We want to formalise our notion of healthiness.

Remember, the following are our conditions:

- **H1**
 \[P = \text{ok} \Rightarrow P \]

- **H2**
 \[P = P; \ j \]

- **H3**
 \[P = P; \ \text{skip} \]

- **H4**
 \[P; \ \text{true} = \text{true} \]

They all (except **H4**) have the same form: \[P = H(P) \]
where \(H \) describes the appropriate “function” of \(P \).

We shall now formalise this notion.

Formalising H1

- We shall define a function that takes a predicate as parameter, and returns \(\text{True} \) if the predicate is **H1**-healthy:

 \[\text{isH1}(P) \equiv P = (\text{ok} \Rightarrow P) \]

- We refine this further by introducing another function that given a predicate returns an appropriately modified predicate:

 \[\text{mkH1}(P) \equiv \text{ok} \Rightarrow P \]
 \[\text{isH1}(P) \equiv P = \text{mkH1}(P) \]

- What we have done is to start a new formal game altogether!

Higher-Order Logic

- Up to now, we have been using “First-Order predicate calculus”
 - we have built predicates from basic parts using fixed operators.
 - Any functions have only existed inside the expression (sub-)language
 - All quantification variables have been limited to expression variables only

- Now we are moving towards “Higher-Order Logic”
 - We are introducing predicates \(\text{about} \) predicates (e.g. \(\text{isH1} \))
 - We are introducing functions that \(\text{transform} \) predicates (e.g. \(\text{mkH1} \))
 - UTP also allows quantifier variables to range over predicates
2nd-Order Predicates

- A first-order predicate P is a function over environment variables, returning True or False:

 $$[P] : \text{Env} \rightarrow \mathbb{B}$$

- A second-order predicate P is a function from predicates to True or False:

 $$[P] : \text{Pred} \rightarrow \mathbb{B}$$

- We can expand this as:

 $$[P] : (\text{Env} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$$

- So isH1 is just such a 2nd-order predicate.

Predicate Transformers

- A predicate-transformer F is a function over predicates, returning a predicate as a result:

 $$[F] : \text{Pred} \rightarrow \text{Pred}$$

- We can expand this also as

 $$[F] : (\text{Env} \rightarrow \mathbb{B}) \rightarrow (\text{Env} \rightarrow \mathbb{B})$$

- Function mkH1 is a predicate transformer

Changing the Game (I)

- We add a new category to our language: that of a higher-order definition

 $$P, Q, R, S \in \text{PVar} \quad \text{predicate (meta-)variables}$$

 $$\text{H, F} \in \text{HOF} \quad \text{higher order functions}$$

 $$\text{HOFDef} ::= H(P) \triangleq \text{body} \quad \text{HOF definition}$$

- We extend our notion of predicate to allow the application of a HOF to a predicate argument

 $$P \in \text{Pred} ::= \ldots | H(P)$$

Changing the Game (II)

- Given $H(P) \triangleq \text{body}$, we have a new law:

 $$H(\text{MyPred}) = \text{body}[\text{MyPred} / P]$$

 Where we now have substitution notation extended to allow predicates to replace predicate variables.

- The addition of higher-order functions (i.e. those that take predicates as arguments) gives “monadic 2nd-order logic”

- If we also allow quantification over predicates

 $$\text{Pred} ::= \ldots | \forall P \cdot H(P)$$

 we get “full 2nd-order logic”
2nd-order Logic

- 2nd-order logic is strictly more powerful than 1st-order
- When quantifying over a predicate, it is interpreted as a function from the environment to boolean
 - So
 \[\forall P \cdot H(P) \]
 is interpreted as meaning:
 “for all functions \(F : \text{Env} \rightarrow \mathbb{B} \), the predicate \(H(F) \) evaluates to true in any environment”

- UTP is based on full 2nd-order logic
 - needed to treat recursion properly
 - needed to reason about healthiness.

Revisiting Healthiness

- We can now formalise our healthiness conditions as follows:
 \[
 \begin{align*}
 \text{mkH1}(P) & \triangleq \text{ok} \Rightarrow P \\
 \text{mkH2}(P) & \triangleq P; J \\
 \text{mkH3}(P) & \triangleq P; \text{skip} \\
 \text{isHi}(P) & \triangleq P = \text{mkHi}(P), \quad i \in 1, 2, 3 \\
 \text{isH4}(P) & \triangleq P; \text{true} = \text{true}
 \end{align*}
 \]

- Apart from \(\text{H4} \), we have the same pattern:
 - a predicate transformer \(\text{mkH} \)
 - a predicate condition \(\text{isH} \), defined in terms of the former
- We shall take a closer look at \(\text{mkH} \).

The Nature of \(\text{mkH} \)

- Consider the application \(\text{mkH}(P) \)
- We can interpret \(\text{mkH} \) as a “healthifying” function (i.e. it makes predicates healthy)
- What if \(P \) is already healthy?
 - Then it satisfies \(\text{isH} \), which says \(P = \text{mkH}(P) \)
 - So \(\text{mkH} \) should not change an already healthy predicate
- We are led to the following requirement for any “healthifier” \(\text{mkH} \):
 \[
 \begin{align*}
 \text{mkH}\left(\text{mkH}(P)\right) & = \text{mkH}(P) \\
 \text{mkH} \circ \text{mkH} & = \text{mkH}
 \end{align*}
 \]
 i.e. all such HOFs must be idempotent.
- Once a predicate has been “made healthy”, then further attempts to do so should bring about no further change.

