Nonparametric Predictive Utility Inference

Brett Houlding¹ and Frank Coolen²

¹Discipline of Statistics, Trinity College Dublin, Ireland.

²Dept. Mathematical Sciences, Durham University, UK.
Which to choose?

Known fruits:

Newly discovered fruits:

(Dragon Fruit) (Mangosteen)
Motivating Example

Which to choose?

Known fruits:

- Five previously experienced fruits f_1, \ldots, f_5 which, on a [0, 1] scale, have ordered utility values $u(1), \ldots, u(5)$ equal to 0.3, 0.35, 0.4, 0.5 and 0.7:

![Utility scale]

Newly discovered fruits:

- Two alternative and unexperienced fruits f_{new} and f_{new2}.

What to select in a one off choice? What about a sequential choice?
Review of Expected Utility Theory

- Let \mathcal{R} denote a set of possible outcomes that may result following decision implementation.
Review of Expected Utility Theory

- Let \mathcal{R} denote a set of possible outcomes that may result following decision implementation.
- Associate with a decision d a distribution $P_{r|d}$ quantifying beliefs in obtaining $r \in \mathcal{R}$ if d is implemented.
Review of Expected Utility Theory

- Let \mathcal{R} denote a set of possible outcomes that may result following decision implementation.
- Associate with a decision d a distribution $P_{r|d}$ quantifying beliefs in obtaining $r \in \mathcal{R}$ if d is implemented.
- We wish to generate a utility function that has input the set of decisions and which returns a real number representing the preference for that decision.
Review of Expected Utility Theory

- Let \mathcal{R} denote a set of possible outcomes that may result following decision implementation.
- Associate with a decision d a distribution $P_{r|d}$ quantifying beliefs in obtaining $r \in \mathcal{R}$ if d is implemented.
- We wish to generate a utility function that has input the set of decisions and which returns a real number representing the preference for that decision.
- This will facilitate the generation of a binary preference ranking \succeq determining preferences between any two implementable decisions, i.e., $d_i \succeq d_j$ denotes that decision d_i is at least as preferable as decision d_j.
Review of Expected Utility Theory

• Let \mathcal{R} denote a set of possible outcomes that may result following decision implementation.

• Associate with a decision d a distribution $P_{r|d}$ quantifying beliefs in obtaining $r \in \mathcal{R}$ if d is implemented.

• We wish to generate a utility function that has input the set of decisions and which returns a real number representing the preference for that decision.

• This will facilitate the generation of a binary preference ranking \succeq determining preferences between any two implementable decisions, i.e., $d_i \succeq d_j$ denotes that decision d_i is at least as preferable as decision d_j.

• In practice, however, the identification of a utility function with domain the set of available decisions is not necessarily straightforward.
Review of Expected Utility Theory

- Instead it may be most appropriate to identify a utility function with domain \mathcal{R} and to use this to determine the utility values of available decisions.
Review of Expected Utility Theory

• Instead it may be most appropriate to identify a utility function with domain \mathcal{R} and to use this to determine the utility values of available decisions.

• To do this the concepts of ‘mixed’ and ‘degenerate’ decisions are introduced.
Review of Expected Utility Theory

- Instead it may be most appropriate to identify a utility function with domain \mathcal{R} and to use this to determine the utility values of available decisions.
- To do this the concepts of ‘mixed’ and ‘degenerate’ decisions are introduced.
- A ‘degenerate’ decision leads to a particular outcome with certainty, and we can associate a degenerate decision with every element of \mathcal{R} (even if it not implementable).
Review of Expected Utility Theory

- Instead it may be most appropriate to identify a utility function with domain \mathcal{R} and to use this to determine the utility values of available decisions.

- To do this the concepts of ‘mixed’ and ‘degenerate’ decisions are introduced.

- A ‘degenerate’ decision leads to a particular outcome with certainty, and we can associate a degenerate decision with every element of \mathcal{R} (even if it not implementable).

- A ‘mixed’ decision is one in which there is uncertainty as to its outcome, and as such, can be considered as a probability distribution over the set of degenerate decisions.
Review of Expected Utility Theory

• Instead it may be most appropriate to identify a utility function with domain \mathcal{R} and to use this to determine the utility values of available decisions.

• To do this the concepts of ‘mixed’ and ‘degenerate’ decisions are introduced.

