 1u;
+SPEC ldc_quick 0u;
+SPEC load 3u;
+SPEC vinvokevirtual_quick ? 3u;
+SPEC ldc_quick 1u;
+SPEC vinvokevirtual_quick 16u ?;

Figure 6.3: Recommended Specialisations for db Based on Static Exclusive Profiling

6.3.3 Evaluation

Surprisingly, adding small numbers of specialised instructions to our interpreter ac-

tually makes it slower. We used the Pentium 4’s hardware performance counters to

investigate this. As expected, we found that specialised VM instructions reduce the

number of native machine instructions needed to execute the interpreter. Normally,

we would expect a corresponding reduction in execution time. However, we also found

that specialised instructions also impact on indirect branch prediction rates, which has

a much large effect on running time.

Figures 6.4 and 6.5 show the speedups gained by adding specialisations to the

interpreter based on static exclusive and dynamic individual profiling respectively. The

number of instructions added at compile-time are plotted on the x-axis. The actual

choices of 8, 16, 32, 64, 128, 256 and 512 extra instructions have been chosen to give an

indication of how performance changes as more instructions are added to the VM. The

y-axis shows the speedup compared to the interpreter without specialised instructions.

Both diagrams show signs of added specialisations causing a decrease in interpreter

performance. As expected, the static exclusive profiling method gave rise to the lesser

improvement. Even with 512 specialisations, the JVM is slower than the unspecialised

150

0.95

1

1.05

1.1

1.15

1.2

8 16 32 64 128 256 512

Instructions

S
p
e
e
d
u
p

compress jack mtrt jess db mpeg javac

Figure 6.4: Speedup from adding different numbers of specialised instructions chosen
based on static frequency in other programs (static exclusive profiling).

0.95

1

1.05

1.1

1.15

1.2

8 16 32 64 128 256 512

Instructions

S
p
e
e
d
u
p

compress jack mtrt jess db mpeg javac

Figure 6.5: Speedup from adding different numbers of specialised instructions chosen
specifically for a program (dynamic individual profiling).

151

JVM on the jess benchmark. The dynamic individual profiling approach does not

give substantially better results. This latter profiling method, gives an approximation

of the maximum benefit to be obtained from this optimisation.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

8 16 32 64 128 256 512

Instructions

M
is

p
re

d
ic

te
d

 I
n

d
ir

e
c

t
B

ra
n

c
h

e
s

compress jack mtrt jess db mpeg javac

Figure 6.6: Percentage change in indirect branch mispredictions from using specialised
instructions chosen specifically for a program (dynamic individual profiling).

The small overall improvement in performance was counter-intuitive and further

investigation was required. This investigation took the form of measuring the change

in branch mispredictions as specialisations were added to the VM. Figure 6.6 shows

the ratio of the number of indirect branch mispredictions for various configurations

compared to the interpreter without specialised instructions. Small numbers of spe-

cialised instructions result in more mispredicted indirect branches. Given the high cost

of branch mispredictions (around 20 cycles on the P4) and that dispatching each VM

instruction involves executing an indirect branch, a reduction in misprediction accu-

racy has a much larger effect on execution time than a small reduction in executed

instructions.

152

This misprediction data highlighted the source of the problem. Unlike original JVM

bytecode, our base interpreter uses no specialised instructions, and it does not have sep-

arate versions of VM instructions for different types, except where they require different

code. We made a deliberate decision to minimise the number of VM instructions to

facilitate superinstructions. The result is that JVM instructions such as ALOAD, ILOAD

and FLOAD are all implemented with the same code. Given that local loads account

for around 35% of all executed instructions [Wal99], this code is an extremely frequent

target for the indirect branches that implement VM instruction dispatch. When we

introduce specialised versions of this local load, we no longer have a single common

target, and indirect branch prediction accuracies fall.

However, another effect is also in play. There is a separate indirect branch at the

end of the code to implement each VM instruction. When we specialise an instruction,

we introduce a new implementation, with its own indirect branch. It is important

to recall that current processors use a branch target buffer (BTB) to predict indirect

branches, which simply predicts that the target address will be the same as on the

previous execution of the same branch. By having a separate indirect branch (and

thus a separate BTB entry) for each specialised local load instruction, we capture some

context about the program. For example, there may be several LOAD instructions in a

method, but only LOAD 6 is followed by IADD. As the number of specialised instructions

rises, the benefit of more separate indirect branches outweighs the cost of a larger

number of targets, and the net effect is positive. We also measured an increase in

instruction cache (trace cache) misses, but the effect was much lower than that on

indirect branch prediction.

In summary, instruction specialisation is used by many VM interpreters to reduce

the overhead of inline immediate operands. However, the main performance impact

of specialised instructions is their effect on indirect branch prediction accuracy, rather

than reduced operand fetches. Thus, the overall effect is somewhat unpredictable.

6.4 Superinstructions

A superinstruction is a new virtual machine instruction that consists of a sequence of

several existing VM instructions. There are a number of benefits associated with this.

One is that superinstructions reduce the number of VM instruction dispatches required

153

to perform a certain sequence of instructions. This is important because instruction

dispatch has been shown to be a particular bottleneck in interpreters [EG03b].

Another benefit superinstructions provide is the opportunity to optimise the inter-

preter source code. For example, it is common that the result written to the stack by

one instruction will be read from the stack by the following one. When generating C

source code to implement superinstructions, Tiger eliminates the stack read and writes,

and instead keeps the value in a local variable between the two component instructions.

A third benefit associated with superinstructions is that combining the source code for

instructions together exposes a larger “window” of code to the C compiler, which allows

greater opportunities for optimisation.

6.4.1 Initial Experiments

There are two main ways that superinstructions are used. The first is to generate an

interpreter that is optimised for a particular program. In these initial experiments we

will select superinstructions specific to that program. This will, in turn, yield a rough

estimate of where the upper bound for performance improvements might lie before we

turn to more realistic and universal superinstruction selection strategies in the next

section.

Selecting the optimal set of superinstructions for a given program is NP-hard

[Pro95]. We experimented with a number of heuristics, such as finding the most fre-

quently executed (sub)sequences of VM instructions, in a scheme similar to Proebsting’s

[Pro95]. Eventually we found that by far the best scheme is to simply select the n most

frequently executed basic blocks in the program to be superinstructions.

The set of superinstructions to be used were based on this particular scheme, op-

erating on profiling data for each benchmark separately. Thus we used the dynamic

individual method of profiling (Section 6.2). Using this profiling data, we built JVMs

incorporating superinstructions built from the 8, 16, 32, 64, 128, 256 and 512 most

commonly executed basic blocks. This approach was tested using the SPECjvm98

benchmarks. Results are presented in Figure 6.7. These results are presented in terms

of speedup over the same implementation of the JVM and benchmark with 0 superin-

structions.

Although this individual tailoring of JVMs for each benchmark seems a little un-

154

1

1.4

1.8

2.2

2.6

3

3.4

8 16 32 64 128 256 512

Instructions

S
p
e
e
d
u
p

compress jack mtrt jess db mpeg javac

Figure 6.7: Adding individually tailored superinstructions to the interpreter (dynamic
individual profiling).

155

realistic it has the major benefit that it gives something of a yardstick against which

to measure performance of other, more realistic, schemes. Additionally, it gives some

measure of the degree to which a JVM can be optimised to a particular task, a proposal

made by Venugopal et al. [VMK02].

Looking at Figure 6.7, the speedups achieved using varying numbers of superinstruc-

tions are apparent. The figures are quite impressive for some benchmarks, in particular

compress and mpeg, with speedups of 2.8 and 3.3 respectively at 512 superinstructions.

Other benchmarks do not benefit so well from this approach but nonetheless the min-

imum speedup is 1.27 (jack) at 512 superinstructions which is quite reasonable. It is

worthwhile noting that, even with only 32 superinstructions, the minimum speedup

across all benchmarks is 1.1.

6.4.2 Which Sequences?

The main determinant of the usefulness of superinstructions is whether the sequences

we choose to make into superinstructions account for a large proportion of the running

time of the programs that run on the interpreter. The set of superinstructions must

be chosen when the interpreter is constructed, most likely at a time when one doesn’t

know which programs will be run on the interpreter. Thus, one must somehow guess

which superinstructions are likely to be useful for a set of programs that one has never

seen.

The most common way to make guesses at the behaviour of unseen programs is to

measure the behaviour of a set of standard benchmarks programs, and hope that these

benchmarks resemble the real programs. A question remains, however, as to how the

benchmarks should be measured to identify useful superinstructions.

We tested several criteria for selecting superinstructions. We tested measuring the

static number of times that each sequence appears in the code as well as its dynamic

execution frequency. In order to avoid one large program dominating the others, we

normalised the frequencies to percentages of total static/dynamic instructions in the

program. Originally, we felt that longer sequences were more desirable, because they

eliminate more dispatches, so we tried multiplying the frequencies by the length of the

superinstruction minus one (lmul). It also occurred to us that shorter superinstructions

might be easier to reuse, so we also tried dividing by the number of dispatches removed

156

Scheme 8 16 32 64 128 256 512
static 26.3 27.7 30.7 33.0 38.7 41.6 44.2
static norm. 26.3 27.3 30.7 33.6 38.8 40.8 44.0
static ldiv 23.7 28.1 30.3 34.5 39.6 44.5 48.3
static ldiv norm. 23.7 27.8 29.8 34.4 38.7 44.2 47.4
static lmul 16.7 17.9 19.0 19.1 19.7 21.0 21.3
static lmul norm. 19.3 20.4 21.3 23.5 24.6 25.1 25.8
dynamic 24.1 26.0 30.2 31.8 33.2 34.9 36.5
dynamic norm. 23.8 28.8 32.4 35.4 37.7 42.3 43.4
dynamic ldiv 23.8 26.4 29.7 33.6 37.4 41.2 44.1
dyn. ldiv norm. 23.8 26.7 30.9 35.7 40.8 44.4 47.2
dyn. lmul 1.3 1.3 1.3 2.5 2.6 2.9 3.0
dyn. lmul norm. 15.5 15.9 17.3 18.5 18.6 19.8 20.4

Table 6.2: Comparison of superinstruction selection strategies.

by the superinstruction (ldiv). Table 6.2 shows the average reduction in VM instruction

dispatches across all benchmarks using different combinations of the selection strategies

and varying numbers of superinstructions. A number of trends are clear. Dynamic

frequency performs worse than static, because it is biased very strongly in favor of the

inner loops of the programs.

The argument in favour of static selection is also made in Gregg and Waldron

[GW02] where a wide range of strategies were tested for choosing superinstructions

for Forth programs. They found, perhaps surprisingly, that the best strategy was to

simply choose those sequences that appear most frequently in the static code. This was

the next strategy we chose. More specifically, we chose the static exclusive profiling

method (Section 6.2) to generate a list of most commonly occurring basic blocks. These

basic blocks were used to create superinstructions to be added to the optimised JVMs.

Results are presented in Figure 6.8 for this strategy. The results are graphed sim-

ilarly to before, with results presented for each benchmark with a varying number of

superinstructions. The speedups obtained with this approach were much more con-

servative. At 512 superinstructions, the maximum speedup was 1.75 (mpeg) and the

minimum 1.07 (jack). At 32 superinstructions the maximum speedup was 1.36 (mpeg)

and the minimum 1.05 (jack).

Analysis of the superinstructions selected using the strategy above yielded some

157

1

1.2

1.4

1.6

1.8

8 16 32 64 128 256 512

Instructions

S
p
e
e
d
u
p

compress jack mtrt jess db mpeg javac

Figure 6.8: Adding statically selected superinstructions to the the interpreter (static
exclusive profiling).

158

interesting results. It appeared that some long sequences from a limited number of

benchmarks were dominating the statistics. In an attempt to reduce this effect, we de-

cided to bias the statistics in favor of shorter, and therefore more commonly occurring

(across benchmarks), sequences. In order to do this, we used precisely the same su-

perinstruction selection strategy as before, but this time each superinstruction’s weight

(previously its static frequency) was divided by its length-1. This biases the selection

strategy heavily in favor of shorter sequences.

1

1.2

1.4

1.6

1.8

2

2.2

8 16 32 64 128 256 512

Instructions

S
p
e
e
d
u
p

compress jack mtrt jess db mpeg javac

Figure 6.9: Adding statically selected short superinstructions to the the interpreter
(static exclusive profiling).

Results were generated exactly as before, but this time using the modified weight-

ings to decide which superinstructions to include. The results are presented in Figure

6.9. The speedups were considerably better with this minor modification. At 512 su-

perinstructions, the maximum speedup was 2.06 (mpeg) and the minimum 1.19 (jack).

At 32 superinstructions the maximum speedup was 1.39 (mpeg) and the minimum

1.04 (jack). These results show two interesting points. Firstly, the superinstruction

159

selection scheme is critical. Even small changes in the selection algorithm can have dra-

matic effects. Secondly, there are two opposing goals in that we would like choose long

superinstructions (to eliminate as many dispatches as possible) but shorter superin-

structions can be applied at more points in the code. More sophisticated selection

algorithms will need to be examined to throw more light on this aspect of superin-

structions.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

8 16 32 64 128 256 512

Instructions

In
d

ir
e

c
t

B
r
a

n
c

h
e

s

compress jack mtrt jess db mpeg javac

Figure 6.10: Indirect branch reduction due to statically selected short superinstructions
(static exclusive profiling).

Superinstructions, by virtue of eliminating dispatches, reduce the number of indi-

rect branches and consequently the number of indirect branch mispredictions. This is

illustrated in Figure 6.10 and Figure 6.11 respectively. These represent indirect branch

measurements and mispredicted indirect branch measurements for the same bench-

marks and selection strategy presented in Figure 6.9. Normally one would expect that

the misprediction of indirect branches as a proportion of indirect branches stays more

or less constant as superinstructions are added to the JVM. If this were the case, both

160

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 16 32 64 128 256 512

Instructions

M
is

p
re

d
ic

te
d

 I
n

d
ir

e
c

t
B

ra
n

c
h

e
s

compress jack mtrt jess db mpeg javac

Figure 6.11: Mispredicted indirect branch reduction due to statically selected short
superinstructions (static exclusive profiling).

161

the indirect branch counts and mispredicted indirect branch counts would be decreas-

ing at the same rate as superinstructions are added. However Figures 6.10 and 6.11

illustrate that the number of indirect branch mispredictions decreases more sharply

than the number of indirect branches. From an average misprediction rate across all

benchmarks with 0 superinstructions of 45%, the rate drops substantially, down to a

little over 23% at 512 superinstructions.

The explanation for this is twofold. The addition of each superinstruction adds an

extra entry to the Branch Target Buffer (subject to BTB size). Also, by the time a

dispatch occurs at the end of a superinstruction, we are guaranteed to have executed a

certain sequence of component instructions. This has the effect of adding context to the

dispatch at the end of the superinstruction in question, and makes branch prediction

at that point more accurate.

One complication in a Java interpreter is that the JVM comes with a large library of

classes that are used internally by the JVM and by running programs. Approximately

33% of the executed bytecode instructions in the SPECjvm98 benchmark suite [SPE98]

are in library rather than program methods [Wal99]. This library code is available at

the time the interpreter is built, so there is potential for choosing superinstructions

specifically for commonly used library code.

As with other optimisations, we use the interpreter generator Tiger to generate

superinstructions using profiling information. Tiger allows for some extra functionality

over vmgen including support for superinstructions across basic blocks.

One important feature Tiger allows for is the generation of superinstructions from

profiling information. For example, we might find that the VM instructions ILOAD

and IADD occur very frequently in sequence in Java programs. Given their frequency,

it may be worthwhile to create a superinstruction ILOAD-IADD which behaves exactly

like the original sequence of VM instructions but may be more efficient.

Figure 6.12 shows the instruction definition for the JVM instruction ILOAD (load

integer local variable). Note that we need to update the instruction pointer by two posi-

tions, since the VM instruction consists of the ILOAD opcode followed by an immediate

operand containing the number of the local variable to load onto the stack.

By adding ILOAD-IADD to the list of superinstructions for our interpreter, Tiger

will produce the source code in Figure 6.13, which is generated automatically from the

instruction definitions of ILOAD and IADD.