A Notational Convention (obvious, yet confusing!)

- We have definitions provided for \(\text{mkH} \)
- We define \(\text{isH} \) as \(P = \text{mkH}(P) \)
- It is standard practise in the UTP literature to use \(\text{H} \) to denote both of these functions
- Which of \(\text{mkH} \) or \(\text{isH} \) is meant can (usually) be deduced from context
- We shall adopt this convention from now on.
H1 is idempotent

We want to show that $H1 \circ H1 = H1$

Reduce Lhs to Rhs

1. $H1(H1(P))$
 - " defn. $H1$ (a.k.a $mkH1$)"
 - $ok \Rightarrow (ok \Rightarrow P)$
 - " \iff-def""
 - $\neg ok \lor \neg ok \lor P$
 - " \lor-idem""
 - $\neg ok \lor P$
 - " \iff-def""
 - $ok \Rightarrow P$

2. " defn. $H1$"

$H1(P)$

H2 is idempotent

We want to show that $H2 \circ H2 = H2$

Reduce Lhs to Rhs

1. $H2(H2(P))$
 - " defn. $H2$"
 - $(P; J): J$
 - " \triangleright-assoc"
 - $P; (J; J)$
 - " Lemma: $J; J = J$"
 - $P; J$
 - " defn. $H2$"

2. $H2(P)$

Lemma Proof (I)

Goal: $J; J = J$

Reduce lhs to rhs

1. $J; J$
 - " defn. J"
 - $((ok \Rightarrow ok') \land \nu' = \nu)\land ((ok \Rightarrow ok') \land \nu' = \nu)$
 - " \iff-def, \triangleright-def, substitution"
 - $\exists ok_m, \nu_m :$
 - $\neg ok \lor ok_m \land \nu_m = \nu \land (\neg ok_m \lor ok') \land \nu' = \nu_m$
 - " \exists-1pt, $\nu_m = \nu$"
 - $\exists ok_m : (\neg ok \lor ok_m) \land (\neg ok_m \lor ok') \land \nu' = \nu$
 - " shrink scope, $\land\lor$-distr, $\lor\land$-distr"
 - $\nu' = \nu \land (\exists ok_m :$
 - $\neg ok \land \neg ok_m \lor \neg ok \land ok'$
 - $\lor ok_m \land \neg ok_m \lor ok_m \land ok')$

Lemma Proof (II)

$\nu' = \nu \land (\exists ok_m :$

1. $\neg ok \land \neg ok_m \lor \neg ok \land ok'$
2. $\lor ok_m \land \neg ok_m \lor ok_m \land ok')$

- " witness, simplify"

$\nu' = \nu \land (\neg ok \land \neg ok \lor ok'$

- " \lor-absorb"

$\nu' = \nu \land (\neg ok \land ok')$

- " \iff-def"

$\nu' = \nu \land (ok \Rightarrow ok')$

- " defn. J"
Aside: the (un-)Healthiness of J

- We have just seen that $J; J = J$, i.e. that J is H_2-healthy.
- What about $H_1(J)$ and $H_3(J)$?
- Careful calculation shows:

\[
\begin{align*}
H_1(J) &= \text{ok} \Rightarrow J = \text{skip} \\
H_3(J) &= J; \text{skip} = \text{skip}
\end{align*}
\]

- So J is not H_1 or H_3, and attempts to “healthify” it using either H_1 or H_3 turn it into skip.

H3 is idempotent

We want to show that $H_3 \circ H_3 = H_3$.

Reduce Lhs to Rhs:

\[
\begin{align*}
H_3(H_3(P)) &= \"\text{defn. } H_3 \" (P; \text{skip}; \text{skip} \\
&= \"\text{;}\text{-assoc} \" P; (\text{skip}; \text{skip}) \\
&= \"\text{skip;}\text{-unit}, with } P = \text{skip } \" P; \text{skip} \\
&= \"\text{defn. } H_3 \" H_3(P)
\end{align*}
\]

Designs: a final comment

- Given D which we know is a design (because we have shown it to be H_1 and H_2) can we write it in the form $P \vdash Q$?
- Can we determine P and Q, given D?
- Yes:
 - If D is H_1- and H_2-healthy, then $D = (\neg D') \vdash D'$

 - The precondition is those situations that do not lead to $\text{ok}' = \text{False}$, i.e. $\neg D'[\text{False}/\text{ok}']$
 - The post condition is those situations that end with $\text{ok}' = \text{True}$, i.e. $D[\text{True}/\text{ok}']$

Other Useful Properties of Healthiness

- We require healthiness transformers to be idempotent.
- Another useful property is having independence of healthiness conditions:
 - the order in which most healthiness transformers are applied is immaterial.
 - e.g.

\[
\begin{align*}
H_1 \circ H_2 &= H_2 \circ H_1 \\
H_1 \circ H_3 &= H_3 \circ H_1 \\
H_3 \circ H_2 &= H_2 \circ H_3
\end{align*}
\]

We say that H_1, H_2 and H_3 “commute”.

