Multivariate Analysis (slides 8)

• Today we consider Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA).

• These are used if it is assumed that there exists a set of k groups within the data and that there is a subset of the data that is labelled, i.e., whose group membership is known.

• Discriminant analysis refers to a set of ‘supervised’ statistical techniques where the class information is used to help reveal the structure of the data.

• This structure then allows the ‘classification’ of future observations.
Discriminant Analysis

- We want to be able to use knowledge of labelled data (i.e., those whose group membership is known) in order to classify the group membership of unlabelled data.

- We previously considered the \(k \)-nearest neighbours technique for this problem.

- We shall now consider the alternative approaches of:
 - LDA (linear discriminant analysis)
 - QDA (quadratic discriminant analysis)
LDA & QDA

• Unlike k-Nearest Neighbours (and all the other techniques so far covered), both LDA and QDA assume the use of a distribution over the data.

• Once we introduce distributions (and parameters of those distributions), we can start to quantify uncertainty over the structure of the data.

• As far as classification is concerned, this means that we can start to talk about the probability of group assignment.

• The distinction between a point that is assigned a probability of 0.51 to one group and 0.49 to another, against a point that is assigned a probability of 0.99 to one group and 0.01 to another, can be quite important.
Multivariate Normal Distribution

- Let \(x^T = (x_1, x_2, ..., x_m) \), where \(x_1, x_2, ..., x_m \) are random variables.

- The Multi-Variate Normal (MVN) distribution has two parameters:
 - Mean \(\mu \), an \(m \)-dimensional vector.
 - Covariance matrix \(\Sigma \), with dimension \(m \times m \).

- A vector \(x \) is said to follow a MVN distribution, denoted \(x \sim MVN(\mu, \Sigma) \), if it has the following probability density function:

\[
f(x|\mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right]
\]

- Here \(|\Sigma| \) is used to denote the determinant of \(\Sigma \).
Multivariate Normal Distribution

- The MVN distribution is very useful when modelling multivariate data.
- Notice:

\[\left\{ \mathbf{x} : f(\mathbf{x}|\mu, \Sigma) > C \right\} = \left\{ \mathbf{x} : (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) < -2 \log \left[C (2\pi)^{m/2} |\Sigma|^{1/2} \right] \right\} \]

- This corresponds to an \(m \)-dimensional ellipsoid centered at point \(\mu \).

- If it is assumed that the data within a group \(k \) follows a MVN distribution with mean \(\mu_k \) and covariance \(\Sigma_k \), then the scatter of the data should be roughly elliptical.

- The mean fixes the location of the scatter and the covariance affects the shape of the ellipsoid.
Normal Contours

- For example, the contour plot of a MVN $\left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0.8 \\ 0.8 & 3 \end{pmatrix} \right]$ is:
Normal Contours: Data

- Sampling from this distribution and overlaying the results on the contour plot gives:
Shape of Scatter

• If we assume that the data within each group follows a MVN distribution with mean μ_k and covariance Σ_k, then we also assume that the scatter is roughly elliptical.

• The mean sets the location of this scatter and the covariance sets the shape of the ellipse.
Mahalanobis Distance

• The Mahalanobis distance from a point x to a mean μ is D, where

$$D^2 = (x - \mu)^T \Sigma^{-1} (x - \mu).$$

• Two points have the same Mahalanobis distance if they are on the same ellipsoid centered on μ (as defined earlier).
Which Is Closest?

• Suppose we wish to find the mean \(\mu_k \) that a point \(x \) is closest to as measured by Mahalanobis distance.

• That is, we want to find the \(k \) that minimizes the expression:

\[
(x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)
\]

• The point \(x \) is closer to \(\mu_k \) than it is to \(\mu_l \) (under Mahalanobis distance) when:

\[
(x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) < (x - \mu_l)^T \Sigma_l^{-1} (x - \mu_l).
\]

• Note that this is a quadratic expression for \(x \).
When Covariance is Equal

• If \(\Sigma_k = \Sigma \) for all \(k \), then the previous expression becomes:

\[
(x - \mu_k)^T \Sigma^{-1} (x - \mu_k) < (x - \mu_l)^T \Sigma^{-1} (x - \mu_l).
\]

• This can be simplified as:

\[
-2x^T \Sigma^{-1} \mu_k + \mu_k^T \Sigma^{-1} \mu_k < -2x^T \Sigma^{-1} \mu_l + \mu_l^T \Sigma^{-1} \mu_l
\]

\[\iff \]

\[
-2 \mu_k^T \Sigma^{-1} x + \mu_k^T \Sigma^{-1} \mu_k < -2 \mu_l^T \Sigma^{-1} x + \mu_l^T \Sigma^{-1} \mu_l
\]

• This is now a linear expression for \(x \)

• Note the names of ‘linear’ discriminant analysis and ‘quadratic’ discriminant analysis.
Estimating Equal Covariance

- In LDA we need to pool the covariance matrices of individual classes.

- Remember that the sample covariance matrix Q for a set of n observations of dimension m is the matrix whose elements are

$$q_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} (x_{ki} - \bar{x}_i)(x_{kj} - \bar{x}_j)$$

for $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, m$.