162

ILOAD SP(-- Int32 result)
IP(Uint8 index);

{
result = locals[index];

}

Figure 6.12: Definition of ILOAD VM instruction

There are a number of notable features about this code. First, all used stack items

are loaded from memory into local variables at the start of the code. The different VM

instructions within the superinstruction communicate by reading from and assigning

to these local variables.

Presuming that the C compiler is able to allocate these local variables to registers,

this will greatly reduce the amount of memory traffic from accessing the VM stack.

IADD alone requires two loads and one store to access the stack, and ILOAD requires

one store. In contrast, the superinstruction ILOAD-IADD requires only one load and

one store access to the stack to perform the same work. Thus stack memory traffic is

reduced by 50%.

Another notable feature of the code in Figure 6.13 is that there is no stack pointer

update. ILOAD increases the size of the stack by one, and IADD reduces its size by one.

Vmgen detects that the two stack pointer updates are redundant, and eliminates them.

In addition, there is only one instruction pointer update.

6.4.3 Parsing

The use of superinstructions is in many respects the same problem as dictionary-based

text compression [BCW90]. Dictionary-based compression attempts to find common

sequences of symbols in the text, and replaces them with references to a single copy

of the sequence. Thus, when designing a superinstruction system, we can draw on a

large body of theory and experience on text compression.

Parsing is the process of modifying the original sequence of instructions by replacing

some subsequences with superinstructions. The simplest strategy is known as greedy

parsing, where at each VM instruction we search for the longest superinstruction that

will match the code from that point.

For example, consider the basic block in Figure 6.14. Assume that we have two

163

ILOAD_IADD: /* start label */
{
Int32 sp0; /* synthetic names */
Int32 sp1;
Int32 ip1; /* synthetic name for item in VM instruction stream */
ip1 = *(ip+1); /* fetch immediate value */
sp0 = *(sp);
{ /* ILOAD */
Int32 iIndex; /* declare stack item */
Int32 iResult;
/* fetch stack item to local variable */
iIndex = ip1;
{ /* user provided C code */
iResult = locals[iIndex];

}
sp1 = iResult; /* store stack result */

}
{ /* IADD */
Int32 iValue1; /* declare stack items */
Int32 iValue2;
Int32 iResult;
iValue1 = sp1; /* fetch stack items to */
iValue2 = sp0; /* ...local variables */
{ /* user provided C code */
iResult = iValue1 + iValue2;

}
sp0 = iResult; /* store stack result */

}
*(sp) = sp0;
ip += 3; /* update VM ip */
}
NEXT; /* indirect goto */

Figure 6.13: Simplified Tiger output for ILOAD-IADD superinstruction

164

ILOAD 4 ; load local 4
ILOAD 5 ; load local 5
IADD ; integer add
ISTORE 6 ; store TOS to local 6
ILOAD 6 ; load local 6
IFEQ 7 ; branch by 7 if TOS == 0

Figure 6.14: Example basic block

superinstructions available: ILOAD-ILOAD and ILOAD-IADD-ISTORE. Following a greedy

strategy, we would find the longest sequence that matches a superinstruction from the

start of the basic block. Thus, we would replace the first two instructions with the

superinstruction ILOAD-ILOAD, and reduce the number of dispatches needed to execute

this code by one. The main advantage of greedy parsing is that it is very fast — an

important factor in an optimisation that we apply to a Java method at run time, the

first time that it is invoked. Greedy parsing is also simple to implement and requires

little memory.

The weakness of greedy parsing becomes apparent when we consider whether a bet-

ter parse of the code in figure 6.14 is possible. Clearly, it would be better to replace the

second, third and fourth instructions with the superinstruction ILOAD-IADD-ISTORE.

This would reduce the number of dispatches by two.

To be guaranteed to find the best possible parse, an optimal parsing algorithm

must be used. Fortunately, optimal parsing can be solved using dynamic programming

[BCW90], so efficient algorithms are available. Our interpreter currently allows for

either greedy or optimal parsing to be selected at compile time. Tiger generates parsing

tables that remove this requirement, so we are free to add superinstructions to a JVM

without ensuring all subsequences are present. This will allow us to exploit more

advanced superinstruction selection strategies.

All results in this chapter are presented using the optimal parsing algorithm except

for those presented in Figure 6.15 where we present a comparison of greedy parsing

versus optimal parsing for the same selection strategy as used in Figure 6.9. This com-

parison shows that there is not a huge difference between optimal parsing and greedy

parsing in terms of performance. Indeed sometimes greedy gives a better speedup. The

extra computational overhead required for an optimal parse is the most likely reason

165

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

8 16 32 64 128 256 512

Instructions

A
v

e
ra

g
e

 S
p

e
e

d
u

p

Optimal Greedy

Figure 6.15: Comparison of optimal versus greedy parsing strategies for statically se-
lected superinstructions (static exclusive profiling).

166

for this, where it occurs. It can be quite possible that, with superinstruction selection

strategies other than that used for the comparison in Figure 6.15, that the difference

between an optimal parsing process and a greedy one would be more noticeable.

6.4.4 Quickable Instructions

Several Java bytecode instructions must perform various class initialisations the first

time that they are executed. On subsequent executions no initialisations are necessary.

A common way to implement this functionality is with “quickable” instructions. The

first time a given instruction of this type is executed, it performs the necessary initial-

isations, and then replaces itself in the instruction stream with a corresponding quick

instruction, which does not do these initialisations. On subsequent executions of this

code, the quick instruction is executed.

Quick instructions are vital to the performance of most Java interpreters, since the

check for class initialisation is expensive, and because they are among the most com-

monly executed instructions. For example, in the SPECjvm98 benchmarks GETFIELD

and PUTFIELD account for about one sixth of all executed instructions, and run very

slowly unless converted to quick versions [Wal99]. Eller [Ell99] found that adding quick

instructions to the Kaffe interpreter could speed it up by almost a factor of three.

A problem with quickable instructions is that they make it difficult to replace

sequences of instructions with superinstructions. No instruction that will be replaced

with another instruction at run time can be placed in a superinstruction, since that

would involve replacing the entire superinstruction. Furthermore, some instructions,

such as LDC (load constant from constant pool) and INVOKEVIRTUAL become different

quick instructions depending on the value of their inline arguments, or the type of class

or method they belong to.

An additional complication when dealing with quickable instructions is race con-

ditions. The Java interpreter supports multiple threads of execution within a single

program. Therefore, during quickening it is quite possible for two threads to almost si-

multaneously access a non-quick instruction triggering a potential race condition. Such

race conditions are avoided in the current implementation of the JVM by using mu-

tually exclusive locks, but adding support to allow quickened instructions to become

part of a superinstruction after translation could lead to race conditions.

167

Our current implementation allows for “quick” instructions to be components in

superinstructions by utilising a simple approach. Each time an opcode is quickened in

a method, the method is re-parsed in an attempt to incorporate that newly created

quick instruction into a superinstruction. There is a computational cost associated with

the approach but we have not found it to be significant. Nonetheless, if one wanted

to reduce the parsing overhead, a possibility is to re-parse only the basic block in

which the instruction has been quickened. The difficulty with this approach, however,

is that we have the capability of having superinstructions that span basic blocks (see

Section 6.4.5 below). Thus we cannot limit a re-parsing to the basic block in which an

instruction was quickened if we want to attempt to use these longer superinstructions.

The value of permitting quickened instructions to be part of superinstructions can

be seen empirically, by comparing the data in Figures 6.8 and 6.7 with Figures 6.16

and 6.17 respectively. Figures 6.16 and 6.17 emanate from a previous implementation

of our interpreter [CGEN03] where quick instructions were not permitted to be part of

superinstructions. Apart from the non-quickable aspect, the method of superinstruc-

tion selection is almost identical. Figure 6.16 represents the static exclusive profiling

based selection method, while Figure 6.17 shows the dynamic individual profiling based

selection method.

Comparing like with like, it can be seen from Figure 6.8 that allowing quickened

instructions inside superinstructions allows a substantial improvement over the non-

quickable equivalent presented in Figure 6.16. For example the speedup for mpegaudio

jumps from just under 1.45 without quick superinstructions to over 1.7 with quick

superinstructions. Comparing the dynamic-individual tailored methods of superin-

struction selection, it can be seen from Figures 6.7 and 6.17 that permitting quickened

instructions using this method of superinstruction has an even greater effect. In this

case the speedup for mpegaudio jumps from just under 1.75 to approximately 3.3 by

permitting quickened instructions in superinstructions.

6.4.5 Across Basic Blocks

Superinstructions are normally only applied to instructions within basic blocks. How-

ever, with relatively small modifications, it is possible to extend superinstructions

across basic block boundaries in two specific situations. First, we consider control

168

Superinstructions − Static Frequency

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

_213_javac _228_jack _222_mpegaudio _202_jess _209_db _201_compress _227_mtrt

Superinstructions

S
pe

ed
up

8 16 32 64 128 256 512 1024

Figure 6.16: Adding statically selected non-quick superinstructions to our interpreter.

Superinstructions − Dynamic Frequency

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

_213_javac _228_jack _222_mpegaudio _202_jess _209_db _201_compress _227_mtrt

Superinstructions

S
pe

ed
up

8 16 32 64 128 256 512 1024

Figure 6.17: Adding individually tailored non-quick superinstructions across basic
blocks to our interpreter.

169

flow joins. A join is a point in the program with incoming control flow from two

or more different places. Usually one of those places is simply the preceding basic

block, and control falls through to the join without any branching. In these cases, the

falling-though code is simply a straight-line sequence of instructions. However, it is

not normally safe to allow a superinstruction to be formed across the join, because it

would not then be clear where the other incoming control-flow paths should branch to.

ILOAD ILOAD
4 4
ILOAD ILOAD-IADD
5 5

join: IADD join: IADD
ISTORE ISTORE
6 6

Figure 6.18: Original bytecode (left) and same bytecode with ILOAD-IADD superin-
struction (right).

The solution we use is to create superinstructions, but not to remove the gaps

that are created by eliminating the original instructions. In fact, we leave the original

instructions in these gaps. Figure 6.18 shows an example where we have replaced the

sequence ILOAD, IADD with the superinstruction ILOAD-IADD. We actually replace the

ILOAD instruction with ILOAD-IADD, but leave the IADD instruction where it is. When

we fall-through from the first basic block to the second, we execute ILOAD-IADD, which

performs its normal work and then skips over the IADD instruction3. On the other

hand when we branch to the second basic block from elsewhere, we branch to the IADD

instruction which executes and continues as normal. This scheme allows us to form

superinstructions across fall-though joins.

We believe that this scheme is particularly valuable for while loops. The standard

javac code generation strategy appears to be to place the loop test at the end of the

loop, and on the first iteration to jump directly to this test. Unfortunately, the result

is that there is a control flow join just before the loop test that would normally hinder

optimisation. We believe we have successfully overcome this problem.

3The ILOAD-IADD instruction increments the virtual program counter by 3, thus making it point
to the ISTORE instruction.

170

ifnull SP(Object* o1 -)
IP(+DEFER Int32 skip - +DEFER next);

if((o1 == 0))
{

VMLOAD_skip_;
SET_IP(pc+skip);

}
VMLOADnext;

Figure 6.19: Definition of a branch VM instruction

A second opportunity for cross-basic block superinstructions is with the fall-through

direction of VM conditional branches. Superinstructions are permitted to extend across

branches due to facilities provided by Tiger. Figure 6.19 shows the instruction definition

for a branch instruction. Inside the if statement the Tiger keyword SET IP is used

to specify that a copy of the dispatch code that normally appears at the end of the

instruction should be placed here.

The SET IP macro in Tiger is redefined at the beginning of every component in-

struction in a superinstruction to allow a branch out of the superinstruction at that

point, if required. Thus a single superinstruction can be generated that spans multiple

untaken branches. Of course if the branches are taken, the SET IP macro will flush

items from local variables to the stack and update the stack pointer before a branch

out of he superinstruction.

Tiger also redefines a FLUSH ALL macro that carries out a similar task to SET IP

(but without the dispatch) before each instruction. This was necessary for certain

‘superinstruction-unsafe’ instructions such as ANEWARRAY QUICK which may trigger a

garbage collection. When a garbage collection occurs, the stack pointer and items on

the stack should be flushed from their cached positions in local variables, back to their

appropriate position in memory. Previously, we could not allow such ‘superinstruction-

unsafe’ instructions to be components in a superinstruction because the stack pointer

had not been up to date and stack items were still in local variables (ready to be

written later in the superinstruction). Now, if the FLUSH ALL macro is used before such

instructions, all items will be flushed to the operand stack before the instruction (and

hence before the garbage collection takes place). Elimination of stack pointer updates

171

and accesses using local variables can resume for subsequent component instructions

in the superinstruction after the ‘superinstruction-unsafe’ instruction has completed

Using this mechanism, a large number of instructions that previously were unsafe to

include in superinstructions can now be used.

1

1.4

1.8

2.2

2.6

3

3.4

8 16 32 64 128 256 512

Instructions

S
p
e
e
d
u
p

compress jack mtrt jess db mpeg javac

Figure 6.20: Adding individually tailored superinstructions across basic blocks to the
interpreter (dynamic individual profiling).

Using a similar method to select superinstructions as that in Figure 6.7 we created a

set of JVM binaries containing superinstructions tailored to each individual benchmark.

The difference is that instead of using the most commonly occurring basic blocks we now

use the most commonly occurring regions. The start point for these regions can be any

join point and the end point can be any branch or invocation. The results are presented

in Figure 6.20. The speedups obtained by using the longer regions instead of shorter

basic blocks appear to be reasonable. Most benchmarks experienced a speedup with

the exception of mtrt. Altogether, 31 of 49 JVM runs registered an improvement over

basic block selection (7 benchmarks with 7 runs per benchmark). A superinstruction

selection strategy tailored to exploit this new capability of superinstructions across

172

basic blocks can yield even better results.

6.5 Instruction Replication

Instruction replication aims to reduce indirect branch mispredictions in a threaded code

interpreter by creating multiple versions of the code to implement commonly occurring

VM instructions. Each separate version is ended by an indirect branch to dispatch the

next VM instruction. By varying the version of the implementation code that is used

in different parts of the Java program, some context information is captured which

may improve branch prediction accuracy.

For example, consider a loop containing the following sequence of instructions:

ILOAD IADD ILOAD ISUB. If there is only one version of the ILOAD code, then the indi-

rect branch at the end of the code to implement ILOAD will constantly switch between

the two and indirect branch prediction accuracy will be very poor. If, on the other

hand, we have two versions of ILOAD, then this could could be rewritten as ILOAD A

IADD ILOAD B ISUB. There are separate indirect branches at the end of each replica-

tion, both of which are now almost perfectly predictable. Figure 6.21 illustrates this

Before Replication:

ILOAD IADD ILOAD ISUB IFLT

After Replication:

ILOAD_A IADD ILOAD_B ISUB IFLT

Figure 6.21: Adding static replications to improve branch prediction.

loop before and after ILOAD has been replicated. Note the grey transitions before repli-

173

cation is employed. These are dispatch points that will nearly4 always cause a branch

misprediction. Note how the dispatches are much more predictable after replication.

ILOAD A is always followed by IADD and ILOAD B is always followed by ISUB.

6.5.1 Implementation

Tiger supports instruction replication by:

1. generating a profiling version of the interpreter to collect profiles of instruction

frequencies,

2. automatically generating copies of the C source code to implement VM instruc-

tions and,

3. generating C source code to rewrite the VM code with replicated instructions.

When several versions of a VM instruction exist, the versions are used in round-

robin order when rewriting the VM code. This usually ensures that the same version

of a VM instruction is not used more than once in a basic block.

An important question is which VM instructions should be chosen for replication,

and how many copies of each should be created. Based on profiles, we computed the

frequency of each VM instruction. We added one replication of the most frequent VM

instruction, and reduced its frequency by splitting the frequency between each of the

copies. We then applied the same process again, until we had chosen the required

number of total replications. Note that this process can result in the same instruction

being replicated multiple times, because even its split frequency may be higher than

that of other instructions.

6.5.2 Evaluation

We evaluated a number of combinations of various parameters. The frequencies of

instructions were measured by both their static and their dynamic occurrences. The

interpreter can be optimised for a given program, or profiling data from several pro-

grams can be used to find generally useful sets of replicas. We found that there was

4except the first time the loop is executed (cold misses), and also occasionally when BTB entries
change due to code executing in other threads.