Why Commuting is good

- Commuting healthiness is very convenient. Knowing P is both H_1 and H_2 allows us to replace it by either $H_1(P)$ or $H_2(P)$ in a proof.
- If H_a and H_b (say) don’t commute, then $H_a(H_b(P))$ and $H_b(H_a(P))$ are different.
- If P is $(H_a \circ H_b)$-healthy, then we can replace P in a proof by $H_a(P)$ or $H_b(H_a(P))$ but not by $H_b(P)$.

Why/Why not? (do in class)

Proof that H_1 and H_2 commute

- Goal: $H_1 \circ H_2 = H_2 \circ H_1$
- alternatively

\[H_1(H_2(P)) = H_2(H_1(P)) \]

- Strategy: reduce both sides to same

Proof that H_1 and H_2 commute (LHS)

\[
H_1(H_2(P)) \\
= \text{ " defns., } H_1, H_2 \text{ "}
\]

\[
ok \Rightarrow (P; J) \\
= \text{ " } \Leftrightarrow\text{-def } \text{ "}
\]

\[
\neg ok \lor (P; J) \\
= \text{ " } \neg ok \text{ (a.k.a. miracle) is a design and hence } H_2 \text{ "}
\]

\[
H_2(\neg ok) \lor (P; J)
\]

Proof that H_1 and H_2 commute (RHS)

\[
H_2(H_1(P)) \\
= \text{ " defns., } H_1, H_2 \text{ "}
\]

\[
(ok \Rightarrow P); J \\
= \text{ " } \langle \lor; \text{-distr}\rangle \text{ (see below) "}
\]

\[
(\neg ok; J) \lor (P; J) \\
= \text{ " } \text{ defn. } H_2 \text{ "}
\]

\[
H_2(\neg ok) \lor (P; J)
\]

\[
\square
\]

We have used $\langle \lor; \text{-distr}\rangle$: $(P \lor Q); R \equiv (P; R) \lor (Q; R)$ whose proof is left as a (voluntary) exercise.
Monotonicity of HOFs

- We have an ordering on predicates based on refinement
 - If P refines S, then we view S as having less information than P, and we write $S \sqsubseteq P$.
 - We see Chaos, the “whatever” specification as least by this ordering
 - We view miracle, the “satisfy-anything” (infeasible) program as top-most
- We now introduce the notion of monotonicity for HOFs
- HOF F is monotonic if, for all predicates P and Q

 \[
 (P \sqsubseteq Q) \Rightarrow (F(P) \sqsubseteq F(Q))
 \]

- Note how monotonicity is defined as a 2nd-order predicate!
- This property states that if F is monotonic then refining its argument refines its result.

Program Language Constructs as HOFs

- We can re-cast much of our program language constructs as HOFs.
- For example, consider the while loop: $c \ast P$
 - We can consider this a function of P (how?)
 - Simple, define
 \[WLOOP_c(P) \equiv c \ast P \]
- It turns out that $WLOOP_c$ is monotonic
- So if $P \sqsubseteq Q$ then $WLOOP_c(P) \sqsubseteq WLOOP_c(Q)$, i.e. $c \ast P \sqsubseteq c \ast Q$

2-place HOFs

- With 2-place HOFs we can define the other language constructs
 - \[
 SEQ(P, Q) \equiv P : Q
 \]
 \[
 COND_c(P, Q) \equiv P < c > Q
 \]
- We say a 2-place HOF $F(_ , _)$ is:
 - Monotonic in 1st arg. if $P \sqsubseteq Q \Rightarrow F(P, R) \sqsubseteq F(Q, R)$
 - Monotonic in 2nd arg. if $P \sqsubseteq Q \Rightarrow F(R, P) \sqsubseteq F(R, Q)$
- $F(_ , _)$ is simply Monotonic, if it is monotonic in both arguments
- Both SEQ and $COND_c$ are (simply) Monotonic
- The notion of monotonicity extends to n-place HOFs in the obvious way.
Monotonicity preserved by composition

If \(F \) and \(G \) are monotonic, then so is \(F \circ G \)

\[
\begin{align*}
P & \subseteq Q \\
\Rightarrow & \quad \text{"} G \text{ is monotonic "} \\
G(P) & \subseteq G(Q) \\
\Rightarrow & \quad \text{"} F \text{ is monotonic "} \\
F(G(P)) & \subseteq F(G(Q))
\end{align*}
\]

This generalises to \(n \)-place HOFs as well.

Testing for Monotonicity

- There are two ways to test \(F \) to see if it is monotonic.
 - The hard (direct) way:
 Prove the relevant (2nd-order) theorem:
 \[
 \forall P, Q \ (P \subseteq Q) \Rightarrow (F(P) \subseteq F(Q))
 \]
 - An easier (indirect way):
 Consider the definition of \(F \), which will look something like:
 \[
 F(P) \triangleq \text{a predicate mentioning } P \text{ somewhere}
 \]
 By analysing the “predicate mentioning \(P \)” we can
determine (to a great extent) if \(F \) is monotonic.

Monotonicity Analysis

- \(F(P) \) is monotonic if every occurrence of \(P \) in its definition
 is at a “positive” location.
- A location is positive if we pass down through an even
 number of negations to get to it.
 - a negation here is either
 (i) going through an application of \(\neg \), or
 (ii) going down the lhs of \(\Rightarrow \) (why?)
- A location is negative if we pass down through an odd
 number of negations to get to it.
- If \(P \) occurs in both positive and negative locations, then it
 occurrences are said to be mixed.
 - passing through either argument of \(\equiv \) results in a mixed
 occurrence.
- Saoithín keeps track of a location’s polarity as focus is
 moved into a predicate.