- Then the pooled covariance matrix is defined as:

$$Q_p = \frac{1}{n-g} \sum_{l=1}^{g} (n_l - 1)Q_l$$

Where g is the number of classes, Q_l is the estimated sample covariance matrix for class l, n_l is the number of data points in class l, whilst n is the total number of data points.
Estimating Equal Covariance

• This formula arises from summing the squares and cross products over data points in all classes:

\[W_{ij} = \sum_{l=1}^{g} \sum_{k=1}^{n_l} (x_{ki} - \bar{x}_{li})(x_{kj} - \bar{x}_{lj}) \]

for \(i = 1, \ldots, m \) and \(j = 1, \ldots, m \).

• Hence:

\[W = \sum_{l=1}^{g} (n_l - 1)Q_l \]

• Given \(n \) data points falling in \(g \) groups, we have \(n - g \) degrees of freedom because we need to estimate the \(g \) group means.

• This results in the previous formula for the pooled covariance matrix:

\[Q_p = \frac{W}{n - g} \]
Modelling Assumptions

- Both LDA and QDA are *parametric* statistical methods.

- In order to classify a new observation \mathbf{x} into one of the known K groups, we need to know $\Pr(\mathbf{x} \in k|\mathbf{x})$ for $k = 1, \ldots, K$.

- That is to say, we need to know the posterior probability of belonging to each of the possible groups given the data.

- Then classify the new observation as belonging to the class which has largest posterior probability.

- Bayes’ Theorem states that the posterior probability of observation \mathbf{x} belonging to group k is:

$$
\Pr(\mathbf{x} \in k|\mathbf{x}) = \frac{\pi_k f(\mathbf{x}_i|\mathbf{x} \in k)}{\sum_{l=1}^{K} \pi_l f(\mathbf{x}_i|\mathbf{x} \in l)}
$$
Modelling Assumptions

- Discriminant analysis assumes that observations from group \(k \) follow a MVN distribution with mean \(\mu_k \) and covariance \(\Sigma_k \).

 That is

 \[
 f(x|x \in k) = f(x|\mu_k, \Sigma_k) = \frac{1}{(2\pi)^{m/2} |\Sigma_k|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) \right] \]

- Discriminant analysis (as presented here) also assumes values for \(\pi_k = \mathbb{P}(x \in k) \), which is the proportion of population objects belonging to class \(k \) (this can be known or estimated).

 Note that \(\sum_{k=1}^K \pi_k = 1 \).

 Typically, \(\pi_k = 1/K \) is used.

 \(\pi_k \) are sometimes referred to as prior probabilities.

- Using all this we can compute \(\mathbb{P}(x \in k|x) \) and assign data points to groups so as to maximise this probability.
Some Calculations

- The probability of \(x \) belonging to group \(k \) conditional on \(x \) being known satisfies:

\[
P(x \in k | x) \propto \pi_k f(x | \mu_k, \Sigma_k).
\]

- Hence,

\[
P(x \in k | x) > P(x \in l | x) \iff \pi_k f(x | \mu_k, \Sigma_k) > \pi_l f(x | \mu_l, \Sigma_l)
\]

- Taking logarithms and substituting in the probability density function for a MVN distribution we find after simplification:

\[
\log \pi_k - \frac{1}{2} \log |\Sigma_k| - \frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)
\]

\[
> \log \pi_l - \frac{1}{2} \log |\Sigma_l| - \frac{1}{2} (x - \mu_l)^T \Sigma_l^{-1} (x - \mu_l)
\]
Linear Discriminant Analysis

• If equal covariances are assumed then $\mathbb{P}(\mathbf{x} \in k|\mathbf{x}) > \mathbb{P}(\mathbf{x} \in l|\mathbf{x})$ if and only if:

$$\log \pi_k + \mathbf{x}^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k > \log \pi_l + \mathbf{x}^T \Sigma^{-1} \mu_l - \frac{1}{2} \mu_l^T \Sigma^{-1} \mu_l$$

• Hence the name linear discriminant analysis.

• If $\pi_k = 1/K$ for all k, then this reduces further.

$$\left(\mathbf{x} - \frac{1}{2}(\mu_k + \mu_l) \right)^T \Sigma^{-1} (\mu_k - \mu_l) > 0$$
Quadratic Discriminant Analysis

- No simplification arises in the unequal covariance case, hence
 \[\mathbb{P}(x \in k|x) > \mathbb{P}(x \in l|x) \] if and only if:

 \[\log \pi_k - \frac{1}{2} \log |\Sigma_k| - \frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) > \log \pi_l - \frac{1}{2} \log |\Sigma_l| - \frac{1}{2} (x - \mu_l)^T \Sigma_l^{-1} (x - \mu_l) \]

- Hence the name quadratic discriminant analysis.

- If \(\pi_k = 1/K \) for all \(k \), then some simplification arises.
Summary

• In LDA the decision boundary between class k and class l is given by:

$$\log \frac{P(k|x)}{P(l|x)} = \log \frac{\pi_k}{\pi_l} + \log \frac{f(x|k)}{f(x|l)} = 0$$

• Unlike k-nearest neighbour, both LDA and QDA are model based classifiers where $P(\text{data}|\text{group})$ is assumed to follow a MVN distribution:
 – The model based assumption allows for the generation of the probability for class membership.
 – The MVN assumption means that groups are assumed to follow an elliptical shape.

• Whilst LDA assumes groups have the same covariance matrix, QDA permits different covariance structures between groups.