174

almost no additional benefit from customising the replicated instructions for a par-

ticular program. Static measures of frequency perform a little worse than dynamic

measures (see Figures 6.22 and 6.23 for comparison).

0.8

1

1.2

1.4

1.6

1.8

2

8 16 32 64 128 256 512

Instructions

S
p
e
e
d
u
p

compress jack mtrt jess db mpeg javac

Figure 6.22: Speedup from replicated instructions chosen using dynamic frequency in
other programs.

Figure 6.22 shows the effect on running time of using varying numbers of instruc-

tions selected based on their dynamic frequency in all SPECjvm98 programs except

the one being measured. As with instruction specialisation, adding small numbers of

replicated instructions actually makes the interpreter slower. As in Section 6.3, we

investigated this using the Pentium 4’s hardware instruction counters, and found that

adding small numbers of replications increases the branch misprediction rate (see Fig-

ure 6.25), because of the very frequent local load instruction being replicated. There

was also a significant increase in the number of instruction cache (trace cache) misses.

As the number of replications increases, the reduction in indirect branch mispredictions

outweighs the other costs, and there is a significant net speedup (almost a factor of

two for compress).

175

0.8

1

1.2

1.4

1.6

1.8

2

8 16 32 64 128 256 512

Instructions

S
p

ee
d

u
p

compress jack mtrt jess db mpeg javac

Figure 6.23: Speedup from replicated instructions chosen using static frequency in
other programs.

+ALIAS fload 1;
+ALIAS fload 1;
+ALIAS fload 1;
+ALIAS ldc_quick 1;
+ALIAS fload 1;
+ALIAS fstore 1;
+ALIAS fload 1;
+ALIAS agetfield_quick 1;
+ALIAS fload 1;
+ALIAS getfield_quick 1;

Figure 6.24: Recommended Replications for db Based on Dynamic Exclusive Profiling

176

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 16 32 64 128 256 512

Instructions

M
is

p
re

d
ic

te
d

 I
n

d
ir

e
c

t
B

ra
n

c
h

e
s

compress jack mtrt jess db mpeg javac

Figure 6.25: Reduction in indirect branch mispredictions from replicated instructions
chosen using dynamic frequency in other programs.

177

6.6 Superinstructions vs Replication

Previous work with GForth [EG03a], an interpreter-based implementation of the Forth

language, has suggested that a VM enhanced with a mixture of replication and superin-

structions is more optimal than a VM enhanced with replications or a VM enhanced

with superinstructions alone.

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

0 10 20 30 40 50 60 70 80 90 100

%Superinstructions

C
yc

le
s

x
1E

+0
9

100 90 80 70 60 50 40 30 20 10 0

%Replicas

0

50

100

200

300

400

Figure 6.26: Timing results for mpegaudio with static replications and superinstructions
on a P4; the line labels specify the total number of additional VM instructions

We examined the possibility of an optimal mix of static replications and static

superinstructions in our interpreter. In order to do this, we ran a series of six tests

using the SPECjvm98 benchmarks. For each of the six series, we fixed the number of

instructions added to the VM to be 0, 50, 100, 200, 300 and 400 respectively. Within

each series, we varied the mix of added instructions from 100% replications (and 0%

superinstructions) to 0% replications (and 100% superinstructions).

The results were quite different, however, to those seen in GForth. As seen in

Figure 6.26, there appears to be virtually no benefit in adding replications at the

expense of superinstructions. As we noted in the section on static replication, small

numbers of static replicated instructions can make performance worse. We see this

most clearly when only 50 replications are added to our interpreter (with no static

178

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0 10 20 30 40 50 60 70 80 90 100

%Superinstructions

In
d

ir
ec

t
B

ra
n

ch
 M

is
p

re
d

ic
ti

o
n

s
x

1E
+0

9

100 90 80 70 60 50 40 30 20 10 0

%Replicas

0

50

100

200

300

400

Figure 6.27: Indirect Branch Misprediction results for mpegaudio with static repli-
cations and superinstructions on a P4; the line labels specify the total number of
additional VM instructions

superinstructions). At this point, we can see from Figure 6.27 that the number of

branch mispredictions actually increases. The same effect is observed when only 100

replicated static instructions are added, but this time the effect is not so notable. We

examined the branch prediction and branch misprediction hardware counters and at

400 replications (with no superinstructions) the misprediction rate is approximately

27%. In contrast, when using 400 superinstructions, the misprediction rate jumps

to 30%. However, the superinstruction approach has only 60% of the actual branch

predictions that the replication approach has, and as a result only has 66% of the

number of branch mispredictions.

6.7 Conclusion

In this chapter, we have described a system of enhanced VM instructions for a portable,

efficient Java interpreter. Our interpreter generator automatically creates source code

for specialised instructions, superinstructions and replicated instructions from simple

instruction definitions. Our system deals with several difficult issues, such as allow-

179

ing specialised versions of “quick” instructions, superinstructions containing “quick”

instructions, and superinstructions that extend across basic blocks.

We have evaluated these VM instruction enhancement techniques using many dif-

ferent strategies for applying them. We found that although instruction specialisation

achieves its goal of reducing operand fetch, its impact on indirect branch prediction has

a much greater impact on performance. We have shown how our Tiger generator can

be used to create an optimised version of our interpreter which is customised with su-

perinstructions for a particular program, giving speedups of 1.35 to 3.35. We have also

experimented with a large number of strategies for selecting useful superinstructions

form a group of representative programs. Perhaps counter-intuitively, we found that it

is better to look at the static occurrence of sequences of instructions rather than their

dynamic execution frequencies, and that we should favour shorter sequences. Speedups

of 1.2 to 2.1 are possible using such generic superinstructions. Finally, we found that

instruction replication does not always lead to speedups, and that the effect on branch

mispredictions is only positive for large numbers of replicas.

In the next chapter we examine dynamic instruction enhancements, an approach

bridging the gap between interpreters and Just-In-Time compilers.

180

Chapter 7

Dynamic Instruction Enhancement

7.1 Introduction

In the previous chapter, we presented methods for statically enhancing the instruction

set of the VM interpreter and translating the bytecode to take advantage of these

enhancements. Because of the static nature of these enhancements, much analysis

had to take place before new instructions were added. For example, when deciding

which superinstructions to add to a virtual machine, it was necessary to look at the

behaviour of a number of Java programs before selecting a set of superinstructions that

were universally useful.

In practice, we rarely know in advance what bytecode is to be run on the interpreter.

We can guess based on other programs, but the set of static instruction enhancements

will rarely be optimal. In this chapter1 we turn our attention to dynamic instruction

enhancements, the creation and the use of new instructions based on bytecode that is

being interpreted. No matter what bytecode is run on the interpreter, new instructions

can be created on the fly. This has the advantage of guaranteeing that any new

instructions created will actually be used, since their creation is based on the actual

bytecode to be executed.

1The work presented in this chapter has been submitted to ACM Transactions on Programming
Languages and Systems (TOPLAS). The paper is composed of Forth and Java VM sections. The
author of this thesis implemented and benchmarked the Java VM described in this paper.

181

VM_LABEL(fload_0):
{

SlotVal32 f1;
{

f1=locals[0];
vm_StackVal32_equals_SlotVal32(SPPTR[0],f1);

}
IPPTR=IPPTR+1;
SPPTR=SPPTR+1;
VM_LABEL_END(fload_0):
goto **IPPTR;

}
VM_LABEL_FINAL_END(fload_0):

Figure 7.1: Code copying labels in Tiger-generated code

7.2 Code Copying

All the approaches presented in this chapter make use of code copying techniques.

Typically this involves copying code out of the existing interpreter core while the in-

terpreter is running. The copied code then forms all or part of a new, dynamically

generated instruction. Sometimes the entire instruction implementation is copied from

the interpreter core into a new area, and sometimes just part of the instruction. When

part of an instruction implementation is copied, it will be the entire instruction imple-

mentation minus the dispatch code.

To assist this code-copying process, Tiger generates three macros scattered around

the generated code for each instruction in the interpreter core. The first of the macros

(VM LABEL(opcode)) identifies where the implementation code for opcode begins in

memory. The next macro (VM LABEL END(opcode)) identifies the end of the main

implementation of opcode and the beginning of the dispatch located at the end of

that instruction’s implementation. The last macro (VM LABEL FINAL END(opcode))

identifies the end of the dispatch and thus, the end of the entire instruction’s imple-

mentation. Figure 7.1 shows these labels positioned around the Tiger-generated code

for fload 02.

We should note that code copying is dependant on GCC’s labels-as-values extension.

2The location of the VM LABEL END inside the inner scope does not cause any cope-copying difficul-
ties in our experience with GCC.

182

Without the extension, locating the implementation of an instruction for copying pur-

poses at runtime in the interpreter core cannot be easily done. It is entirely possible

that other less portable methods could be used, but we are only interested in highly

portable optimisations. While on the subject of portability, we should also note that

code copying will sometimes require a minimal amount of platform specific code, for

example flushing the Instruction Cache on some processors, and on processors with

no-execute (NX) bits such as AMD’s Opteron and Athlon 64 processors, ensuring that

the copied code has its execute flag set.

7.3 Non-Relocatable Code

Not all instructions in the interpreter core can be copied to a new area of memory and

executed there. This can happen for reasons such as function calls on the x86 CPU (a

PC-relative call) within the instruction implementation. The possible reasons depend

on the architecture and compiler in use. Previous work [PR98] used a no-copying list

to indicate which instructions could be relocated and which ones could not. However,

in order to ensure portability, it is not possible to use a no-copying list since the

relocatability of an instruction can change after porting the VM to another architecture.

Therefore we take the approach first applied to GForth [EG03a] where two versions

of the VM interpreter function are created, one of them having padding between the

individual VM instructions. Then we compare the compiled code fragments of the two

functions. A match indicates that we can relocate the instruction whereas a mismatch

indicates that it is possible that the instruction is not relocatable.

The point of a mismatch indicating only the possibility of non-relocatability was

explored further. Specifically we found that registers could be allocated differently

between the two copies of the same VM instruction. This in itself did not indicate

non-relocatability, just that the machine code for the two copies was different. Thus

we took a second more aggressive step, after the initial automatic comparison of the

two interpreter cores. We experimented with certain VM instructions that had been

marked as non-relocatable but for which, on inspection, we could see no reason for non-

relocatability. Allowing these instructions to be relocated and testing the resultant VM

was relatively easy to do as there were only a handful of instructions misidentified as

non-relocatable.

183

In summary, we recommend the code comparison approach to get an approximate

and conservative no-copying list for a specific architecture and compiler combination.

Then, if time permits, a short period of experimentation by allowing some of the more

widely used and non-relocatable VM instructions to be relocated might be time well

spent if even just some of those instructions turn out to be relocatable in reality. This

is a relatively straightforward (and optional) step and does not increase the porting

workload by any significant amount.

A significant number of the VM instructions contain jumps to labels outside the

VM core. Unfortunately on the x86 platform, these jumps are relative jumps and

thus, VM instructions containing these jumps cannot be relocated. To ensure these

instructions could be relocated, we converted these direct jumps into indirect jumps.

These indirect jumps, although slower than direct jumps, were relocatable and thus

any speed losses converting jumps were more than offset by the execution speed gains

resulting from the improved branch prediction rate when containing instructions were

rendered relocatable. It may be a cause of concern that, when we are actually trying

to reduce branch misprediction rates, we are introducing indirect branches at certain

points in the VM core. However, these branches are entirely predictable, with only

one branch target at each point. Secondly, all of the branches that were converted to

indirect branches were infrequently executed branches that only occurred, for example,

when an exception is thrown.

Some instructions also contained function calls which prevented the containing VM

instruction from being relocated. We experimented with implementing the function

calls through function pointers which enabled the VM instruction to be relocated. The

effect of this optimisation was minimal though, mainly because the affected instructions

were not commonly executed at runtime.

7.4 Dynamic Replication

In Section 6.5 we presented the technique of (static) replication. The idea of this

technique was to add new copies of existing instructions to the VM interpreter and

then introduce these copied instructions in a round-robin manner to the bytecode.

The motivation for this approach was to reduce the branch target misprediction rate

which it did successfully by a factor of 40% to 80% at 512 replications. The difficulty

184

with static replication is that the number of replicas must be decided in advance and

the limited budget of replicas almost guarantees that a particular replicated instruction

will be used more than one point in the bytecode and will thus quite likely suffer from

branch mispredictions.

The dynamic equivalent of this technique involves an extra step when converting

bytecode to threaded code. Previously, the technique was to place the address of the

implementing instruction in the VM core into the instruction stream instead of the

index for that instruction. Now, before the method translation begins, a contiguous

area of memory large enough for replicated code is created. Then, each time an address

for an instruction is to be written into the threaded code, the translation routine checks

to see if the implementation for that instruction can be replicated (by consulting the

no-copy list). If it cannot be replicated, the translation routine proceeds as normal

and places the address for the implementation of that instruction in the VM core

into the instruction stream. If, however, the VM instruction can be replicated, then

the translation routine copies the instruction implementation from the VM core into

the next available space in the area of memory reserved for replicated code. The

translation routine then places the address for this copied version of the implementing

VM instruction into the threaded code. Thus when the threaded code executes, it will

always use the replicated versions of VM instructions when the original instructions

are marked as relocatable in the no-copy list.

Figure 7.2 shows the relationship between the VM interpreter core, the threaded

code and the replicated code. In the example, both VM instructions A and C are

relocatable while B is not. Thus, for the threaded code, replicas are created for A, C

and A again in that order in the replicated code region by copying from the VM core.

Note how two replications for A, A1 and A2 are created in the replicated code. Also

note how the threaded code instruction pointers point to implementations of the VM

instructions in the replicated code region and not the VM core. This happens for all

the instructions except B which is non-relocatable. The implementation for B that is

used is the one in the VM core.

A final point worth noting is that there is no requirement for placing the replicated

instructions in an ordered, contiguous region of memory when implementing dynamic

replication. As each of the replicated instructions, A1,A2 and C1 have a dispatch at the

end of the replicated code, they will always jump to the address of the next instruction

185

VM
Interpreter Core

Threaded
 Code

&&A1 operand &&B operand &&C1

operand

&&A2

0 1 2 3 4 5 6

Replicated
Code A1 C1 A2

……

……

……

A

B

C

……

dispatch code

Figure 7.2: Code Replication with Relocatable and Non-relocatable VM Instructions

186

listed in the threaded code. Therefore it is feasible to place each of the replicated

instructions in different parts of memory. However placing the replicated instructions

in an ordered manner (i.e. in the manner they appear in the bytecode) and in a

contiguous manner has some advantages:

1. Allocating memory is a relatively computationally expensive task. It is better

to allocate one contiguous chunk of memory for a method rather than multiple

small chunks for each of the replicated instructions.

2. Placing all the replicated instructions close to each other and in the same order

increases code-locality. Instruction cache performance should increase as a result.

3. Such placement also allows a natural extension from dynamic replication to dy-

namic superinstructions. As we will see in Section 7.5, some of the dispatches

in the replicated code can be removed if the instructions have been replicated in

the correct order.

The point about improving instruction cache performance is important. Replica-

tion, as we will see from results later, adversely affects instruction cache performance

and anything that can ameliorate this should be done, such as placing replications in

a contiguous area of memory.

7.4.1 Quickable Instructions

For each of the dynamic methods of instruction enhancement, quickable instructions

presented us with a challenge. Since the entire method would typically be replicated the

first time that method is run, it is almost certain that many instructions in the method

would still be quickable instructions. We have little choice during the replication stage

but to consider quickable instructions as non-relocatable instructions.

However, the question arises as to what we ought to do when a quickable instruction

is finally quickened. We have to consider some options.

1. Do not ever allow quickened instructions to be replicated. This is the easiest op-

tion in terms of implementation. The downside of this approach is that quickened

instructions tend to get executed quite frequently. For example, by preventing

187

them from being replicated, we are not replicating as many instructions as we

would like.

2. When an instruction is quickened, replicate it into a new area of memory and

put the address of that replica into the threaded code instead of the address of

the implementation in the VM core. This approach would work in practice, but

performance would not be optimal. The reason is that, if a new chunk of memory

is allocated to hold the new replica then this new replica will almost certainly

not be close enough to the replicas of adjacent bytecode to avoid instruction

cache misses. In addition, each new quickening and subsequent replication would

require a relatively expensive malloc call. Of course, the overhead of calls to malloc

could be removed by allocating a large chunk of memory early on for replication

of quickened instructions at a later stage. This might also help instruction cache

performance a little.