Anti-Monotonicity

- HOF \(F \) is anto-monotonic if, for all predicates \(P \) and \(Q \)
 \[
 (P \subseteq Q) \Rightarrow (F(Q) \subseteq F(P))
 \]
- \(F(P) \) is anti-monotonic if every occurrence of \(P \) is in a
 negative location.
Monotonicity Example I

Is $F(P) \equiv P \land (\exists x \cdot Q \Rightarrow P)$ monotonic?

$P \land (\exists x \cdot Q \Rightarrow P)$

"mark occurrence polarity"

$P^+ \land (\exists x \cdot Q^- \Rightarrow P^+)^+$

"both P are labelled with $+$"

F confirmed monotonic

Monotonicity Example II

Is $F(Q) \equiv P \land (\exists x \cdot Q \Rightarrow P)$ monotonic?

$P \land (\exists x \cdot Q \Rightarrow P)$

"mark occurrence polarity"

$P^+ \land (\exists x \cdot Q^- \Rightarrow P^+)^+$

"the sole Q is labelled with $-$"

F confirmed non-monotonic

Monotonicity Example III

Is $F(P) \equiv P \land \lnot (\exists x \cdot P \Rightarrow Q)$ monotonic?

$P \land \lnot (\exists x \cdot P \Rightarrow Q)$

"mark occurrence polarity"

$P^+ \land \lnot (\exists x \cdot P^+ \Rightarrow Q^-)^-$

"both P are labelled with $+$"

F confirmed monotonic

Monotonicity Example V

Is $F(P) \equiv P \land (P \equiv Q)$ monotonic?

$P \land (P \equiv Q)$

"mark occurrence polarity"

$P^+ \land (P^+ \equiv Q^-)^+$

"so, not monotonic then..."

$= P \land Q$

"logic (exercise)"

$P^+ \land Q^+$

"mark occurrence polarity"

"so is monotonic after all !!!"

This example shows the limitations of this technique for testing for monotonicity
Polarity Testing: preparation

- The last example shows a limitation of polarity marking for assessing monotonicity.
- The problem area was any operator that introduces mixed polarity.
- One strategy is to simplify the predicate by replacing $P \equiv Q$ by either

 $$(P \Rightarrow Q) \land (Q \Rightarrow P)$$

 or

 $$(P \land Q) \lor (\neg P \land \neg Q)$$

 Then do further simplification, down to the “the or-ing of the and-ing of possibly negated atomic predicates”.
- However this is getting almost as complicated as doing a direct proof of monotonicity.

Anti-monotonicity

- A function F is anti-monotonic if

 $$(P \sqsubseteq Q) \Rightarrow (F(Q) \sqsubseteq F(P))$$

- A function $F(P) = \ldots$ is anti-monotonic if P occurs only at negative locations.

Refinement Revisited

- We are now in a position to look at refinement again.
- A key property we want of refinement is that it be compositional:
 - we should be able to refine a specification into code in small steps.
 - This breaks into two aspects:
 - Transitivity: we want to proceed by stages

 $$(S \sqsubseteq D) \land (D \sqsubseteq P) \Rightarrow S \sqsubseteq P$$

 We can refine S first to D, and then refine that to P.
 - Monotonicity: we want to work on sub-parts

 $$(D \sqsubseteq P) \Rightarrow F(D) \sqsubseteq F(P)$$

 We can refine $F(D)$ by refining component D into P.

Spec-/Program-Construct Monotonicity

- Having specification and programming constructs that are monotonic is very important in allowing practical refinement.
- We have seen that the program constructs (SEQ, $COND_c$, $WLOOP_c$) are monotonic.
- What about specification frames ($w : [P, Q]$), or designs ($P \vdash Q$)?
- Lets define HOFs for these:

 $$SPEC_w(P, Q) \triangleq w : [P, Q]$$

 $$DSGN(P, Q) \triangleq P \vdash Q$$

 Are they monotonic?
Designs, Frames and (Anti-)Monotonicity

- Expand our definitions of $SPEC_w$ and $DSGN$:

\[
SPEC_w(P, Q) = ok \land P \Rightarrow ok' \land Q \land \nu' = \nu
\]

\[
DSGN(P, Q) = ok \land P \Rightarrow ok' \land Q
\]

- We find that both are monotonic in their second argument, but anti-monotonic in their first.

- This explain why in refinement laws, in order to show that

\[
(P \vdash Q) \sqsubseteq (R \vdash S)
\]

it is necessary to show $R \sqsubseteq P$, rather than vice-versa.

- In other words, preconditions appear in a negative position.

Correctness via Verification Conditions

- Introduce notion of assertion statements

- Programmer adds assertions to program at appropriate points

- Verification Conditions are automatically extracted

- Verification conditions are proven (automatically?).

- Technique tailored for sequential imperative programs

Assertions

- An assertion $c\perp$ is a (specification) statement that a condition holds.
 - if c is true, then $c\perp$ behaves like Skip
 - if c id false, then $c\perp$ behaves like Chaos

\[
c\perp \equiv \text{Skip} < c \triangleright \text{Chaos}
\]

- Often written as as $\{c\}$ in the literature

- In UTP we can reason about them directly (e.g.):

\[
b\perp; c\perp = (b \land c)\perp
\]

Verification Conditions

- A verification condition (VC) is a predicate relating two assertions

- Verification conditions depend on the program fragment between the two assertions.