• A ‘degenerate’ decision leads to a particular outcome with certainty, and we can associate a degenerate decision with every element of \mathcal{R} (even if it not implementable).

• A ‘mixed’ decision is one in which there is uncertainty as to its outcome, and as such, can be considered as a probability distribution over the set of degenerate decisions.

• Here we denote $p_1d_1 + \cdots + p_nd_n$, with $p_i \geq 0$ as the mixed decision leading to outcome r_j with probability $\sum_{i=1}^{n} p_i P_{r|d_i}(r_j)$.
Review of Expected Utility Theory

- Instead it may be most appropriate to identify a utility function with domain \mathcal{R} and to use this to determine the utility values of available decisions.
- To do this the concepts of ‘mixed’ and ‘degenerate’ decisions are introduced.
- A ‘degenerate’ decision leads to a particular outcome with certainty, and we can associate a degenerate decision with every element of \mathcal{R} (even if it not implementable).
- A ‘mixed’ decision is one in which there is uncertainty as to its outcome, and as such, can be considered as a probability distribution over the set of degenerate decisions.
- Here we denote $p_1d_1 + \cdots + p_n d_n$, with $p_i \geq 0$ as the mixed decision leading to outcome r_j with probability $\sum_{i=1}^{n} p_i P_{r\mid d_i}(r_j)$.
- The collection of degenerate and mixed decisions then results in convex set \mathcal{D}.
Review of Expected Utility Theory

The main result of von Neumann and Morgenstern (later generalised by others) is that, under the setting of the above, if agreement is accepted with a small number of axioms of rational choice, there exists a unique function u (up to positive linear transformation), with domain \mathcal{D} and co-domain \mathbb{R}, satisfying the following:

P1: For all $d_i, d_j \in \mathcal{D}$, $u(d_i) \geq u(d_j) \iff d_i \succeq d_j$.

P2: For all $d_i, d_j \in \mathcal{D}$ and any $\alpha \in (0, 1)$:

$$u(\alpha d_i + (1 - \alpha) d_j) = \alpha u(d_i) + (1 - \alpha) u(d_j)$$

P1 specifies that the utility function does rank decisions according to preference, whilst P2 indicates how utilities for mixed decisions are gained from utilities for degenerate decisions (or decision outcomes).
Adaptive Utility

- The result von Neumann and Morgenstern only states that such a utility function exists. It does not specify what it should be unless we know the utility function over \mathcal{R}.

Adaptive Utility

- The result von Neumann and Morgenstern only states that such a utility function exists. It does not specify what it should be unless we know the utility function over \mathcal{R}.
- If the utilities for elements of \mathcal{R} are known, then there is no inherent uncertainty in preferences over decisions, and we cannot model the learning of utility or explain situations of surprise in the utility of an outcome.
Adaptive Utility

- The result von Neumann and Morgenstern only states that such a utility function exists. It does not specify what it should be unless we know the utility function over \mathcal{R}.
- If the utilities for elements of \mathcal{R} are known, then there is no inherent uncertainty in preferences over decisions, and we cannot model the learning of utility or explain situations of surprise in the utility of an outcome.
- In reality, people often learn their preferences by experimenting.
Adaptive Utility

- The result von Neumann and Morgenstern only states that such a utility function exists. It does not specify what it should be unless we know the utility function over \mathcal{R}.

- If the utilities for elements of \mathcal{R} are known, then there is no inherent uncertainty in preferences over decisions, and we cannot model the learning of utility or explain situations of surprise in the utility of an outcome.

- In reality people often learn their preferences by experimenting.

- This requires a generalization of the traditional concept of utility.
Adaptive Utility

• The result von Neumann and Morgenstern only states that such a utility function exists. It does not specify what it should be unless we know the utility function over \mathcal{R}.

• If the utilities for elements of \mathcal{R} are known, then there is no inherent uncertainty in preferences over decisions, and we cannot model the learning of utility or explain situations of surprise in the utility of an outcome.

• In reality people often learn their preferences by experimenting.

• This requires a generalization of the traditional concept of utility.