In the end it was decided not to take this approach, because of the instruction

cache issue and also that it represented a poor developmental choice when dy-

namic superinstructions (Section 7.5) had yet to be implemented.

3. During the initial replication step, when a quickable instruction is encountered,

do not replicate it, but ensure that a gap (a quick-replication gap) is left in the

code for the quickened instruction to be replicated into later. Then, if the non-

quick instruction is quickened later, a replication of the quickened instruction can

be placed directly into this gap.

It was the latter approach that we chose in the end, because it allowed us to replicate

quickened instructions fast and in a manner that would not adversely affect instruction

cache performance. It did have a number of complications though. The first was that

during the initial replication of a method, if a quickable instruction was encountered,

we needed to record the address of the quick-replication gap left in the replicated code.

This address would then be used later on when the instruction was quickened and was

being replicated as the destination address for that replica.

In Section 5.4.4 we saw how a quickable structure existed for each quickable instruc-

tion. This structure could easily be retrieved, as its address was stored in the threaded

code. To facilitate the storage of the address for the gap where the replica should be

188

written, we introduced a new field into the structure to record the address of the corre-

sponding quick-replication gap for that quickable instruction. During initial replication

of a method, when a quickable instruction is encountered, a quick-replication gap of

the appropriate size is created and the address of this gap is written into the quickable

structure for that instruction. Later, when that instruction is being quickened, the ad-

dress of the quick-replication gap can be retrieved and the replica can be written into

that address. The address stored in the threaded code will be, of course, the address

of the replicated, quickened instruction, which is the address of the quick-replication

gap.

The sole complication with this approach is that it is not always possible to deter-

mine precisely the size of the quick-replication gap that should be left to accommodate

a replicated quickened instruction. Certain quickable instructions can be quickened to

one of several different quick instructions, all of different sizes. Furthermore, in the

JVM it is not possible to determine at method translation time what these quickable

instructions will quicken to. In such circumstances, the gap left to accommodate a

quickened version of the quickable instruction will be a gap large enough to accommo-

date the largest possible quick instruction that it might translate to.

It is easy to see that when a quickable instruction translates to a smaller quick

instruction than space was left for, some bytes might be wasted in the area of mem-

ory reserved for replicated code. Typically we found that these wasted bytes (quick-

replication waste) numbered only a few bytes in the rare circumstances where this

situation arose. Apart from a small amount of wasted memory, this is not much of a

problem. There might be an increase in instruction cache misses but these ought to be

negligible. Thus, for dynamic replication, this approach caused no secondary problems.

In separate experimental work, we examined re-organising the dynamically replicated

code in memory to eliminate these gaps but the overheads were too costly. Figure 7.3

shows the result of translating a method containing the quickable instruction ldc on a

Pentium 4. A quick-replication gap of 16 bytes is left in the replicated code as ldc can

be quickened to either of ldc quick (16 bytes) or aldc ind quick (14 bytes)3. The

figure also shows the result of the ldc instruction being quickened to aldc ind quick,

the smaller of the three possible quick instructions. Note how quick-replication waste

3These byte sizes are inclusive of the two bytes long dispatch code. For example, the code of the
ldc quick instruction is 14 bytes and the dispatch 2 bytes for a total of 16 bytes.

189

Before quickening:

bytecode … INDEX_OF
(ldc)

operand1

operand2 INDEX_OF

(pop)
…

… i i+1 i+2 i+3 …

threaded
 code

… &&QUICKEN_
OPCODE

&nqi

operand2 a+16

…

… j j+1 j+2 j+3 …

index=INDEX_OF(ldc);
clobbersCpIndex=CVM_FALSE
replacedSlot=operand1
gapAddress=a
……

NonQuickInfo nqi

replicated
code

… nop

….

nop

CODE_OF

(pop)
…

… a … a+15 a+16 …

dispatch code

quick-replication gap

After quickening:

bytecode … INDEX_OF
(ldc_quick)

operand1

operand2 INDEX_OF

(pop)
…

… i i+1 i+2 i+3 …

threaded
 code

… a operand1

operand2 a+16

…

… j j+1 j+2 j+3 …

replicated
code

… CODE_OF
(ldc_quick)

….

nop

nop

CODE_OF

(pop)

… a … a+14 a+15 a+16

dispatch code

replicated ldc_quick
(including dispatch)

…

…

quick-replication
waste

Figure 7.3: Quick Replication Gap During Dynamic Replication

190

space of two bytes is left in the replicated code immediately after the newly replicated

quick instruction. The contents of this space will never be executed because each

replicated instruction (including the newly replicated quickened instruction) contains

a dispatch at the end. Thus a jump will take place before the contents of the unused

space get executed.

7.4.2 Results

The results for dynamic replication are presented in Table 7.1 where we compare our op-

timised Fastcore interpreter from Chapter 5 against our new interpreter with Dynamic

Replication enabled. The table presents data for the speedup (in terms of process cy-

cles), percentage increase in instruction cache misses and percentage increase in branch

mispredictions. We also present a fourth row, service time, which gives the estimated

amount of running time spent servicing instruction cache misses. This is presented as

a percentage of running time of the JVM with Dynamic Superinstructions.

From the table it can be seen that impressive speedups are to be gained from the

dynamic replication approach, up to a maximum speedup of 2.49 on compress with

an average speedup of 1.55 across all benchmarks. Perhaps the most telling figure is

that of mispredictions. On the compress benchmark, only 0.38% of the mispredictions

remain, i.e. we have successfully removed 99.62% of mispredictions on that benchmark.

Overall, on average, only 5.79% of the mispredictions remain.

This reduction in mispredictions does come at a cost however. Examining the in-

struction cache figures, one can see that there is a maximum increase of 3,635% on the

mtrt benchmark and an average increase of 483% across all benchmarks. Estimating

the cost of an instruction cache miss at 27 cycles [ZR04], we calculate that 11% of run-

ning time on the mtrt benchmark is spent servicing instruction cache misses. Overall

5% of running time is spent on servicing instruction cache misses.

The poor performance on the mtrt benchmark is most likely related to its multiple-

threaded nature. With dynamic replication, there is already a lot of pressure on the

instruction cache and the BTB, and switching from the working set on one thread

to that of another thread can affect instruction cache performance adversely and also

cause conflict misses in the BTB.

191

jack mpeg compress javac jess db mtrt average
speedup 1.09 1.81 2.49 1.12 1.40 1.35 0.99 1.55
mispredictions (%) 13.44 6.11 0.38 12.54 6.75 3.93 25.65 5.79
icache misses (%) 974 2000 281 615 82 276 3635 483
service time (%) 7.96 6.35 0.80 6.95 5.82 0.64 11.00 5.00

Table 7.1: dynamic repl performance versus Fastcore performance.

7.5 Dynamic Superinstructions

From the results presented in Table 7.1, it can be seen that the number of branch mis-

predictions in the dynamic replication approach is substantially reduced. The majority

of the branch mispredictions that remain are from three sources. The first source of

mispredictions is non-relocatable instructions. Since we are still using the single non-

replicated implementation in the VM core for these instructions, each of them will

typically dispatch to a wide range of address during the execution of a typical pro-

gram. Unfortunately, for non-relocatable VM core instructions whose dispatch target

had been reasonably predictable before, the act of replication may make the dispatch

even more unpredictable. For example, if the sequence of instructions AB had oc-

curred quite frequently, then the dispatch at A would have been relatively predictable.

Supposing A was non-relocatable and B was relocatable, consider the situation af-

ter replication where occurrences of AB are replaced by AB1,AB2,AB3...,ABi where

B1,...,Bi are the various replications of B. The multiple targets of the dispatch at the

end of instruction A now render that dispatch more unpredictable.

The second source for branch mispredictions is the initial misprediction inside repli-

cated instructions, the first time they are run. Thirdly, in an ideal world, subsequent

indirect branches inside replicated code will be 100% accurate once the replicated code

has been executed once4, but the initial indirect branch will always be wrong. In real-

ity, branch prediction hardware is limited in size and so, even if a predictable branch is

resolved, it may be cleared out of the prediction hardware, for example being removed

from the BTB giving rise to so called conflict-misses. The more indirect branches

we can remove, the more space we are reserving in prediction hardware for indirect

4The first time an indirect branch occurs, one is guaranteed a first time misprediction or what has
been termed cold misses [HHR99].

192

branches that are really need that prediction support.

In order to remove these branch mispredictions we remove the redundant dispatches

at the end of in-sequence instructions stored in the replicated code. In Section 7.4 we

decided to store replicated instructions (along with their dispatches) in the same order

in memory as they appear in the bytecode. The justification given at the time was

to improve cache performance. However, because of the way dynamically replicated

instructions are laid down in memory, we can remove some of the superfluous dispatches

that take place between instructions.

By removing redundant dispatches at the end of many of the replicated instructions,

we can reduce the branch misprediction rate still further by removing some of these

one-time branch mispredictions. A second benefit of such a move is that by removing

redundant dispatches, we are making the executed replicated code more compact, and

therefore contributing to improved instruction cache performance.

Redundant dispatches can be identified as dispatches in replicated code that jump to

the next instruction in the replicated code. Dispatches to non-relocatable instructions

in the VM core are not redundant and therefore must be retained. To implement the

removal of redundant dispatches, we used the macro-generated labels (Section 7.2) to

identify where the implementation of a VM instruction began in memory and where

the core of the implementation ended (but before the actual dispatch begins). Using

these labels when performing the replication step, we can copy the main part of the

instruction implementation omitting the redundant dispatch where necessary. When

required, at the end of a dynamic superinstruction, the dispatch can still be copied

from the interpreter core.

In Figure 7.4 we can see dynamic superinstruction equivalent of the dynamic repli-

cation example presented in Figure 7.2. In the example, the replication A1 must be

postfixed with dispatch code, as before since the next instruction B is non-relocatable.

In the replicated code, the dispatch after C1 can be removed since the next instruction

A2 follows it in the replicated code. (There is no dispatch at the end of A2 because,

for the purposes of the example, we assume the next instruction is relocatable).

One restriction we place on the length of the replicated dynamic superinstruction

is that the dynamic superinstruction can only occur within a single basic block. This

avoids any complications with control flow changes within a replicated dynamic su-

perinstruction. Later (in Section 7.5.3) we relax this restriction and permit dynamic

193

VM
Interpreter Core

Threaded
 Code

&&A1 operand &&B operand &&C1

operand

&&A2

0 1 2 3 4 5 6

Replicated
Code A1 C1 A2

……

……

……

A

B

C

……

dispatch code

Figure 7.4: Code Replication with Relocatable and Non-relocatable VM Instructions

194

instructions to span basic blocks.

The net result of this optimisation is that, by simply not copying the dispatches,

we are constructing dynamic superinstructions that cover sequences of bytecode up to

one basic block in length.

7.5.1 Quickable Instructions

With dynamic superinstructions, as with dynamic replication, it is advantageous to

allow quickened instructions be replicated. Unfortunately the method employed pre-

viously needs some modifications. When a sequence of instructions is being repli-

cated and a quickable instruction is encountered, a quick-replication gap is left for the

largest possible quick instruction that it might translate into. As the preceding repli-

cated instructions no longer have dispatches, a dispatch is placed temporarily into this

gap. This is effectively adding a dispatch onto the end of the preceding sequence so

that, when the quickable VM instruction is encountered, a dispatch will take place to

the quickening routine in the VM core. The addition of the dispatch into the quick-

replication gap is the first change from dynamic replication to be made. Note that the

gap left speculatively for any quickened instruction must be big enough to accommo-

date a dispatch. This is almost guaranteed since the dispatch code will typically be

much smaller than a quick instruction implementation.

The second change relates to the small gaps (quick-replication waste) left behind in

certain circumstances. As we saw with dynamic replication, sometimes when a quick

instruction is replicated into the quick-replication gap, a few bytes of memory might

be left unoccupied. This was not an issue with dynamic replication, since the dispatch

at the end of the quickened instruction prevented the processor from trying to execute

these bytes. It does, however, cause difficulties with dynamic superinstructions as this

dispatch is no longer present.

A potential solution is to reorder the memory containing the quick-replication waste

gap to avoid this wastage, but moving regions of memory around can be costly. Another

option is to place a dispatch at the end of the replicated quickened instruction every

time bytes were wasted, so that flow of control would change before the unused bytes

195

jack mpeg compress javac jess db mtrt average
speedup 1.18 2.49 2.45 1.13 1.43 1.43 1.02 1.68
mispredictions (%) 8.62 0.98 0.18 7.91 6.13 3.81 22.09 3.39
icache misses (%) 568 419 16 415 68 174 2394 259
service time (%) 5.00 1.82 0.05 4.75 4.97 0.42 7.50 2.90

Table 7.2: dynamic both performance versus Fastcore performance.

were encountered.5

Instead, the approach we take is to ensure the quick-replication waste space is

occupied with NOPs so that if a few bytes are wasted, the replicated code can still be

executed in a straight line. Although the NOPs can cost processor cycles, this approach

has the advantage of not interrupting a relatively fast straight line of dynamically

replicated code.

7.5.2 Results

In Table 7.2 we compare our optimised interpreter Fastcore against our new inter-

preter with dynamic superinstructions with replication (dynamic both) enabled. As

expected, the number of mispredictions is reduced when comparing against dynamic

replication without superinstructions (Table 7.1). The most likely explanation for this

is a reduction in capacity misses in the BTB. Dynamic replication without superin-

structions involves numerous, predictable and essentially superfluous dispatches. These

dispatches can flood the BTB, displacing other BTB entries, and ultimately causing

capacity misses.

A sharp reduction in instruction cache misses can also be seen. The most likely

effect for this is the (redundant) dispatches in dynamic replication were forcing trace-

cache lines to be terminated, and thus the trace-cache being filling with numerous

shortened lines. By removing some of the redundant dispatches, the trace-cache lines

can be longer and instruction cache performance improves. By removing redundant

dispatches from the replicated code, this code is made slightly more compact which

should contribute to improved instruction cache performance. On average only 2.90%

5This approach was ruled out when it was recognised that it could incur serious performance
penalties on some architectures. For example, the addition of an indirect branch, no matter how
predictable, will result in the ending of a potential trace cache line on the Pentium 4.

196

of running time is spent servicing instruction cache misses on this version of the JVM

versus 5.00% in the previous dynamic-repl version. Overall, as a result of a reduced

misprediction count and a reduced instruction cache miss count, the average perfor-

mance increases to a speedup of 1.68 versus a speedup of 1.55 in dynamic-repl.

7.5.3 Across Basic Blocks

Limiting dynamic superinstructions to within basic blocks limits the length of the

average dynamic superinstruction considerably and leaves quite a number of redundant

dispatches in the code. In order to eliminate these dispatches, the first step is to

allow jumps into the middle of dynamically replicated superinstructions. This in itself

permits longer dynamic superinstructions, but they still must still end on conditional

branch instructions. For these branch instructions, we ensure that the fall-through

path dispatch is at the end of these instructions and that changes to control flow get

their own dispatches that occur before the end of the instruction implementation. An

example of this modification at the code level was presented in Figure 5.9.

This step is similar to that of implementing the multiple dispatch points in condi-

tional statements optimisation (presented in Section 5.5.1) and as a result it was found

that all the branching instructions already been transformed in this manner. Once

guaranteed that the fall-through dispatch was the one at the end of the instruction, we

could remove it from the replicated code, therefore allowing the dynamic instruction

to stretch across the basic block.

In Table 7.3 we compare our optimised interpreter Fastcore against our new inter-

preter with dynamic superinstructions with replication across basic blocks (across bb)

enabled. In comparison to the previous version (dynamic both) where superinstructions

were limited to one basic block. On average there are marginally fewer mispredictions,

presumably as a result of fewer conflict misses in the BTB. The instruction cache per-

formance improves by a small amount. Overall the average speedup increases to 1.74

compared to a speedup of 1.68 in dynamic both.