- Given (suitably) annotated program $\text{pre}_\perp; \text{prog}; \text{post}_\perp$:
 - we can automatically derive a VC involving pre_\perp and post_\perp
 - that depends on the structure and contents of prog.

- Hope: VCs are simple enough to be proven automatically.

- Think of them as machine-readable (machine-verifiable?) comments!
Appropriate Annotations

A program is appropriately annotated if
• in a sequence $P_1; P_2; \ldots; P_n$ there is an assertion before every statement that is not an assignment or Skip.
• in every while-loop there is an (invariant) assertion at the start of the loop body
• The first assertion should be a consequence of the pre-condition from the specification
• The last assertion should imply the specification post-condition.
• Note: this approach works for post-conditions that are conditions (i.e. snapshots of state, and not before-after relations).

An annotation example

The integer division algorithm from [Hoare69] with annotations:

\[
\begin{align*}
true \perp; \\
r &:= x; \\
q &:= 0; \\
(y \leq r) \ast \\
(x = r + y \ast q) \perp; \\
r &:= r - y; \\
q &:= q + 1; \\
(x = r + (y \ast q) \land r < y) \perp
\end{align*}
\]

Generating VCs

• VCs are generated for all the program statements
• We shall define VC generation recursively over program structure

\[genVC : Program \rightarrow \mathbb{P}VC \]

VC generation (;)

• Given that the last statement is an assignment

\[
\begin{align*}
genVC(p_\perp; P_1; \ldots; P_{n-1}; v := e; q_\perp) \\
= \quad genVC(p_\perp; P_1; \ldots; P_{n-1}; q[e/v]_\perp)
\end{align*}
\]

We drop the assignment and replace all free occurrences of v in the last assertion by e.

• Given that the last statement is an not an assignment

\[
\begin{align*}
genVC(p_\perp; P_1; \ldots; P_{n-1}; r_\perp; r_\perp; P_n; q_\perp) \\
= \quad genVC(r_\perp; P_n; q_\perp) \\
\cup \quad genVC(p_\perp; P_1; \ldots; P_{n-1}; r_\perp)
\end{align*}
\]

We process the last statement and the recursively treat the rest of the sequence.
VC generation (:=)

\[
\text{genVC}(p; x := e; q) \triangleq \{ p \Rightarrow q[e/v] \}
\]

The pre-condition must imply the post-condition with \(v \) replaced by \(e \).

Example:

\[
\text{genVC}(p; r := r - y; q) \triangleq \{ p \Rightarrow q\[r - y/r] \}
\]

So, given \((x = r + y * q)\); \(r := r - y \), what assertion at the end will work?

- Not \((x = r + y * q)\), because
 \[
x = r + y * q \implies x = r - y + y * q
 \]

- Assertion \(x = r + y * (q + 1)\) does work, because
 \[
x = r + y * q \implies x = r - y + y * (q + 1)
 \]

VC generation (≤)

\[
\text{genVC}(p; P; c \cdot i; q) \triangleq \{ p \Rightarrow i, i \wedge \neg c \Rightarrow q \}
\]

These correspond closely to our proof technique for loops:

- \(p \Rightarrow i \) — pre-condition sets up invariant
- \(i \wedge \neg c \Rightarrow q \) — invariant and termination satisfies postcondition
- \((i \wedge c) \wedge P; i \) — invariant and loop-condition preserve the invariant

VCs generated by our example.

- Do in class
- Solution
 \[
 \begin{align*}
 \text{true} & \Rightarrow x = x \land 0 = 0 \\
 r = x \land q = 0 & \Rightarrow x = r + (y * q) \\
 x = r + y * q \land (y \leq r) & \Rightarrow x = r + (y * q) \land r < y \\
 x = r + y * q \land y \leq r & \Rightarrow x = r - y + (y * (q + 1))
 \end{align*}
 \]

- These are simple enough to do by hand (or with Saoithin).
- Automated provers with good arithmetic facilities should also handle these.
VCs in the “real world”

VC generation and proof is used in a wide range of verification tools:
- SparkADA — dialect of ADA used by Praxis used in the Tokeneer project
- Java/ESC — Extended Static Checker for Java (uses Java Modelling Language for assertion annotations)
- Spec# — Microsoft’s Specification/Verification oriented language
Avoiding Annotations

- Using VCs requires lots of annotations by the programmer
- Can be good discipline for documentation code
- Can it be avoided?
- Can it be automated?

Given \(\text{pre} \sqsubseteq \text{post} \), can we generate the internal assertions, and then the VCs?