• Adaptive Utility, as first suggested by Cyert & DeGroot, is one such possibility.
Adaptive Utility

- The result von Neumann and Morgenstern only states that such a utility function exists. It does not specify what it should be unless we know the utility function over \mathcal{R}.
- If the utilities for elements of \mathcal{R} are known, then there is no inherent uncertainty in preferences over decisions, and we can not model the learning of utility or explain situations of surprise in the utility of an outcome.
- In reality people often learn their preferences by experimenting.
- This requires a generalization of the traditional concept of utility.
- Adaptive Utility, as first suggested by Cyert & DeGroot, is one such possibility.
- Basic idea rather simple: Treat utility in the same way that unknown random quantities are typically treated in standard Bayesian statistical inference, i.e., subject them to a parametric belief model, and say that utility is only known up to the value of some unknown parameter θ.
Adaptive Utility

- This idea has been subsequently developed, and has been shown to offer an explanation as to why some people may be averse to trying novel outcomes, or alternatively, to be prone for selecting novel outcomes.
Adaptive Utility

- This idea has been subsequently developed, and has been shown to offer an explanation as to why some people may be averse to trying novel outcomes, or alternatively, to be prone for selecting novel outcomes.

- Yet problems do remain, for example:
• This idea has been subsequently developed, and has been shown to offer an explanation as to why some people may be averse to trying novel outcomes, or alternatively, to be prone for selecting novel outcomes.

• Yet problems do remain, for example:
 • How to elicit prior beliefs concerning an uncertain utility parameter?
Adaptive Utility

- This idea has been subsequently developed, and has been shown to offer an explanation as to why some people may be averse to trying novel outcomes, or alternatively, to be prone for selecting novel outcomes.

- Yet problems do remain, for example:
 - How to elicit prior beliefs concerning an uncertain utility parameter?
 - How to elicit an appropriate likelihood linking the uncertain utility parameter with utility data?
Adaptive Utility

- This idea has been subsequently developed, and has been shown to offer an explanation as to why some people may be averse to trying novel outcomes, or alternatively, to be prone for selecting novel outcomes.

- Yet problems do remain, for example:
 - How to elicit prior beliefs concerning an uncertain utility parameter?
 - How to elicit an appropriate likelihood linking the uncertain utility parameter with utility data?
 - What is appropriate utility data?
Nonparametric Predictive Inference

Based on Hill’s $A(n)$ assumption:

Let real-valued $x_1 < \ldots < x_n$ be the ordered values of data x_1, \ldots, x_n, and let X_i be the corresponding pre-data random quantities, then:

1. The observable random quantities X_1, \ldots, X_n are exchangeable.
2. Ties have probability 0, so $x_i \neq x_j$ for all $i \neq j$, almost surely.
3. Given data x_1, \ldots, x_n and the definition that $x(0) = -\infty$, $x(n+1) = \infty$, $l_j = (x(j-1), x(j))$, then for $j = 1, \ldots, n + 1$:

$$P(X_{n+1} \in l_j) = \frac{1}{n + 1}$$

Note two random variables X and Y are exchangeable if

$$P(X = x, Y = y) = P(X = y, Y = x),$$

and the concept formalizes the notion that the future is predictable on the basis of past experience.
Nonparametric Predictive Inference

- NPI is a low structure statistical technique that is predictive by nature.
Nonparametric Predictive Inference

- NPI is a low structure statistical technique that is predictive by nature.
- Less restrictive belief model that is closer to resembling a state of ignorance.
Nonparametric Predictive Inference

- NPI is a low structure statistical technique that is predictive by nature.
- Less restrictive belief model that is closer to resembling a state of ignorance.
- Less presumptuous alternative for making inference than the direct specification of conditional independencies and specific distributional forms.
Nonparametric Predictive Inference

- NPI is a low structure statistical technique that is predictive by nature.
- Less restrictive belief model that is closer to resembling a state of ignorance.
- Less presumptuous alternative for making inference than the direct specification of conditional independencies and specific distributional forms.
- May be relevant when there is a lack of additional information further to the data itself.
Nonparametric Predictive Inference

- NPI is a low structure statistical technique that is predictive by nature.
- Less restrictive belief model that is closer to resembling a state of ignorance.
- Less presumptuous alternative for making inference than the direct specification of conditional independencies and specific distributional forms.
- May be relevant when there is a lack of additional information further to the data itself.
- Coincides with the general framework of a finitely additive prior and has been related to the theory of imprecise probability.
Nonparametric Predictive Inference

- NPI is a low structure statistical technique that is predictive by nature.
- Less restrictive belief model that is closer to resembling a state of ignorance.
- Less presumptuous alternative for making inference than the direct specification of conditional independencies and specific distributional forms.
- May be relevant when there is a lack of additional information further to the data itself.
- Coincides with the general framework of a finitely additive prior and has been related to the theory of imprecise probability.
- Subjectivist interpretation of lower and upper bounds on betting price.
The NPI statistical technique offers a simple, yet possibly appealing, solution to the problem of identifying an appropriate utility learning model.
• The NPI statistical technique offers a simple, yet possibly appealing, solution to the problem of identifying an appropriate utility learning model.