7.5.4 With Static Superinstructions

Although static superinstructions are not as universally applicable as dynamic superin-

structions, they do have one distinct advantage. Because their entire code is available

197

jack mpeg compress javac jess db mtrt average
speedup 1.22 2.59 2.46 1.22 1.42 1.44 1.11 1.74
mispredictions (%) 8.16 0.92 0.18 7.36 6.26 3.81 21.53 3.30
icache misses (%) 507 283 14 379 71 34 2362 236
service time (%) 4.63 1.28 0.04 4.67 5.13 0.08 8.02 2.73

Table 7.3: across bb performance versus Fastcore performance.

at compile time, the compiler can optimise them, making the code more compact and

efficient. Dynamic superinstructions, on the other hand may not be as heavily opti-

mised across component instructions, but they can cover most of the bytecode.

In order to examine the benefits of combining both approaches, a version with-

static-super of the JVM was created from the version of the JVM implementing dy-

namic superinstructions. In this version, before replicating an instruction sequence

from bytecode, the bytecode was parsed for static superinstructions. Then, static in-

structions would be components of the dynamic superinstruction wherever possible

when replicating code during dynamic superinstruction creation.

To avoid excessive overheads, only bytecode sequences with no quickable instruc-

tions are parsed for superinstructions for inclusion in dynamic superinstructions. For

bytecode sequences containing quickable instructions, a standard dynamic superin-

struction without static superinstructions is created. This is quite a restrictive regime,

and was relaxed so that when the number of quickable instructions in a dynamic su-

perinstruction reached zero, the covered bytecode6 was then parsed for static superin-

structions. A new dynamic superinstruction is then created to replace the old one,

containing any static superinstructions that were found. In addition, since the over-

head of reconstructing the dynamic superinstruction is already being incurred, any

NOPs occurring after quick instructions (i.e. quick-replication waste regions) in the

old dynamic superinstruction are removed from the new dynamic superinstruction.

In Table 7.4 we compare our optimised interpreter Fastcore against our new inter-

preter with dynamic superinstructions with static superinstructions inside basic blocks

and replication across basic blocks (with-static-super). Some interesting results come

out of this new variation of the JVM. Firstly, the results are not as good as one might

6We use the term ‘covered bytecode’ to refer to the bytecode sequence from which the dynamic
superinstruction was created.

198

jack mpeg compress javac jess db mtrt average
speedup 1.10 2.60 2.69 1.18 1.38 1.37 1.10 1.72
mispredictions (%) 23.12 1.11 0.19 11.48 9.72 7.98 21.88 4.79
icache misses (%) 899 317 17 464 80 120 2313 280
service time (%) 7.38 1.45 0.05 5.54 5.57 0.28 7.81 3.21

Table 7.4: with-static-super performance versus Fastcore performance.

expect. Looking back to Table 7.3, it can be seen that the primary cause for decreased

performance seems to be an increase in mispredictions. Oddly enough the new JVM

performs better than its predecessor (across bb) on the compress benchmark, with

virtually no noticeable increase in branch misprediction. From this we infer that the

increased levels of branch misprediction are not caused solely by the addition of static

superinstructions.

One possible explanation for this effect lies with the possibility that side-entries

are occurring into the middle of basic blocks (i.e. the basic block boundaries are

not being correctly identified under certain circumstances). Where this happens, the

VM-core implementation (the non-replicated implementation), will be used for all VM

instructions until the end of the basic block. The non-replicated VM-core instructions,

because of heavier re-use will then contribute to an increased branch misprediction

count. We are currently instrumenting our JVM to examine this behaviour in closer

detail.

7.5.5 Across Basic Blocks with Static Superinstructions

A final variant of the dynamic superinstruction with replication approach mixes both

the basic block spanning feature and static superinstruction incorporation into dy-

namic superinstructions. The main challenge with this approach emanates from the

possibility that a static superinstruction which is part of a greater replicated dynamic

superinstruction might lie across a branch target point. If the JVM tried to jump into

the middle of that replicated static superinstruction (a side-entry), the results would

be unpredictable.

A number of solutions were examined, and the preferred approach settled upon

was that, when a side-entry occurred, we execute non-replicated instructions until the

199

jack mpeg compress javac jess db mtrt average
speedup 1.12 2.70 2.76 1.19 1.41 1.39 1.15 1.76
mispredictions (%) 23.37 1.11 0.19 11.40 9.72 7.99 22.40 4.79
icache misses (%) 796 305 61 472 82 88 2376 279
service time (%) 6.65 1.44 0.19 5.67 5.84 0.21 8.34 3.27

Table 7.5: with static across BB performance versus Fastcore performance.

basic block 1

basic block 2

basic block 3

Non-replicated code

Replicated code

Instruction Stream

i0 i1 s0 s1 i8 i9

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

s0= i2 i3 i4

s1= i5 i6 i7

Superinstructions:

Figure 7.5: Adding static superinstructions across basic-blocks to dynamically repli-
cated code

end of the superinstruction, and then jump back to replicated code once again. The

tradeoff with this approach is that on one hand we can include many more static

superinstructions in our dynamically replicated code, but on the other hand, any time

a side entry occurs into a dynamically replicated static superinstruction, we revert to

executing non-replicated code for the duration of that dynamically replicated static

superinstruction.

An increased number of branches, and hence branch mispredictions, can result

from this optimisation if side-entries occur frequently enough. In practice we found

that this was not a big problem. We did experiment with a second approach for side

entries, namely for each static superinstruction A1,A2,...,An we created a new dynamic

superinstruction from the sequence of instructions A2,...,An that we could use for side

entries. However, the speed gains were negligible from this alternative method of

dealing with side entries and the optimisation was dropped in order to simplify the

JVM implementation.

200

In Table 7.5 we compare our optimised interpreter Fastcore against our new inter-

preter with dynamic superinstructions with static superinstructions inside basic blocks

and replication across basic blocks (with-static-super across bb). As with the previous

version (with-static-super), there is an elevated number of mispredictions, but despite

this, the overall speedup indicates that this is the fastest of the JVMs examined so far

in this chapter. It should be noted that this performance improvement is not spread

very evenly across the benchmarks, but is concentrated most heavily on the mpeg and

compress benchmarks.

7.6 Dynamic Superinstructions without Replication

Although dynamic superinstructions give impressive speedups, it is clear from the

results that instruction cache performance is considerably worse than our reference

implementation, Fastcore. This can be attributed to the sheer volume of replicated code

being executed, with relatively low levels of re-use. This is similar to the inlining scheme

proposed in [PR98]. The dynamic superinstruction construction method presented

above can be viewed as an approach that constructs dynamic superinstructions and

replicates them. This view is justified because, even if the same bytecode sequence

occurs in two methods, separate copies of the replicated code will be generated for

each.

In order to improve instruction cache performance, it was decided to try and in-

crease the levels of code re-use. Each time a dynamic superinstruction was to be

constructed, a hash table of existing dynamic superinstructions was consulted. If the

dynamic superinstruction had not already been constructed, the code replication pro-

cedure would proceed as usual, with the additional step of adding the new dynamic

superinstruction to the hash table at the end of the procedure. If the superinstruction

had already been completed the pre-existing superinstruction would be re-used instead

of creating it again. Thus a single dynamic superinstruction could be used by several

methods or even at several places in the same method.

201

7.6.1 Quickable Instructions

Because several regions of bytecode can be covered by the same dynamic superin-

struction, this new approach presents specific problems when it comes to quickable

instructions. For example, a dynamic instruction might be created from a bytecode

sequence in method A containing a quickable instruction. Later this same sequence,

including the non-quick instruction is encountered in method B, so the same dynamic

superinstruction is used. This is an acceptable situation, until the quickable instruction

gets quickened in method A.

However, there is a problem, as we would like to modify the replicated code by

writing the newly quickened instruction into the quick-replication gap. Unfortunately

this dynamic superinstruction is shared by another method. If there is already a

dynamic superinstruction in the JVM that matches the newly quickened bytecode

sequence, that can be used instead. In such a case, the affected bytecode in method

A must also be rewired to use the dynamic superinstruction containing the quickened

instruction. If there is no such matching dynamic superinstruction, we have a difficulty.

The solution to this difficulty begins with the fact that our implementation employs

reference counting to determine how many regions of bytecode are using a particular

dynamic superinstruction. When a quickable instruction in the bytecode is to be quick-

ened, the corresponding dynamic superinstruction, if any, is located. The reference

count for this sequence is checked and if there are no other references, the quickened

instruction can be written into the quick-replication gap without any difficulties since

no other region of bytecode is using this dynamic superinstruction.

If there are other references, the entire dynamic superinstruction is copied to a

new area of memory and the quickened instruction is written into the copied sequence.

The newly quickened bytecode sequence is updated so that the new dynamic superin-

struction is used instead of the old copy. Reference counts are updated as one would

expect, the old dynamic superinstruction’s reference count being decremented and the

new dynamic superinstruction’s reference count set to one.

When a dynamic superinstruction’s reference count reaches zero, it is freed from

memory immediately7. The only way a reference count for a dynamic superinstruc-

7It may be worth examining if this should be the policy in all circumstances. For example, it
would not be desirable to free up a dynamic superinstruction, only for an identical one to be required
a moment later.

202

tion could reach zero is during quickening. If an instruction is being quickened and

the corresponding dynamic superinstruction already exists, the affected bytecode will

be rewired to use the pre-existing dynamic superinstruction containing the quickened

instruction. In this case, the reference count for the old quickable dynamic superin-

struction will be decremented and would hit zero if the quickened bytecode sequence

was the only sequence using that dynamic instruction.

It is critical to this whole process that when an instruction is being quickened,

the corresponding dynamic superinstruction can be located efficiently. Thus we place

enough information into the quickable structure (Section 5.4.4) for each quickable in-

struction in order for the corresponding dynamic superinstruction to be located. In-

terestingly enough, a simple pointer to the corresponding dynamic instruction is not

sufficient.

bytecode … INDEX_OF
(ldc)

operand1

operand2 INDEX_OF

(new)
operand1

… i i+1 i+2 i+3 i+4

threaded
 code

… &&QUICKEN_
OPCODE

&nqi1

operand2 &&QUICKEN_

OPCODE
&nqi2

… j j+1 j+2 j+3 j+4

index=INDEX_OF(ldc);
clobbersCpIndex=CVM_FALSE
replacedSlot=operand1
sharedInfo=&si
……

NonQuickInfo nqi1

…

…

…

…

index=INDEX_OF(new);
clobbersCpIndex=CVM_FALSE
replacedSlot=operand1
sharedInfo=&si
……

NonQuickInfo nqi2

nonQuickCount=2
superAddress=a
…..

SharedInfo si

Figure 7.6: Associating a single dynamic superinstruction with multiple quickable in-
structions

In a region of bytecode that contains several quickable instructions, if that region

is covered by the same dynamic superinstruction, all quickable instructions should al-

low us to find the same dynamic superinstruction. As we saw above, when a single

203

jack mpeg compress javac jess db mtrt average
speedup 1.13 2.50 2.47 1.28 1.48 1.41 1.31 1.76
mispredictions (%) 16.73 2.15 0.04 12.17 15.46 5.96 20.53 4.89
icache misses (%) 764 268 120 394 43 169 529 176
service time (%) 6.47 1.17 0.34 5.09 3.21 0.41 2.12 2.06

Table 7.6: dynamic super performance versus Fastcore performance.

quickable instruction is quickened, the covering dynamic superinstruction for that byte-

code sequence can change to be another one elsewhere in memory. All the remaining

quickable instructions in that sequence of bytecode need to have quickable structures

that point to this new dynamic superinstruction rather than the old one. Instead of

having to visit each quickable instruction in the bytecode sequence and update the

quickable structure accordingly, we take a more efficient approach. By introducing a

second level of indirection as illustrated in Figure 7.6, all quickable instructions in a

single bytecode sequence record their covering dynamic superinstruction in a central

area (of type SharedInfo) and all of these quickable instructions have data that point

to that common area. Then, if the covering dynamic superinstruction for those non-

quick instructions changes, the pointer superAddress in the central area is all that is

required to be changed to point to the new covering dynamic superinstruction for that

area.

In Table 7.6 we compare our optimised interpreter Fastcore against our new inter-

preter with dynamic superinstructions with static superinstructions inside basic blocks

and replication across basic blocks (dynamic super). One of the main justifications

behind this new approach was to reduce instruction cache misses. This works quite

successfully for mtrt which now has approximately one quarter of the misses than the

dynamic methods presented previously in this chapter. However comparing, for exam-

ple against across bb (Table 7.3), it can be seen that the instruction cache miss count

actually goes up for some of the benchmarks. This is not entirely unexpected since, if

a number of dynamic superinstructions located far from each other in memory are in

the working set, the instruction cache can start thrashing. In cases like this, moving

from dynamically replicated code to dynamic superinstructions without replication can

harm code locality.

204

jack mpeg compress javac jess db mtrt average
speedup 1.22 2.57 2.54 1.23 1.42 1.42 1.13 1.74
mispredictions (%) 8.82 0.98 0.18 7.64 7.13 3.95 21.60 3.42
icache misses (%) 522 276 17 363 71 146 2209 234
service time (%) 4.76 1.24 0.05 4.51 5.15 0.35 7.63 2.72

Table 7.7: dynamic super across bb performance versus Fastcore performance.

7.6.2 Across Basic Blocks

As part of our experimental work, we examined the possibility of dynamic superin-

structions that extend across basic block boundaries, but are not replicated. Our stan-

dard implementation restricts this type of dynamic superinstruction to basic blocks,

a scheme identical to that presented by Piumarta et al [PR98]. The main motivation

for limiting dynamic superinstructions to the basic block level is that, as longer dy-

namic superinstructions are permitted, there is less reuse of dynamic superinstructions.

Therefore the behaviour of dynamic superinstructions across basic blocks without repli-

cation starts to approach that of dynamic superinstructions with replication as longer

and longer superinstructions are permitted.

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

Basic Blocks

D
yn

am
ic

 M
em

o
ry

 (
M

b
)

Without Replication With Replication

Figure 7.7: Varying the length of dynamic superinstructions without replication

205

This can be seen in Figure 7.7 where the average memory consumption for dynamic

superinstructions across all the SPEC benchmarks is presented. The x-axis represents

the number of basic blocks a dynamic superinstruction was allowed span. In the Fig-

ure, it can be seen that, as dynamic superinstructions are permitted to span more

and more basic blocks, the memory requirements for the dynamically generated code

increases. This indicates a sharp reduction in dynamic superinstruction reuse. The

solid horizontal line in the graph represents the memory requirements for dynamic

superinstructions with replication presented for comparison8.

Even if dynamic superinstructions across basic blocks were to be permitted to

stretch across an arbitrary number of basic blocks, the memory requirements will not

approach those required by the dynamic superinstructions with replication approach.

This is due to the fact that most dynamic superinstructions can only extend across a

limited number of instructions before a non-relocatable instruction is encountered, and

the superinstruction must be ended. Thus, in practice, there are limits on dynamic

superinstruction size, and therefore a virtual guarantee that a certain level of code

sharing (and thus memory savings) will occur. This effect can be seen in Figure 7.7, as

the memory usage when dynamic superinstructions are permitted across basic blocks

levels off quite early, never approaching the memory usage of dynamic superinstructions

with replication.

Interestingly, experiments indicate little appreciable differences between these vari-

ous versions of the JVM in terms of execution speed, even as the memory requirements

changed noticeably.

Further work might examine the possibility of using fragments of longer dynamic

superinstructions as the basis for shorter dynamic superinstructions. For example if

the dynamic superinstruction composed of the sequence ABCD existed, it could be

used as a dynamic superinstruction for the sequences BCD and CD as well, although

with different entry points into the dynamic superinstruction. This approach would

increase dynamic superinstruction reuse and the ramp in memory consumption as

we allow dynamic superinstructions without replication to stretch across basic blocks

would not be so pronounced. As a direct result of the inevitable increased level of code

8The data presented for dynamic superinstructions with replication represents the total dynamic
memory allocated for dynamic superinstructions with replication, with no limits on size in terms of
basic blocks.

206

re-use, it should also be helpful in reducing instruction cache misses.