Another look at refinement

- We want to determine if \(\text{pre} \vdash \text{post}' \) is refined by \(\text{prog} \)

\[
\begin{align*}
\text{pre} \vdash \text{post}' & \sqsubseteq \text{prog} \\
& = [\text{prog} \Rightarrow \text{pre} \vdash \text{post}'] \\
& = [\text{prog} \Rightarrow (\text{ok} \wedge \text{pre} \Rightarrow \text{ok}' \wedge \text{post}')] \\
& = [\text{ok} \wedge \text{pre} \Rightarrow (\text{prog} \Rightarrow \text{ok}' \wedge \text{post}')] \\
& = [\text{ok} \wedge \text{pre} \Rightarrow \forall \text{ok}_m, \nu_m \bullet \text{prog} \Rightarrow \text{ok}' \wedge \text{post}'] \\
& = [\text{ok} \wedge \text{pre} \Rightarrow \exists \text{ok}_m, \nu_m \bullet \text{prog} \wedge (\text{ok}' \Rightarrow \neg \text{post}')] \\
& = [\text{ok} \wedge \text{pre} \Rightarrow \neg (\text{prog} \land \neg \text{post}')] \\
\end{align*}
\]

\(\neg (\text{prog} : \neg \text{post}') \) is the weakest condition under which \(\text{prog} \) is guaranteed to achieve \(\text{post}' \)

Weakest Precondition

- We define a new language construct

\[\text{prog wp post} \]

It means the weakest pre-condition under which running \(\text{prog} \) will guarantee outcome (condition) \(\text{post} \).

- In UTP we can define it as

\[Q \text{ wp } r \equiv \neg (Q; \neg r') \]

Look familiar?

- It can be shown to obey the following laws:

\[
\begin{align*}
x := e \text{ wp } r & \equiv r[e/x] \\
P; Q \text{ wp } r & \equiv P \text{ wp } (Q \text{ wp } r) \\
(P \triangleleft c \triangleright Q) \text{ wp } r & \equiv (P \text{ wp } r) \triangleleft c \triangleright (Q \text{ wp } r) \\
(P \sqcap Q) \text{ wp } r & \equiv (P \text{ wp } r) \sqcap (Q \text{ wp } r) \\
\end{align*}
\]
Using WP

- The idea is to start with the post-condition and work backwards, generating weakest conditions.

\[
P_1; \ldots; P_{n-2}; P_{n-1}; P_n \text{ wp post}
\]

\[
\equiv P_1; \ldots; P_{n-2}; P_{n-1} \text{ wp } (P_n \text{ wp post})
\]

\[
\equiv P_1; \ldots; P_{n-2} \text{ wp } (P_{n-1} \text{ wp } (P_n \text{ wp post}))
\]

\[
\vdots
\]

\[
\equiv P_1 \text{ wp } (\ldots P_{n-2} \text{ wp } (P_{n-1} \text{ wp } (P_n \text{ wp post})) \ldots)
\]

- We then show that the precondition \textit{pre} implies the overall weakest precondition

\[
\text{pre} \Rightarrow P_1; \ldots; P_{n-2}; P_{n-1}; P_n \text{ wp post}
\]

WP for while loops

- If the user supplies an Invariant \textit{inv} and variant \textit{V}, then we can define \(c \star P \text{ wp } r \)

- If we ignore termination, we can define the following

\[
(c \star P) \text{ wp } r \triangleq \text{ inv}
\]

\[
\land (c \land \text{ inv} \Rightarrow P \text{ wp inv})
\]

\[
\land (\neg c \land \text{ inv} \Rightarrow r)
\]

(technically this is weakest \textit{liberal} precondition — WLP)

- We can automatically put in placeholder names for \textit{inv} (and \textit{V}), but at some stage the user will have to decide what they should be.

The problem with WP

- Where is the while-loop?

- We can show the following for WP and while-loops:

\[
(c \star P) \text{ wp } r \triangleq w \text{ such that}
\]

\[
w \Rightarrow (\neg c \Rightarrow r)
\]

\[
w \Rightarrow c \Rightarrow P \text{ wp } w
\]

\[
w \text{ is the weakest such predicate}
\]

- Calculating \(c \star P \text{ wp } r \) involves some form of a search for such a \textit{w}.

- Automating it successfully is equivalent to solving the Halting Problem (impossible).

CSP: Communicating Sequential Processes

- Despite its title, it covers concurrent processes as well!

- It is a theory of interacting components.
Interacting Components

- A Component, or **Process**, is:
 - independent self-contained entity,
 - with an **interface** with which it interacts with its **environment**.
- We can **compose** processes to form larger systems, which are themselves processes with their own interfaces and interactions.
- This is essentially the CSP view of the world.

Events

- A Process interface will be described as a **set of Events**.
- Event:
 - atomic indivisible action
 - either performed by processes, ...
 - ...or done to processes by the environment
- The **environment** of a process is anything outside a process capable of participating in the events on that process's interface.
- Interfaces constitute a **static specification** of a process.

Process Behaviour

- We need to know about a processes behaviour **on its interface**.
- In other words, the interface defines what is **observable** about the process.
- The emphasis here is on observing the **external activity**, rather than the internal workings.

What's in a Name?

- We need to name two distinct entities: Processes and Events.
- We shall adopt a convention that uses Uppercase for Processes, and lowercase for events.
- Names can have structure:
 - Process State: **ProcessName**(state-values)
 - e.g. a counter process whose state is the current count value: **Count**(5).
 - Event Structure: **a.b.c.d**
 - e.g. value 17 occurred on channel 5: **ch.5.17**.
- Event structure does not conflict with the notion of the event being atomic and indivisible — the whole event occurs, or none of it.
Example: Lift System (I)

- A lift can be at one of five floors, with its doors either open or closed:
 \[\text{Lift}(\text{floor} : \{1 \ldots 5\}, \text{dooropen} : \mathbb{B}) \]

- The lift can participate in four events: going up, down, opening and closing doors:
 \[\text{up, down, open, close} \]

- For example a lift with its door open at floor 3 is captured by the process \(\text{Lift}(3, \text{true}) \).