• Particularly useful when decision outcomes form a finite set.
The NPI statistical technique offers a simple, yet possibly appealing, solution to the problem of identifying an appropriate utility learning model.

Particularly useful when decision outcomes form a finite set.

Exchangeability would appear appropriate at the level of collections of outcomes which are sensibly grouped under the same taxonomic category, e.g., cereal brands or fruits etc.
• The NPI statistical technique offers a simple, yet possibly appealing, solution to the problem of identifying an appropriate utility learning model.
• Particularly useful when decision outcomes form a finite set.
• Exchangeability would appear appropriate at the level of collections of outcomes which are sensibly grouped under the same taxonomic category, e.g., cereal brands or fruits etc.
• However, whilst $A(n)$ concerns the prediction of a random variable with domain \mathcal{R}, utility values are instead bound to a finite interval, say, $[0, 1]$.
NPUI

- The NPI statistical technique offers a simple, yet possibly appealing, solution to the problem of identifying an appropriate utility learning model.
- Particularly useful when decision outcomes form a finite set.
- Exchangeability would appear appropriate at the level of collections of outcomes which are sensibly grouped under the same taxonomic category, e.g., cereal brands or fruits etc.
- However, whilst $A(n)$ concerns the prediction of a random variable with domain \mathcal{R}, utility values are instead bound to a finite interval, say, $[0, 1]$.
- If utilities are scaled to $[0, 1]$ how should the utilities for experienced outcomes be placed on that scale if we wish to allow the possibility that a novel outcome may be better (worse) than anything previously experienced?
The NPI statistical technique offers a simple, yet possibly appealing, solution to the problem of identifying an appropriate utility learning model.

Particularly useful when decision outcomes form a finite set.

Exchangeability would appear appropriate at the level of collections of outcomes which are sensibly grouped under the same taxonomic category, e.g., cereal brands or fruits etc.

However, whilst $A(n)$ concerns the prediction of a random variable with domain \mathcal{R}, utility values are instead bound to a finite interval, say, $[0, 1]$.

If utilities are scaled to $[0, 1]$ how should the utilities for experienced outcomes be placed on that scale if we wish to allow the possibility that a novel outcome may be better (worse) than anything previously experienced?

Here we suggest the interpretation that the utilities of experienced outcomes are placed on the $[0, 1]$ scale by considering ‘hypothetical’ best and worst possible outcomes that could exist within the exchangeable taxonomic collection.
• Let $u(1), \ldots, u(n)$, with $u(i) \in (0, 1)$ be the known ordered values of the utilities u_1, \ldots, u_n representing preferences over outcomes $O_n = \{o_1, \ldots, o_n\}$.
Let \(u(1), \ldots, u(n) \), with \(u(i) \in (0, 1) \) be the known ordered values of the utilities \(u_1, \ldots, u_n \) representing preferences over outcomes \(\mathcal{O}_n = \{o_1, \ldots, o_n\} \).

Let \(\mathcal{U}_n = \{U_1, \ldots, U_n\} \) denote the set of random quantities representing the utilities of the elements within \(\mathcal{O}_n \) before they are experienced, and suppose that the elements of \(\mathcal{U}_n \) are considered exchangeable.
NPUI

- Let $u(1), \ldots, u(n)$, with $u(i) \in (0, 1)$ be the known ordered values of the utilities u_1, \ldots, u_n representing preferences over outcomes $O_n = \{o_1, \ldots, o_n\}$.
- Let $U_n = \{U_1, \ldots, U_n\}$ denote the set of random quantities representing the utilities of the elements within O_n before they are experienced, and suppose that the elements of U_n are considered exchangeable.
- Given a new and novel outcome o_{new} whose utility value $U_{\text{new}} \in (0, 1)$ is unknown but considered exchangeable with the elements of U_n, the NPUI model considered here states only the following:

\[
P\left(U_{\text{new}} \in (0, u(1))\right) = P\left(U_{\text{new}} \in [u(i), u(i+1)]\right) = P\left(U_{\text{new}} \in [u(n), 1]\right) = \frac{1}{n+1}
\]
Expected Utility Bounds