Looking at the actual runtime data for the dynamic super across bb approach in

Table 7.7 we can see that allowing these superinstructions to stretch across basic blocks

yields fewer mispredictions. This is no surprise since, as a result of superinstructions

being longer, there will be fewer dispatches and therefore fewer mispredictions. Instruc-

tion cache performance does not degrade in comparison to dynamic super except for

the extreme case of mtrt. The instruction cache misses for mtrt quadruple by allowing

superinstructions to stretch across an arbitrary number of basic blocks. Ignoring the

mtrt results, it appears that this approach gives the best broad ranging performance

across all benchmarks than any of the other dynamic methods.

7.7 Conclusion

In this chapter we have examined a number of optimisations involving code replica-

tion. In all cases, porting these methods to new architectures will require very little

extra code modification. Figure 7.8 shows a summary of the speedups of the various

optimisations presented in this chapter and those in Chapter 6. The speed benefits

of some of these methods are quite impressive with speedups of up to 2.76 on the

compress benchmark (using the with-static-super variant) over our optimised JVM

Fastcore interpreter.

The dynamic speedups presented in this chapter are more universally applicable

than the static methods presented in the previous chapter. Figures 7.9 and 7.10 show

the performance counter results of both static and dynamic methods on the mpeg and

compress benchmarks respectively. All items are scaled for clarity. Miss cycles are

based on an estimated cost of 27 cycles per instruction cache miss [ZR04].

Apart from the speedups (cycles), there are a number of interesting features:

1. The VM with fewest executed real machine instructions is static super. This is

due to the fact that a lot of code is presented to the compiler at compile-time

and many instructions can be optimised away.

2. The number of indirect branches in the dynamic methods is extremely low com-

pared to in the static methods (even compared to static super).

207

0

1

2

3

jack mpeg compress javac jess db mtrt

S
p

ee
d

u
p

plain static repl static super dynamic repl dynamic super

dynamic both across bb with static super w/static super across

Figure 7.8: Speedups of various interpreter optimisations on a P4

0.00

0.20

0.40

0.60

0.80

1.00

cycles
(*250G)

instrs
(*125G)

taken
branches
(*12.5G)

taken
mispredicted

(*12.5G)

icache
misses

(*500M)

miss cycles
(*125G)

code bytes
(*4M)

plain static repl static super
dynamic repl dynamic super dynamic both
across bb with static super w/static super across

Figure 7.9: Performance counter results for mpegaudio on a P4

208

0.00

0.20

0.40

0.60

0.80

1.00

cycles
(*250G)

instrs
(*125G)

taken
branches
(*12.5G)

taken
mispredicted

(*12.5G)

icache
misses

(*500M)

miss cycles
(*125G)

code bytes
(*4M)

plain static repl static super
dynamic repl dynamic super dynamic both
across bb with static super w/static super across

Figure 7.10: Performance counter results for compress on a P4

3. The number of instruction cache misses for dynamic replication is quite high, but

nowhere near the levels seen in static replication (static repl) which has serious

problems, almost certainly related to instruction cache thrashing.

4. The memory savings of dynamic super (dynamic superinstructions without repli-

cation) in comparison to other dynamic methods are substantial.

The main cost of these methods is in terms of dynamic memory requirements to

accommodate the replicated code at runtime. There is an associated increase in in-

struction cache misses as a larger body of code is now being executed with less re-use.

We have seen how using dynamic superinstructions without replication can help amelio-

rate both problems. Future work should concentrate on increasing the level of dynamic

superinstruction code re-use by allowing suffixes of existing dynamic superinstruction

be used as shorter dynamic superinstructions where necessary. This should reduce

dynamic memory requirements and instruction cache misses yet further. Another, per-

haps complementary approach, may move superinstructions which are called in quick

succession closer together in memory to improve instruction cache performance yet

again.

209

benchmark Hotspot (mixed mode) dynamic super across bb w/static across bb
jack 2.53 0.50 3.08 2.91
mpeg 0.32 0.67 2.71 2.58
compress 0.34 0.45 1.92 1.82
javac 2.63 0.80 4.42 4.22
jess 1.14 0.56 2.76 2.63
db 0.32 0.45 1.99 1.89
mtrt 0.74 0.51 2.40 2.29

Table 7.8: Peak dynamic memory requirements (Mb) on various benchmarks

In order to estimate the additional memory required by a JIT compiler, we used the

memusage tool (from the glibc-utils package) to examine peak heap size in Hotspot’s

interpreter mode. We then ran the same VM in mixed mode and measured the increase

in peak heap size. This gives us an estimate of the additional memory requirements

of the mixed-mode over the interpreter mode. These results are presented in Table

7.8. Although the Hotspot results should be treated with some caution due to the

nature of estimation, it does appear that at the very least, dynamic super appears to

be competitive with the Hotspot VM in terms of memory requirements. Bearing in

mind that inlined code reuse in dynamic super is almost certainly higher than that

of the Hotspot VM (in mixed mode), this result is expected. At the same time, the

Hotspot VM only invokes the JIT on more commonly used methods, so it is no real

surprise that across bb and with static super across bb have much higher memory

requirements, since they inline all methods.

Comparing our dynamic code copying approach to the Just-In-Time compilation

approach, we observe that the amount of dynamic code our approach generates will

be of the same order as that of a JVM. As pointed out in by Ertl et al [EG03a], if

the JIT uses a significant amount of loop unrolling, then the JIT may actually end up

consuming more memory at runtime. Substantial memory savings could be made in our

interpreter by conditionally converting methods to dynamic code based on estimates

of frequency of usage.

In Table 7.9 we summarise the speedups over plain using with static across bb, Kaffe

JIT and Sun Microsystem’s Hotspot JVM in both interpreter and mixed-mode. The

difference between our interpreter and the native code compilers is not the orders of

magnitude one might expect. Comparing the results of with static across bb to those

210

w/static across bb kaffe JIT Hotspot (interpreter) Hotspot (mixed mode)
jack 1.12 1.13 1.01 4.24
mpeg 2.70 7.52 1.07 15.14
compress 2.76 13.02 1.13 13.28
javac 1.19 1.76 1.20 5.11
jess 1.41 1.51 1.41 9.87
db 1.39 2.74 1.28 4.37
mtrt 1.15 2.16 1.02 14.52

Table 7.9: Speedups of w/static across bb, two native code compilers and an optimised
interpreter over plain.

speedups obtained from Hotspot in interpreter mode shows the utility of these methods

in optimising interpreters for better performance. The outperforming of Hotspot in

interpreter mode is a significant achievement since it has a much faster run time system

than CVM and is much less portable than our interpreter written in C.

211

Chapter 8

Final Thoughts

In this thesis, a number of optimisation techniques for interpreters are presented and

evaluated experimentally. This chapter presents some final thoughts on the overall

results and identifies some interesting possibilities for future investigation arising from

this work.

8.1 The Importance of the Right Tool

Most of the work presented in this thesis was supported directly or indirectly by fea-

tures of the Tiger interpreter generator. A lot of optimisations were examined which

would have taken a considerable amount of time to manually code. Many of the op-

timisations, such as early loading (Section 4.2.6) require many small optimisations to

numerous parts of the interpreter core. Tiger automates this type of process, making

it substantially easier to implement. Since Tiger was developed as part of the project,

there were coding overheads. The question arises as to whether that time spent devel-

oping Tiger would have been better applied to applying those optimisations by hand.

However:

1. We were not quite starting from nothing. We had a good idea about the sort

of functionality we wanted and how it might be supported from our experiences

with Ertl’s vmgen[EGKP02].

2. Providing support for an optimisation in Tiger rather than implementing it by

hand in the interpreter allowed us to examine subtle variations of the optimi-

212

sations. These variations would have been onerous to re-code by hand in the

interpreter.

3. Tiger was critical to our argument that a JVM could be optimised quickly and

portably. Having to hand-code each of the optimisations would clearly take a

long time. An interpreter writer with a tool like Tiger already at their disposal

could spend a minimum amount of time importing their interpreter core into

Tiger, making an array of optimisations suddenly possible.

4. Tiger provides profiling and debugging for standard Java instructions and any

instructions added to the interpreter by any of the techniques in Chapter 6.

This automatic insertion of debugging and profiling code into what were already

automatically generated instructions was invaluable.

5. Tiger was designed as a general purpose interpreter generator. It is not just useful

for the work completed in this thesis. We plan to use it in future work and may

apply it to interpreters other than Java interpreters.

8.2 Interpreters can be Both Optimised and Portable

It is not immediately obvious that an interpreter written in ‘C’ with no hand tuned

assembly language should be highly efficient and portable. Yet, when one factors out

the one-time cost of the development of Tiger, we have proven that this is possible.

Once Tiger had been constructed, creating our new interpreter core in Tiger was a

relatively fast procedure. After this new core was constructed, the resulting Fastcore

JVM was tested against an unoptimised token threaded version of the same virtual

machine and against a number of other JVMs. Comparing like with like, the new

Fastcore interpreter had an average speedup across all benchmarks of 1.31 over the

unoptimised version. The highly hand-optimised non-portable HotSpot interpreter

is only 20.4% quicker than the Fastcore interpreter. This is encouraging since the

HotSpot interpreter contains hand-tuned assembly language and optimisations such as

superinstructions and stack caching. Dispelling the myth that interpreters are always

slower than JIT compilers, we note that in tests of Fastcore against the Kaffe JIT,

the Fastcore JVM was actually faster on some benchmarks. It should be noted that

213

the Kaffe JIT compiler does not produce optimal code. We do not attempt to argue

that efficient JIT compilers are usually faster than interpreters. An important point

to be made in relation to this work is that the execution engine is only part, albeit

an important part, of the JVM. An inefficient runtime system can cause either an

interpreter or a JIT compiler to slow down considerably. We make this observation on

the basis that certain programs such as db spend a considerable amount of time (13%

in the case of db), not in the execution engine, but in the runtime system (Section 5.7).

8.3 Static Instruction Enhancements Can Yield Sur-

prising results.

During the course of the work described in Chapter 6, a number of static instruction

enhancements to the interpreter were examined. Of all of these optimisations, superin-

structions across basic blocks performed best, giving a speedup of to 3.35 when the

interpreter is customised for a particular application. When the VM instruction set is

enhanced with more generic superinstructions the best speedup was 2.1. In this work

on superinstructions, a method for getting superinstructions to stretch across multi-

ple basic blocks is presented, along with a simple method for dealing with quickable

instructions. In a comparison of greedy and optimal methods of parsing, we find the

two methods yield similar results. This is a conclusion since confirmed by Eller [Ell05].

Contrary to previous work carried out by Ertl et al [EG03a] where an optimal mix

of superinstructions and replicas was found in GForth, we find no such optimal mix

for Java. In fact, in Java, superinstructions are always preferable to replicas. Reasons

for this are the different superinstruction selection schemes used and differences in the

basic instruction sets for GForth and Java.

The most surprising results from the work on static instruction enhancement relates

instruction replication and the instruction replication effect. We found that instruction

replication could improve the performance of the JVM with a speedup of up to just

under 2.0. However, with instruction replication (and the round robin replacement

scheme that was part of it) the results were unpredictable, suggesting that the scheme

is quite sensitive to the patterns of instructions in the bytecode. The most interesting

aspect of replication relates to what happens when small numbers of replicas are added

214

to the JVM. When this is done, a speedup of under 0.85 (i.e. a decrease in speed) is

obtained in certain circumstances. This occurs due to an increase in the numbers

of branch mispredictions, which in turn seems to be a side effect of replicating quite

frequent local loads1. Before replication, these local load instructions are relatively

predictable branch targets. Replicating the local loads reduces the overall predictabil-

ity of branches, since there are now multiple possible copies of these instructions to

dispatch to.

Examining the work we carried out on instruction specialisation and the similarly

poor results obtained when small numbers of specialised instructions are added to the

virtual machine, we came to the conclusion that specialised instructions are essentially

a different form of instruction replication. The bulk of the performance improvements

gained with instruction specialisation stem from the fact that these instructions are

replicas (albeit slightly modified replicas) rather than the fact that these instructions

eliminate operand fetching. In fact one could consider the standard Java specialised

instructions (such as iload 0) as replicas, since their greatest effect is on branch mis-

prediction rates.

8.4 Dynamic Code Copying

In Chapter 7, a number of code-copying optimisations were presented and compared

against each other and also compared against the static methods introduced in Chapter

6. For dynamic superinstructions, the fastest methods, dynamic superinstructions

without replication and dynamic superinstructions with replication, both give similar

speedups of approximately 1.75.

The addition of static superinstructions to dynamic code copying methods does

not currently offer any significant improvement. Our main contribution with this work

is the dynamic patching technique which is an efficient way of dealing with quick-

ened instructions. Other novel work we present in this chapter relates to the memory

consumption implications of allowing superinstructions without replication to stretch

across basic blocks.

In this work, we also observed that static instruction replication causes a dispro-

1Local loads are particularly common in Fastcore due to the merging of the iload, aload and
fload instructions into a single, frequently occurring instruction.

215

portionately high number of instruction cache misses, almost certainly related to in-

struction cache thrashing.

8.5 Future Work

A number of issues arising from this work warrant further investigation:

1. Re-evaluation of stack caching in the light of our understanding of the instruc-

tion replication effect. Because stack-caching causes multiple copies of the same

instructions, we believe that the effects of instruction replication provide much

of the improvements we attribute to stack caching.

2. Static replication for token threaded code. Because token threaded code limits the

virtual machine to a total of 256 opcodes, it is not usually possible to introduce

many copies of instructions into the bytecode. However, by using multiple copies

of the interpreter core much in the same way that stack caching is implemented,

this limitation can be overcome. One difficulty with this approach that may need

addressing is the large number of token threaded dispatch tables that may be

required if a significant number of replications are introduced.

3. Re-evaluation of instruction specialisation. Since instruction specialisation is also

a form of replication and is also dominated by the replication effect, we believe a

re-evaluation of specialisation is warranted. We are currently preparing a careful

experiment to separate the effects of specialisation from replication.

4. Optimal static instruction replication. While the round robin algorithm is an

improvement of a random placement algorithm, we expect that better placement

algorithms for replicas exist.

5. Dynamic Superinstructions with extensive re-use. At present dynamic superin-

structions with and without replication give similar results. We believe it would

be interesting to allow extensive re-use of dynamic superinstructions in a more

extreme variation of superinstructions without replication. This can be achieved

by preventing new superinstructions that are postfix subsequences of existing

superinstructions from being created. Instead the postfix subsequence of the

existing superinstruction would be used.

216

Figure 8.1: Broader context of the work in this thesis

8.6 Conclusion

In this thesis, a wide range of optimisations for VM interpreters have been explored in

an attempt to narrow the gap in running speed with JIT compilation. These various

optimisations are depicted in Figure 8.1 where the relative complexity of implementa-

tion versus runtime speed is plotted for these optimisations. Using such information

a VM-implementor can better balance about the resources they have available versus

the speed that they want their product to attain.

An important part of this work has been automating the optimisation process.

Interpreter optimisations typically involve relatively small changes to large numbers

of pieces of code. Traditionally, such optimisations made the interpreter increasingly

unmaintainable. To overcome this problem, we have constructed Tiger, a tool that

217

generates an optimised interpreter from a simple, domain-specific description of the

VM instruction set. Tiger performs domain-specific optimisations, and the programmer

can easily experiment with different combinations. One view of these optimisations,

particularly the code-copying ones is that they can provide more choices between the

extremes of memory-hungry, non-portable, generally faster JIT compilers and memory-

efficient, portable, generally slower interpreters.

Our results show that applying source-level optimisations such as faster dispatch

methods, constant inlining, conditional loading of operands and faster method dis-

patch to a portable Java interpreter can result in average speedups of approximately

1.31. Static instruction enhancements such as superinstructions can result in further

speedups of approximately 2.1 (or 3.35 if one is tailoring the interpreter for a specific

application). Alternatively, more broadly applicable dynamic optimisations such as

dynamic superinstructions can yield speedups of up to 2.76. The accompanying figures

from the hardware performance counters underline the importance of branch predic-

tion and, to a lesser extent, instruction cache misses on the overall performance of the

interpreter.

These results give greater insight into the behaviour of VM interpreters and help

the construction of simpler, faster, more maintainable VM interpreters.

218

Appendix

Recommended Usage for Superinstruction Parse File

The data supplied by Tiger in the automatically generated superinstruction parse file

can be used in any way the interpreter-writer sees fit. However the running of a DFA

is intended to occur in a certain way. The DFA starts in state 0. Each time the DFA

is in state i reading symbol s, the following should happen:

1. State i is examined to see if it is a collapsed state that has yet to complete all

internal transitions.