Example: Lift System (II)

- How do we capture the fact that \(\text{Lift}(3, \text{true}) \) should only be able to engage in a \text{close} event?
- How do we capture the fact that this lift, once it has performed \text{close}, will then be process \(\text{Lift}(3, \text{false}) \), and will then be able to do \text{open}, \text{up} and \text{down} events?

CSP: Process Description Language

- The CSP Language is designed to describe exactly the kind of situation that arises with our Lift example.
- We first need to describe its syntax.
- We also present an informal description of the behaviour captured by the notation.

CSP: The language

\[a, b, a.b, a.b.c, \ldots, g \in \text{Events} \]

\[P, Q, R \in \text{Proc} \]

\[\text{g} \in \text{Guard} \]

Events (possibly structured)
- guard predicates
- Processes
- do nothing, not even terminate
- do nothing and terminate
- do \(a \), then act like \(P \)
- guarded process
- sequential composition
- internal choice
- external choice
- parallel composition
- event hiding
- do anything
Stop

- The simplest process is **Stop**.
- It *never* engages in any events in its interface.
- It *never* terminates.
- The process **Stop** is the canonical representation of **Deadlock**

Skip

- The next simplest process is **Skip**.
- It does not engage in any events, but instead just terminates.
- It's behaviour is very like that of **skip** in imperative programs.

\[a \rightarrow P \]

- Pronounced “**a then P**”
- A process which can only perform an **a** initially
- Once it has done the **a** event, it then proceeds to behave like **P**.

\[g & P \]

- Pronounced “**g guard(s) P**”
- If guard **g** is true, then act like **P**
- If guard **g** is false, then act like **Stop**
- Guard **g** is usually defined over the process state.
\[P; Q \]

- Behave like \(P \) at first
- If \(P \) terminates, then proceed to behave like \(Q \)
- Analogous to \(; \) in imperative programming, except that \(P \) failing to terminate is not a problem.

\[P \sqcap Q \]

- Called “internal choice”
 - The process can behave either like \(P \) or \(Q \)
 - The process makes the decision which to do, without reference to the environment.
 - Analogous to the specification notation \(P \sqcap Q \) from the imperative programming world.
 - Also known as
 - non-deterministic choice
 - demonic choice

\[P \square Q \]

- Called “external choice”
 - The process can behave either like \(P \) or \(Q \)
 - The process makes the decision which to do, always in agreement with the environment.
 - If the environment offers an event that \(P \) is willing to do, then \(P \) runs (similarly for \(Q \)).
 - If the environment offers an event that both \(P \) and \(Q \) are willing to do then it behaves like \(P \sqcap Q \)

\[P \|_{A} Q \]

- Called “parallel composition”
 - Both \(P \) and \(Q \) run simultaneously
 - They must synchronise on events in \(A \) both must agree to perform such events simultaneously
 - Events not in \(A \) are performed independently by either process.
 - \(P \|_{A} Q \) terminates when both \(P \) and \(Q \) have terminated.
Called “event hiding”
- It behaves like P, except that events in A are hidden (internal events not visible to outside world)
- Used to structure large systems, encapsulating “local” communication.

Chaos
- Does “anything”
- Is the most unpredictable process that does not generate instability
- Willing to perform any event
- May refuse to perform any event
- It might terminate, it might not …
- Bottom of the refinement lattice
- Very similar to Chaos in imperative programs

Recursion
- We use recursion to define iterative/non-terminating processes

\[M, N \in \text{Names} \]
\[N \triangleq P \]
\[N(x, y) \triangleq P \]

- We extend our process notation to allow names, and applications of higher-order functions used in definitions

\[\text{Proc} ::= \ldots \]
\[N \]
\[N(a, b) \]

- Recursion arises in \[N \triangleq P \]
 if \(P \) mentions \(N \) somewhere.

Lift System (III)

We can now define our (5-floor) lift process:

\[\text{opened} \triangleq \text{True} \]
\[\text{closed} \triangleq \text{False} \]

\[\text{Lift}(f, \text{opened}) \triangleq \text{close} \to \text{Lift}(f, \text{closed}) \]
\[\text{Lift}(f, \text{closed}) \triangleq \big(\text{open} \to \text{Lift}(f, \text{opened}) \big) \]
\[\quad \big(f < 5 \& \text{up} \to \text{Lift}(f + 1, \text{closed}) \big) \]
\[\quad \big(f > 1 \& \text{down} \to \text{Lift}(f - 1, \text{closed}) \big) \]
CSP: Semantics

- What does it all mean — precisely?
- How is this be formalised in UTP?
- We shall treat CSP process syntax as “sugar” for UTP predicates.

Real Life: Needham-Schroeder Public Key Protocol

- Want to establish mutual authentication between *initiator* A and *responder* B.
- Using public-key protocol:
 - Agents have public keys known to all (\(K_a, K_b\))
 - Agents have secret keys, known only to themselves (\(K^{-1}_a, K^{-1}_b\))
 - Agents can generate *nonces* (random numbers) (\(N_a, N_b\))
- The Needham-Schroeder Public Key Protocol (NS-PKP)
 - published in 1978
 - uses a 7-message sequence to ensure A and B know they are talking to each other.