NPUI leads to the following rules:

- Lower expected utility bound:

\[E[U_{\text{new}}] = \frac{1}{n+1} \sum_{i=1}^{n} u_i \]
Expected Utility Bounds

NPUI leads to the following rules:

- **Lower expected utility bound:**
 \[E[U_{\text{new}}] = \frac{1}{n + 1} \sum_{i=1}^{n} u_i \]

- **Upper expected utility bound:**
 \[\overline{E}[U_{\text{new}}] = \frac{1}{n + 1} \left(1 + \sum_{i=1}^{n} u_i \right) \]
Expected Utility Bounds

NPUI leads to the following rules:

- **Lower expected utility bound:**
 \[
 E[U_{\text{new}}] = \frac{1}{n+1} \sum_{i=1}^{n} u_i
 \]

- **Upper expected utility bound:**
 \[
 \bar{E}[U_{\text{new}}] = \frac{1}{n+1} \left(1 + \sum_{i=1}^{n} u_i\right)
 \]

- **Difference in utility bounds:**
 \[
 \Delta\left(E[U_{\text{new}}]\right) = \bar{E}[U_{\text{new}}] - E[U_{\text{new}}] = \frac{1}{n+1}
 \]
Updating

Expected utility bounds of a second novel outcome o_{new2} once u_{new} is known:

- Lower updated expected utility bound:

$$E[U_{new2} | u_{new}] = \frac{n + 1}{n + 2} E[U_{new}] + \frac{1}{n + 2} u_{new}$$
Updating

Expected utility bounds of a second novel outcome o_{new_2} once u_{new} is known:

- Lower updated expected utility bound:
 \[
 E[U_{new_2} | u_{new}] = \frac{n + 1}{n + 2} E[U_{new}] + \frac{1}{n + 2} u_{new}
 \]

- Upper updated expected utility bound:
 \[
 \bar{E}[U_{new_2} | u_{new}] = \frac{n + 1}{n + 2} \bar{E}[U_{new}] + \frac{1}{n + 2} u_{new}
 \]
Updating

Expected utility bounds of a second novel outcome o_{new_2} once u_{new} is known:

- Lower updated expected utility bound:
 \[
 E[U_{new_2} | u_{new}] = \frac{n + 1}{n + 2} E[U_{new}] + \frac{1}{n + 2} u_{new}
 \]

- Upper updated expected utility bound:
 \[
 \bar{E}[U_{new_2} | u_{new}] = \frac{n + 1}{n + 2} \bar{E}[U_{new}] + \frac{1}{n + 2} u_{new}
 \]

- Difference in updated utility bounds:
 \[
 \Delta\left(E[U_{new_2} | u_{new}] \right) = \frac{1}{n + 2}
 \]
Decision Tree
Reduced Decision Tree
Sequential Choice Rules

In a sequential problem, a rule must be devised for choosing future decisions.

Extreme Pessimism:

The DM will always select the outcome or sequential decision path whose lower expected utility bound is greatest. Furthermore, future uncertain utility realisations will always fall at the infimum of any considered interval formed by the ordering of known utility values.

Extreme Optimism:

The DM will always select the outcome or sequential decision path whose upper expected utility bound is greatest. Furthermore, future uncertain utility realisations will always fall at the supremum of any considered interval formed by the ordering of known utility values.
Conditioning

Expected utility bounds of a second novel outcome o_{new2} given that only the interval of u_{new} is known:

- Lower conditional expected utility bound:

$$E[U_{new2} | U_{new} \in I_j] = \frac{1}{n+2} \left(\sum_{i=1}^{n} u_i + \inf(I_j) \right)$$
Conditioning

Expected utility bounds of a second novel outcome o_{new_2} given that only the interval of u_{new} is known:

- Lower conditional expected utility bound:

$$E[U_{new_2} | U_{new} \in I_j] = \frac{1}{n+2} \left(\sum_{i=1}^{n} u_i + \inf(I_j) \right)$$

- Upper conditional expected utility bound:

$$\bar{E}[U_{new_2} | U_{new} \in I_j] = \frac{1}{n+2} \left(1 + \sum_{i=1}^{n} u_i + \sup(I_j) \right)$$
Conditioning