• If the next symbol expected is s, then state i is moved to its next internal

state (ie waiting for the next symbol, if any). Goto step 9.

• If the next symbol expected is not s, then the DFA is terminated. Goto step

9.

If state i is a collapsed state that has completed all its internal transitions, then

it is treated as a normal state.

2. If state i is a normal state, then we use the entryPoints[] array to locate the hash-

table for state i. The beginning index for this hash-table is given by entryPoints[i].

3. Using the beginning index for the hash-table for state i in step 2, the symbol

currently being read is added to this beginning index to calculate a new index j.

4. A bounds check is performed to make sure j is a valid index for the sharedTable[]

array. In order for j to be in-bounds, it needs to be non-negative and less than

VM SHAREDTABLESIZE. If j is out of bounds, end the DFA and goto step 9.

219

5. The pair of integers stored at sharedTable[j] is examined. The first integer of the

pair indicates the owning state of this entry (i.e. which state’s hashtable this

entry belongs to). This integer is examined to ensure this entry belongs to the

hash-table for this state. If it does not, end the DFA and goto step 9.

6. The second integer in the pair indicates the new state to enter into. If the new

state is 0, then this entry in the hash-table is considered to be blank (one cannot

re-enter the start state which is state 0). If this second integer is 0, end the DFA

and goto step 9.

7. If the new state to enter is non-zero, we have successfully found an entry corre-

sponding to the current state-symbol pair. If the new state is positive, this new

state is entered and we goto step 9.

8. If the new state is negative, this marks the fact that it is a final state and a

superinstruction should be emitted. In order to do this, the new state is converted

to an absolute value. A lookup into the vm codes[] array using this absolute value

gives the index of the superinstruction to be emitted at this point. The DFA

remains in this state even when the superinstruction is emitted. This is because

of the possibility that the superinstruction just emitted could be just a suffix of

a longer superinstruction that may be parsed.

9. End of symbol-handling.

In practice, when a method is being scanned, multiple DFAs may be running at

any moment (one for each potential superinstruction at that moment). In order to put

an upper bound on this number, VM MAX LEN can be used. This value represents

the length of the longest superinstruction and therefore gives an upper bound on the

number of DFAs running at any point. A tighter upper bound could exist, but Tiger

does not currently attempt to find one. Once more, it must be noted that Tiger only

provides the data structures to facilitate the running of these DFAs. It is up to the

interpreter-writer to keep track of the current state (and any internal state) of any

running DFAs. This is a relatively straightforward matter of maintaining two arrays,

one for the state of a DFA and another for the internal state of a DFA.

220

Shared Hashes in Tiger

In order to improve the memory compactness of the hash-tables used for superinstruc-

tion parsing, Tiger overlays several hash-tables on top of each other in the same array.

In order to do this, a large array sharedTable[] is created. Each entry of this array is an

ordered pair {i,j} where i is the owner state (the state to which this hash-table belongs)

and j is the entry in the hash-table for that state. Because the hash-table for state i

could be located anywhere in the sharedTable[] array, an offsets array entryPoints[] is

required. When the hash-table for state i is required, the value entryPoints[i] indicates

where it begins in the sharedTable[].

In order to determine is the hash-table for a new state i can be overlaid onto the

sharedTable, Tiger attempts to find a suitable offset (which will be put into entry-

Points[i]). An offset is suitable if all the entries in the hash-table for i can be stored

from that offset without over-writing any non-zero entries, belonging to the hash for

another state. In other words, Tiger attempts to find a point where it can put the new

hash table so that no entries for a previous hash are overwritten.

Note that, because of the shared nature of the hash-table, it is no longer a perfect

hash. Specifically, if we look up the hash for state i with symbol s, the entry {x,y} at

sharedTable[entryPoints[i]+s] must be examined to ensure that x=i.

There are many possible algorithms and permutations for overlaying the various

hash-tables on top of each other. At present Tiger ranks individual hashes according

to their width. For a particular state i, this is defined as smax− smin, where smax is the

maximum symbol (i.e. the most positive index) for which a transition exists and smin is

the minimum symbol (i.e. the least positive index) for which a transition exists. Tiger

then places the widest hash-table into the sharedTable, then the next widest, and so on

until all hash-tables have been overlaid. The sharedTable is expanded dynamically, as

required. Other algorithms may give a more optimal fit, but this algorithm appears to

work well in practice (an optimal fit would be the smallest possible sharedTable).

221

Bibliography

[AHKR00] Matthew Arnold, Michael Hsiao, Ulrich Kremer, and Barbara G. Ryder.

Instruction scheduling in the presence of Java’s runtime exceptions. In

LCPC ’99: Proceedings of the 12th International Workshop on Languages

and Compilers for Parallel Computing, pages 18–34, London, UK, 2000.

Springer-Verlag.

[Als95] Stewart Alsop. Column: Distributed thinking — HotJava

could be really hot. InfoWorld, 17(22), May 1995. http:

//www.javaworld.com/javaworld/jw-03-1996/idgns.java.1995/

idgns.java.1995.009.html.

[Ano95] Anonymous. Netscape Navigator will incorporate Sun’s Java pro-

gramming language. InfoWorld, 17(22):16, May 1995. http://www.

infoworld.com/.

[Arm98] Eric Armstrong. Hotspot: A new breed of virtual machine.

JavaWorld, March 1998. http://www.javaworld.com/jw-03-1998/

jw-03-hotspot.html.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers. Principles,

Techniques, and Tools. Addison-Wesley, 1986.

[Bar83] Joe Barnhart. Forth and the Motorola 68000. Dr. Dobb’s Journal of

Software Tools, 8(9):18–20, 22, 24–26, September 1983.

[BBG+00] Gregory Bollella, Benjamin Brosgol, James Gosling, Peter Dibble, Steve

Furr, and Mark Turnbull. The Real-Time Specification for Java. Addison-

Wesley, 2000.

222

[BCGN03] Andrew Beatty, Kevin Casey, David Gregg, and Andrew Nisbet. An op-

timized Java interpreter for connected devices and embedded systems. In

SAC ’03: Proceedings of the 2003 ACM Symposium on Applied Comput-

ing, pages 692–697, Melbourne, Florida, 2003. ACM Press.

[BCW90] Timothy C. Bell, John G. Cleary, and Ian H. Witten. Text compression.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[BDGW02] S. Byrne, C. Daly, D. Gregg, and J. Waldron. Dynamic analysis of the

Java virtual machine method invocation architecture. In 2nd International

Conference on Instrumentation, Measurement, Control, Circuits and Sys-

tems 2002 (IMCCAS02), pages 1611–1616, Cancun, Mexico, May 2002.

[Bel73] James R. Bell. Threaded code. Communications of the ACM (CACM),

16(6):370–372, 1973.

[Bev87] D I Bevan. Distributed garbage collection using reference counting. In

Volume II: Parallel Languages on PARLE: Parallel Architectures and

Languages Europe, pages 176–187, Eindhoven, The Netherlands, 1987.

Springer-Verlag.

[BGCS82] Jeffrey Barth, R. Steven Glanville, Randy Clark, and Stan Stringfellow.

UCSD p-System FORTRAN version IV.0. IBM Corporation, 1982. (Soft-

ware).

[Bla77] Russell P. Blake. Exploring a stack architecture. Computer, 10(5):30–39,

May 1977.

[BSW+99] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey. A

methodology for benchmarking Java Grande applications. In JAVA ’99:

Proceedings of the ACM 1999 Conference on Java Grande, pages 81–88,

San Francisco, California, United States, 1999. ACM Press.

[BVZB05] Marc Berndl, Benjamin Vitale, Mathew Zaleski, and Angela Demke

Brown. Context threading: A flexible and efficient dispatch technique

223

for virtual machine interpreters. In Proceedings of CGO-’05, Third Inter-

national Symposium on Code Generation and Optimization (CGO), pages

15–26, San Jose, California, March 2005.

[CGE05a] K. Casey, D. Gregg, and M. A. Ertl. Optimisations for a Java interpreter

using instruction set enhancement. Technical report, University of Dublin,

Trinity College., 2005.

[CGE05b] Kevin Casey, David Gregg, and M. Anton Ertl. Tiger - an interpreter

generation tool. In Proceedings of Compiler Construction, 14th Interna-

tional Conference, CC 2005, volume 3443 of Lecture Notes in Computer

Science, pages 246–249, Edinburgh, Scotland, 2005. Springer.

[CGEN03] K. Casey, D. Gregg, M. A. Ertl, and A. Nisbet. Towards superinstructions

for Java interpreters. In Proceedings of the 7th International Workshoop

on Software and Compilers for Embedded Systems (SCOPES 03), volume

2826 of Lecture Notes in Computer Science, pages 329–343. Springer, 2003.

[Che70] C. J. Cheney. A nonrecursive list compacting algorithm. Commun. ACM,

13(11):677–678, 1970.

[CMC+91] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, Nancy J. Warter, and

Wen-mei W. Hwu. IMPACT: An architectural framework for multiple-

instruction-issue processors. In The 18th Annual International Symposium

on Computer Architecture (ISCA), pages 266–275, Toronto, 1991.

[CMW+94] William Y. Chen, Scott A. Mahlke, Nancy J. Warter, Sadun Anik, and

Wen-mei W. Hwu. Profile-assisted instruction scheduling. Int. J. Parallel

Program., 22(2):151–181, 1994.

[Cos99] V. Santos Costa. Optimising bytecode emulation for Prolog. In PPDP

’99: Proceedings of the International Conference PPDP’99 on Principles

and Practice of Declarative Programming, pages 261–277, London, UK,

1999. Springer-Verlag.

[Cre81] R. J. Creasy. The origin of the VM/370 time-sharing system. IBM Journal

of Research and Development, 25(5), September 1981.

224

[Cur93a] Charles Curley. Optimizing considerations (life in the FastForth lane).

Forth Dimensons, pages 6–12, January-February 1993.

[Cur93b] Charles Curley. Optimizing FastForth: Optimizing in a BSR/JSR Thread-

edForth. Forth Dimensions, pages 21–26, March-April 1993.

[DBC+03] Brian Davis, Andrew Beatty, Kevin Casey, David Gregg, and John Wal-

dron. The case for virtual register machines. In IVME ’03: Proceedings of

the 2003 workshop on Interpreters, virtual machines and emulators, pages

41–49, San Diego, California, 2003. ACM Press.

[Dew75] Robert B.K. Dewar. Indirect threaded code. Communications of the ACM

(CACM), 18(6):330–331, June 1975.

[DH98] Karel Driesen and Urs Hölzle. Accurate indirect branch prediction. In

ISCA ’98: Proceedings of the 25th Annual International Symposium on

Computer Architecture, pages 167–178, Barcelona, Spain, 1998. IEEE

Computer Society.

[DHPW01] Charles Daly, Jane Horgan, James Power, and John Waldron. Platform

independent dynamic Java virtual machine analysis: the Java Grande

Forum Benchmark suite. In JGI ’01: Proceedings of the 2001 joint ACM-

ISCOPE conference on Java Grande, pages 106–115, Palo Alto, Califor-

nia, United States, June 2001. ACM Press.

[DKP00] Tamar Domani, Elliot K. Kolodner, and Erez Petrank. A generational

on-the-fly garbage collector for Java. ACM SIGPLAN Notices, 35(5):274–

284, 2000.

[DM82] David R. Ditzel and H. R. McLellan. Register allocation for free: The C

machine stack cache. In Symposium on Architectural Support for Program-

ming Languages and Systems, 1982 Symposium on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’82), pages

48–56, Palo Alto, California, March 1982.

[DS84] L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the

Smalltalk-80 system. In Conference Record of the Eleventh Annual ACM

225

Symposium on Principles of Programming Languages, pages 297–302, Salt

Lake City, Utah, January 1984.

[DV90] Eddy H. Debaere and Jan M. Van Campenhout. Interpretation and In-

struction Path Coprocessing. The MIT Press, 1990.

[ECM02] ECMA. ECMA-335: Common Language Infrastructure (CLI). ECMA

(European Association for Standardizing Information and Communication

Systems), Geneva, Switzerland, second edition, December 2002.

[EG01] M. Anton Ertl and David Gregg. The behavior of efficient virtual machine

interpreters on modern architectures. In Euro-Par ’01: Proceedings of the

7th International Euro-Par Conference Manchester on Parallel Process-

ing, pages 403–412, London, UK, 2001. Springer-Verlag.

[EG03a] M. Ertl and D. Gregg. Optimizing indirect branch prediction accuracy in

virtual machine interpreters. ACM SIGPLAN 2003 Conference on Pro-

gramming Language Design and Implementation (PLDI), pages 278–288,

May 2003.

[EG03b] M. Ertl and D. Gregg. The structure and performance of efficient inter-

preters. Journal of Instruction-Level Parallelism, vol. 5, November 2003.

[EGK+02] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C. North, and

Gordon Woodhull. Graphviz — open source graph drawing tools. Lecture

Notes in Computer Science, 2265, 2002.

[EGKP02] M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan. vmgen —

A generator of efficient virtual machine interpreters. Software—Practice

and Experience, 32(3):265–294, 2002.

[Ell99] H. Eller. Threaded Code and Quick Instructions for Kaffe. December

1999. http://www.complang.tuwien.ac.at/java/kaffe-threaded/.

[Ell05] Helmut Eller. Optimizing interpreters with superinstructions. Diplo-

marbeit, TU Wien, 2005. http://www.complang.tuwien.ac.at/

Diplomarbeiten/eller05.ps.gz.

226

[Ert93] M. Anton Ertl. A portable Forth engine. In EuroFORTH ’93 Confer-

ence Proceedings, Mariánské Láznè (Marienbad), Czech Republic, October

1993.

[Ert94] M. Anton Ertl. Stack caching for interpreters. In EuroForth ’94 Confer-

ence Proceedings, pages 3–12, Winchester, UK, 1994.

[Ert95] M. Anton Ertl. Stack caching for interpreters. In SIGPLAN ’95 Confer-

ence on Programming Language Design and Implementation, pages 315–

327, La Jolla, California, June 1995.

[Ert96] M. Anton Ertl. Implementation of Stack-Based Languages on Register

Machines. PhD thesis, Technische Universität Wien, Austria, 1996.

[FH95] Christopher W. Fraser and David R. Hanson. A Retargetable C Compiler:

Design and Implementation. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1995.

[Fog01] Agner Fog. Branch prediction in the Pentium family. Dr. Dobb’s Mi-

croprocessor Resources, 2001. http://www.x86.org/articles/branch/

branchprediction.htm.

[Fur88] Borivoje Furht. A RISC architecture with two-size, overlapping register

windows. IEEE Micro, 8(2):67–80, 1988.

[GEK01] David Gregg, M. Anton Ertl, and Andreas Krall. Implementing an ef-

ficient Java interpreter. In HPCN Europe 2001: Proceedings of the 9th

International Conference on High-Performance Computing and Network-

ing, pages 613–620, London, UK, 2001. Springer-Verlag.

[GEW01] David Gregg, M. Anton Ertl, and John Waldron. The common case in

Forth programs. In EuroForth 2001 Conference Proceedings, pages 63–70,

Dagstuhl, Germany, November 2001.

[GH98] E. Gagnon and L. Hendren. SableCC – an object-oriented compiler frame-

work. In Proceedings of the Technology of Object-Oriented Languages and

Systems (TOOLS’98), TOOLS 1998, pages 140–154, Beijing, China, 1998.

227

[GH01] Etienne M. Gagnon and Laurie J. Hendren. SableVM: A research frame-

work for the efficient execution of Java bytecode. In Proceedings of the

Java Virtual Machine Research and Technology Symposium (JVM ’01),

pages 27–39, Monterey, California, USA, April 2001.

[GH03] Etienne Gagnon and Laurie J. Hendren. Effective inline-threaded inter-

pretation of Java bytecode using preparation sequences. In Proceedings of

Compiler Construction, 12th International Conference, CC 2003, Lecture

Notes in Computer Science, pages 170–184, volume 2622. Springer, 2003.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-

guage Specification Second Edition. Addison-Wesley, Boston, Mass., 2000.