A Formalism(?) for Describing Protocols

- If agent A includes its own name in a message, we denote that simply as \(A\).
- \(\{M\}_k\) denotes message \(M\) encrypted with key \(k\).
- We denote A’s public/secret keys respectively as \(PK(A), SK(A)\).
- We build up composite messages using dots \((A.b.\{X\}_k)\).
- A message \(m.n\) from A to B is described as \(A \rightarrow B : \ m.n.o\)

NS-PKP (3-step version)

- We shall focus on a shorter 3-step version
- The protocol:
 - \(A \rightarrow B : \ A.B.\{N_a.A\}_{PK(B)}\)
 - A sends B his name and nonce, encoded with B’s public key.
 - \(B \rightarrow A : \ B.A.\{N_a.N_b\}_{PK(A)}\)
 - B uses his private key to decode A’s message, and replies with A’s nonce and his own, encrypted for A’s eyes only
 - \(A \rightarrow B : \ A.B.\{N_b\}_{PK(B)}\)
 - A decodes the previous message and send B’s nonce back
- At the end both A and B are convinced they are talking to each other, because there is no way anyone else could get at the nonces …
17 years later

- Gavin Lowe, then a postdoc at Oxford, encodes NS-PKP in CSP.
- System communication is modelled by three channels:
 - $comm$ — regular protocol communication
 - $fake$ — a fake protocol message (receiver unaware of fake)
 - $intercept$ — an intercepted protocol message (sender unaware of intercept)
- Other channels used to model which users are participating in what protocol sessions.

The NS-PKP protocol in CSP

- An intruder-free run of the protocol is modelled as:

 $$INITIATOR(a, n_a) \triangleq
 \begin{align*}
 &user.a\times b \to I.running.a.b \to \\
 &comm!Msg1.a.b.Encrypt.key(b).n_a.a \to \\
 &comm!Msg2.b.a.Encrypt.key(a)?n'_a.n_b \to \\
 &n_a = n'_a &
 \end{align*}

 $$

- The $user$ channel sets up a session by identifying responder b.
- The $I\ldots$ and $commit$ events record details about the protocol run.

Modelling the Intruder

- The intruder can:
 - Overhear/intercept any message
 - Decrypt messages encrypted with his public key
 - Introduce new messages
 - Replay messages, changing plain-text parts.
- Intruder is in the network
- Other agents can/may interact with intruder as if he was a legitimate agent.
- $I(m1s, m2s, m3s, ns)$ models an intruder that so far cannot decrypt step i messages in set mis, but knows nonces in ns.
- Initially intruder has seen no messages and knows only their own nonce: $I(\emptyset, \emptyset, \emptyset, \emptyset)$

Modelling the System

- Assembling the (good) agents

 $$AGENTS \triangleq
 \begin{align*}
 &INITIATOR1 \parallel comm.session.A.B \parallel RESPONDER1 \\
 &\ldots \\
 &SYSTEM \triangleq
 \begin{align*}
 &AGENTS \parallel fake, comm, intercept \parallel INTRUDER \\
 &\ldots \\
 \end{align*}
 \end{align*}

 $$

- Agents put in parallel with (bad) intruder

- A specification of correct behaviour (AIR) was then developed in CSP
- Plan: prove that $AIR \subseteq SYSTEM$
CSP Tool Support

- A proof by hand of correctness would be hard and error-prone
- Gavin Lowe used a tool called “FDR”
 - “FDR” — Failures-Divergence Refinement
 - Reads an ASCII syntax version of CSP
 - Does exhaustive search to check an assertion
- See http://www.fsel.com

Failure!

- The check with FDR failed
- NS-PKP was found to be vulnerable to a “man-in-the-middle” attack
- This attack had gone unnoticed for 17 years!

The Attack

- It interleaves two runs α and β, one between A and I, the other between I imitating A to B (here denoted as $I(A)$).

<table>
<thead>
<tr>
<th>$A \rightarrow I$</th>
<th>$A.I.{N_a.A}_{PK(I)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I(A) \rightarrow B$</td>
<td>$B.A.{N_a.A}_{PK(B)}$</td>
</tr>
<tr>
<td>$B \rightarrow I(A)$</td>
<td>$B.A.{N_a,N_b}_{PK(A)}$</td>
</tr>
<tr>
<td>$I \rightarrow A$</td>
<td>$I.A.{N_a,N_b}_{PK(A)}$</td>
</tr>
<tr>
<td>$A \rightarrow I$</td>
<td>$A.I.{N_b}_{PK(I)}$</td>
</tr>
<tr>
<td>$I(A) \rightarrow B$</td>
<td>$A.B.{N_b}_{PK(B)}$</td>
</tr>
</tbody>
</table>

Corrections

- Gavin Lowe then derived a corrected protocol:
 1. $A \rightarrow B : A.B.\{N_a.A\}_{PK(B)}$
 - A sends B his name and nonce, encoded with B's public key.
 2. $B \rightarrow A : B.A.\{N_a,N_b,B\}_{PK(A)}$
 - B uses his private key to decode A's message, and replies with A's nonce and his own, and his own identity, encrypted for A's eyes only.
 3. $A \rightarrow B : A.B.\{N_b\}_{PK(B)}$
 - A decodes the previous message and send B's nonce back.
- He checked it also with FDR — it came up clean.
- This protocol known known (in educated circles) as the Needham-Schroeder-Lowe protocol.