Expected utility bounds of a second novel outcome o_{new_2} given that only the interval of u_{new} is known:

- Lower conditional expected utility bound:

 $$E[U_{new_2} | U_{new} \in I_j] = \frac{1}{n+2} \left(\sum_{i=1}^{n} u_i + \inf(I_j) \right)$$

- Upper conditional expected utility bound:

 $$\overline{E}[U_{new_2} | U_{new} \in I_j] = \frac{1}{n+2} \left(1 + \sum_{i=1}^{n} u_i + \sup(I_j) \right)$$

- Difference in updated utility bounds:

 $$\Delta \left(E[U_{new_2} | U_{new} \in I_j] \right) = \frac{1 + \sup(I_j) - \inf(I_j)}{n+2}$$
Conditioning

Expected utility bounds of a second novel outcome o_{new_2} given that only the interval of u_{new} is known:

- Lower conditional expected utility bound:
 \[E[U_{new_2} \mid U_{new} \in I_j] = \frac{1}{n + 2} \left(\sum_{i=1}^{n} u_i + \inf(I_j) \right) \]

- Upper conditional expected utility bound:
 \[\bar{E}[U_{new_2} \mid U_{new} \in I_j] = \frac{1}{n + 2} \left(1 + \sum_{i=1}^{n} u_i + \sup(I_j) \right) \]

- Difference in updated utility bounds:
 \[\Delta \left(E[U_{new_2} \mid U_{new} \in I_j] \right) = \frac{1 + \sup(I_j) - \inf(I_j)}{n + 2} \]

- Internal Consistency:
 \[E[U_{new_2}] = \sum_{j=1}^{n+1} E[U_{new_2} \mid U_{new} \in I_j] P(U_{new} \in I_j) \]
Summary Results Table

Expected Utility for Optimal Decision Strategy

<table>
<thead>
<tr>
<th>Available</th>
<th>Pessimistic</th>
<th>Optimistic</th>
<th>Select a Novel Option</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td>Lower Bound</td>
</tr>
<tr>
<td>f_1</td>
<td>1.298</td>
<td>1.817</td>
<td>1.298</td>
</tr>
<tr>
<td>f_2</td>
<td>1.305</td>
<td>1.819</td>
<td>1.305</td>
</tr>
<tr>
<td>f_3</td>
<td>1.323</td>
<td>1.785</td>
<td>1.319</td>
</tr>
<tr>
<td>f_4</td>
<td>1.500</td>
<td>1.500</td>
<td>1.367</td>
</tr>
<tr>
<td>f_5</td>
<td>2.100</td>
<td>2.100</td>
<td>2.100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>$u(i)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td>0.35</td>
<td>0.4</td>
<td>0.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>

For the one-period problem:

$$E[U_{new}] = 0.375$$

$$\overline{E}[U_{new}] \approx 0.542$$
Discussion

- NPUI appears to offer a simple, yet possibly appealing, model for utility learning.
Discussion

- NPUI appears to offer a simple, yet possibly appealing, model for utility learning.
- There has been limited discussion on the idea that preferences over decision outcomes may be uncertain, even though such scenarios have empirical support.
Discussion

- NPUI appears to offer a simple, yet possibly appealing, model for utility learning.
- There has been limited discussion on the idea that preferences over decision outcomes may be uncertain, even though such scenarios have empirical support.
- How should uncertainty over preferences be incorporated within a normative decision analysis, and what are the implications of utility learning models?
Discussion

• NPUI appears to offer a simple, yet possibly appealing, model for utility learning.
• There has been limited discussion on the idea that preferences over decision outcomes may be uncertain, even though such scenarios have empirical support.
• How should uncertainty over preferences be incorporated within a normative decision analysis, and what are the implications of utility learning models?
• What sequential choice rule(s) should be employed?
• NPUI appears to offer a simple, yet possibly appealing, model for utility learning.
• There has been limited discussion on the idea that preferences over decision outcomes may be uncertain, even though such scenarios have empirical support.
• How should uncertainty over preferences be incorporated within a normative decision analysis, and what are the implications of utility learning models?
• What sequential choice rule(s) should be employed?
• How to determine scaling within $[0, 1]$ interval, or more generally, how to deal with the problem of induction when the actual value realized can be far better or far worse than anything as yet observed, and when it is the actual value that is important rather than the ordinal ranking.