[GNU03] GNU. GCJ: The GNU compiler for Java. April 2003. http://gcc.gnu.

org/java/.

[GRA+03] Simcha Gochman, Ronny Ronen, Ittai Anati, Ariel Berkovits, Tsvika

Kurts, Alon Naveh, Ali Saeed, Zeev Sperber, and Robert C. Valentine.

The Intel Pentium M processor: Microarchitecture and performance. Intel

Technology Journal, 7(2):21–59, May 2003.

[Gri98] D. Griswold. The Java Hotspot virtual machine architecture. Sun Mi-

crosystems White Paper, 1998.

[Gri99] Robert Griesemer. Interpreter generation and implementation utilizing

interpreter states and register caching. US Patent 6,192,516 B1, Feb. 20,

2001, April 1999.

[GSaC05] Paul Griffin, Witawas Srisa-an, and J. Morris Chang. An energy efficient

garbage collector for Java embedded devices. In LCTES’05: Proceedings of

the 2005 ACM SIGPLAN/SIGBED conference on Languages, compilers,

and tools for embedded systems, pages 230–238, Chicago, Illinois, USA,

2005. ACM Press.

[GW02] David Gregg and John Waldron. Primitive sequences in general purpose

Forth programs. In Proceedings of 18th EuroForth European Conference

on Forth, pages 24–32, Vienna, Austria, September 2002.

228

[HA00] Jan Hoogerbrugge and Lex Augusteijn. Pipelined Java virtual machine

interpreters. In Proceedings of the 9th International Conference on Com-

piler Construction, pages 35–49, Berlin, Germany, March 2000. Springer-

Verlag.

[HATW99] Jan Hoogerbrugge, Lex Augusteijn, Jeroen Trum, and Rik Van De Wiel.

A code compression system based on pipelined interpreters. Softw. Pract.

Exper., 29(11):1005–2023, 1999.

[HFWZ87] John R. Hayes, Martin E. Fraeman, Robert L. Williams, and Thomas

Zaremba. An architecture for the direct execution of the Forth program-

ming language. volume 22 (10) of Architectural Support for Programming

Languages and Operating Systems (ASPLOS-II), pages 42–48, Palo Alto,

California, October 1987.

[HHR99] R. B. Hilgendorf, G. J. Heim, and W. Rosenstiel. Evaluation of branch-

prediction methods on traces from commercial applications. IBM Journal

of Research and Development, 43(4):579–593, July 1999.

[HL89] John Hayes and Susan Lee. The architecture of the SC32 Forth engine.

Journal of Forth Application and Research, 5(4):493–506, 1989.

[HP03] John L. Hennessy and David A. Patterson. Computer Architecture. A

Quantitative Approach. Morgan Kaufman Publishers, 3rd edition, 2003.

[HS85] Makoto Hasekawa and Yoshiharu Shigei. High-speed top-of-stack scheme

for VLSI processor: A management algorithm and its analysis. In In-

ternational Symposium on Computer Archictecture (ISCA), pages 48–54,

Boston, MA, June 1985.

[HSS80] Dennis E. Hall, Deborah K. Scherrer, and Joseph S. Sventek. A virtual

operating system. Commun. ACM, 23(9):495–502, 1980.

[HSU+01] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean,

Alan Kyker, and Patrice Roussel. The microarchitecture of the Pentium

4 processor. Intel Technology Journal, page 13, February 2001.

229

[Hug82] R. J. M. Hughes. Super-combinators a new implementation method for

applicative languages. In LFP ’82: Proceedings of the 1982 ACM sym-

posium on LISP and functional programming, pages 1–10, Pittsburgh,

Pennsylvania, United States, 1982. ACM Press.

[IdC05] R. Ierusalimschy, L.H. de Figueiredo, and W. Celes. The implementation

of Lua 5.0. Journal of Universal Computer Science, 11(7):1159–1176, July

2005. http://www.jucs.org/jucs_11_7/the_implementation_of_lua.

[Int04] Intel Corporation. Intel C++ compiler for Linux systems user’s

guide. June 2004. Release 8.1, Document Number 253254-031,

http://www.intel.com/software/products/compilers/clin/docs/

ug cpp/lin1001.htm.

[ISS05] ISS Technology Communications. The Intel Processor roadmap

for industry-standard servers. HP Technology Brief, 6th Edi-

tion, April 2005. http://h20000.www2.hp.com/bc/docs/support/

SupportManual/c00164255/c00164255.pdf.

[Kog82] Peter M. Kogge. An architectural trail to threaded-code systems. Com-

puter, 15 (3):22–32, March 1982.

[Koo89] Philip J. Koopman, Jr. Stack Computers. Ellis Horwood Limited, 1989.

[Koo92] Philip J. Koopman, Jr. A preliminary exploration of optimized stack

code generation. In Proceedings of the 1992 Rochester Forth Conference,

University of Rochester, NY, 1992.

[Lam88] Monica Lam. Software pipelining: An effective scheduling technique for

VLIW machines. In Proceedings of the SIGPLAN ’88 Conference on Pro-

gramming Language Design and Implementation, pages 318–328, Atlanta,

GA, June 1988.

[Ler96] Xavier Leroy. The Objective Caml Benchmarks. INRIA, October

1996. ftp://ftp.inria.fr/INRIA/Projects/cristal/Xavier.Leroy/

benchmarks/objcaml.tar.gz.

230

[Ler97] Xavier Leroy. The Objective Caml System Release 1.07. INRIA, December

1997. http://caml.inria.fr/pub/distrib/ocaml-1.07/.

[Lia99] Sheng Liang. Java Native Interface: Programmer’s Guide and Reference.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[Lie95] Erica Liederman. Microsoft licenses Java. Sunworld Online, 12:1, De-

cember 1995. http://www.sun.com/sunworldonline/swol-12-1995/

swol-12-microsoft.html.

[LN04] J. P. Lewis and Ulrich Neumann. Performance of Java versus

C++. Computer Graphics and Immersive Technology Lab, University of

Southern California, 2004. http://www.idiom.com/∼zilla/Computer/

javaCbenchmark.html.

[Lou03] Robert Lougher. JamVM v. 1.0.0, March 2003.

Available from http://jamvm.sourceforge.net.

[LS05] John Loiacono and Jonathan Schwartz. It’s all about community.

JavaOne Conference, San Francisco, CA, June 2005. Keynote Talk - De-

tails at http://java.sun.com/javaone/sf/2005/sessions/general/

sun monday.jsp.

[MB99] Blair McGlashan and Andy Bower. The interpreter is dead (slow). isn’t

it? In OOPSLA ’99 Workshop: Simplicity, Performance and Portability

in Virtual Machine Design, Denver, CO, October 1999.

[ME98] Martin Maierhofer and M. Anton Ertl. Local stack allocation. In Proceed-

ings of Compiler Construction (CC’98), pages 189–203, Lisbon, Portugal,

1998. Springer LNCS 1383.

[Mye77] Glenford J. Myers. The case against stack-oriented instruction sets.

SIGARCH Comput. Archit. News, 6(3):7–10, 1977.

[N0̈1] Henrik Nässén. Optimizing the SICStus Prolog virtual machine instruc-

tion set. Technical Report SICS-T2001/01-SE, Intelligent Systems Labo-

ratory Swedish Institute of Computer Science, Box 1263, S164 29 Kista,

Sweden, 2001.

231

[NCS01] Henrik Nässén, Mats Carlsson, and Konstantinos Sagonas. Instruction

merging and specialization in the SICStus Prolog virtual machine. In

PPDP ’01: Proceedings of the 3rd ACM SIGPLAN International Confer-

ence on Principles and Practice of Declarative Programming, 3rd ACM

SIGPLAN International Conference on Principles and Practice of Declar-

ative Programming, pages 49–60, Florence, Italy, September 2001. ACM

Press.

[Nel79] Philip A. Nelson. A comparison of PASCAL intermediate languages. In

SIGPLAN ’79: Proceedings of the 1979 SIGPLAN symposium on Com-

piler construction, pages 208–213, Denver , CO, 1979. ACM Press.

[New00] Ted Neward. Server-Based Java Programming. Manning Publications

Co., 2000. Pg. 148.

[OP04] Diarmuid O’Donoghue and James F. Power. Identifying and evaluating a

generic set of superinstructions for embedded Java programs. In Proceed-

ings of International Conference on Embedded Systems and Applications,

pages 192–198, Las Vegas, Nevada, USA, June 2004.

[Pat95] Jason R. C. Patterson. Accurate static branch prediction by value range

propagation. In Proceedings of the SIGPLAN ’95 Conference on Pro-

gramming Language Design and Implementation (PLDI), pages 67–78,

La Jolla, California, June 1995.

[Pen97] Pendragon Software Corporation. Caffeinemark 3.0, 1997.

http://www.benchmarkhq.ru/cm30/info.html.

[Por04] Chris Porthouse. High performance Java on embedded devices. White Pa-

per, September 2004. http://www.arm.com/pdfs/JazelleWhitePaper.

pdf.

[PR98] Ian Piumarta and Fabio Riccardi. Optimizing direct threaded code by

selective inlining. In Proceedingf of the SIGPLAN ’98 Conference on Pro-

gramming Language Design and Implementation (PLDI), pages 291–300,

Montreal, Canada, June 1998.

232

[Pro95] Todd A. Proebsting. Optimizing an ANSI C interpreter with superoper-

ators. In Principles of Programming Languages (POPL ’95), pages 322–

332, San Francisco, California, January 1995.

[PWL04] Jinzhan Peng, Gansha Wu, and Guei-Yuan Lueh. Code sharing among

states for stack-caching interpreter. In IVME ’04: Proceedings of the 2004

workshop on Interpreters, virtual machines and emulators, pages 15–22,

Washington, D.C., 2004. ACM Press.

[RCM96] Elizabeth D. Rather, Donald R. Colburn, and Charles H. Moore. The

evolution of Forth. In History of Programming Languages, pages 625–658.

ACM Press/Addison-Wesley, 1996.

[Rei01] Fermin Reig. Annotations for portable intermediate languages. Electronic

Notes in Theoretical Computer Science, 59(1), 2001.

[RG81] B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily

schedulable horizontal architecture for high performance scientific com-

puting. In 14th Annual Microprogramming Workshop (MICRO-14), pages

183–198, Los Alamitos, CA, USA, October 1981.

[Ric71] Martin Richards. The portability of the BCPL compiler. Softw., Pract.

Exper., 1(2):135–146, 1971.

[RLV+96] Theodore H. Romer, Dennis Lee, Geoffrey M. Voelker, Alec Wolman,

Wayne A. Wong, Jean-Loup Baer, Brian N. Bershad, and Henry M. Levy.

The structure and performance of interpreters. In Proceedings of Ar-

chitectural Support for Programming Languages and Operating Systems

(ASPLOS-VII), pages 150–159, Cambridge, Massachusetts, October 1996.

[RST04] Allison Randal, Dan Sugalski, and Leopold Tötsch. Perl 6 and Parrot

Essentials. O’Reilly Media, Inc., 1005 Gravenstein Highway North, Se-

bastopol, CA 95472, USA, second edition, 2004.

[SGBE05] Yunhe Shi, David Gregg, Andrew Beatty, and M. Anton Ertl. Virtual

machine showdown: Stack versus registers. In VEE ’05: Proceedings of

233

the 1st ACM/USENIX international conference on Virtual execution en-

vironments, pages 153–163, Chicago, IL, USA, 2005. ACM Press.

[She04] John P. Shen. Modern Processor Design : Fundamentals of Superscalar

Processors (Electrical and Computer Engineering). McGraw-Hill, 2004.

[Sin03] Jeremy Singer. JVM versus CLR: A comparative study. In Proceedings of

the 2nd international conference on Principles and practice of program-

ming in Java, pages 167–169, Kilkenny City, Ireland, June 2003.

[Sir] Emin Gn Sirer. MIPSI - MIPS Simulator. (Software)

http://www.cs.cornell.edu/People/egs/mipsi/mipsi.html.

[SM77] Peter U. Schulthess and Eduard P. Mumprecht. Reply to the case against

stack-oriented instruction sets. SIGARCH Comput. Archit. News, 6(5):24–

27, 1977.

[SN05] Jim Smith and Ravi Nair. Virtual Machines - Versatile Platforms for

Systems and Processes. Morgan Kaufmann, June 2005.

[SPE98] SPEC. Spec releases SPECjvm98, first industry-standard benchmark for

measuring Java virtual machine performance. Press Release, August 1998.

http://www.spec.org/jvm98/press.html.

[SRD96] Gerrit A. Slavenburg, Selliah Rathnam, and Henk Dijkstra. The Trimedia

TM-1 PCI VLIW mediaprocessor. In Hot chips VIII: symposium record:

Stanford University, Stanford, California, August 18–20, 1996, pages 171–

178, August 1996.

[Sun00] Sun Microsystems. The K Virtual Machine - a white paper. May 2000.

http://java.sun.com/products/kvm/wp.

[Sun01] Sun Microsystems. Connected Device Configuration (CDC) and the Foun-

dation Profile - technical whitepaper. May 2001. http://java.sun.com/

products/cdc/wp/CDCwp.pdf.

234

[Sun05a] Sun Microsystems. Hello World(s) – From Code to Culture: A 10 Year

Celebration of Java Technology. Prentice Hall PTR, 1st edition, October

2005.

[Sun05b] Sun Microsystems. Sun Microsystems - J2ME CDC overview, October

2005. http://java.sun.com/products/cdc/overview.html.

[SZY00] Liu Songyan, Mao Zhigang, and Ye Yizheng. Implementation of Java

Card Virtual Machine. J. Comput. Sci. Technol., 15(6):591–596, 2000.

[TB02] Bill Trippe and Kate Binder. SVG For Designers: Using Scalable Vector

Graphics in Next-Generation Web Sites. McGraw-Hill, Inc., New York,

NY, USA, 2002.

[Ven00] Bill Venner. Inside the Java Virtual Machine. McGraw-Hill, 2nd edition,

January 2000.

[VHP01] T. VanDrunen, A. Hosking, and J. Palsberg. Reducing loads and stores in

stack architectures. Online Manuscript, September 2001. http://www.cs.

ucla.edu/∼palsberg/draft/vandrunen-hosking-palsberg00.pdf.

[VMK02] K. S. Venugopal, Geetha Manjunath, and Venkatesh Krishnan. sEc: A

portable interpreter optimizing technique for embedded Java virtual ma-

chines. In Java Virtual Machine Research and Technology Symposium,

pages 127–138, San Francisco, CA, August 2002.

[VRCG+99] Raja Vallee-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vijay Sundaresan. Soot - a Java bytecode optimization frame-

work. In CASCON ’99: Proceedings of the 1999 conference of the Centre

for Advanced Studies on Collaborative research, pages 125–135, Missis-

sauga, Ontario, Canada, November 1999. IBM Press.

[Wal99] John Waldron. Dynamic bytecode usage by object oriented Java programs.

In Proceedings of the Technology of Object-Oriented Languages and Sys-

tems 29th International Conference and Exhibition, Nancy, France, June

7-10 1999.

235

[WCL01] Kenji Watanabe, Wanming Chu, and Yamin Li. Exploiting Java instruc-

tion/thread level parallelism with horizontal multithreading. In ACSAC

’01: Proceedings of the 6th Australasian conference on Computer systems

architecture, pages 122–129, Queensland, Australia, January 2001. IEEE

Computer Society.

[Weg96] M. Wegdam. Compact code generation through custom instruction sets.

Technical Report TN 417/96, Philips Research, Eindhoven, The Nether-

lands, December 1996.

[Wil98] T.J. Wilkinson. KAFFE, A Virtual Machine to Run Java Code. July

1998. http://www.kaffe.org.

[Woo93] Mark Woodman. A taste of the Modula-2 standard. SIGPLAN Not.,

28(9):15–24, 1993.

[WP97] Phil Winterbottom and Rob Pike. The design of the Inferno virtual ma-

chine. In Proceedings of IEEE Compcon ’97, pages 241–244, San Jose,

California, United States, February 1997.

[ZR04] Jingren Zhou and Kenneth A. Ross. Buffering database operations for

enhanced instruction cache performance. In SIGMOD ’04: Proceedings

of the 2004 ACM SIGMOD international conference on Management of

data, pages 191–202, Paris, France, 2004. ACM Press.

236

