
Many approaches to programming language semantics keep the programming language and the semantics language separate

\[\text{Meaning} \left[\text{program} \right] = \text{mathetical stuff} \]

What's inside the brackets ([]) is syntax, outside is semantics

Tony Hoare, inspired by Eric Hehner, suggested this distinction was artificial and unnecessary.

Extending our Predicate Language

- We are going to extend our predicate language to include our program language:

 \[
 P, Q \in \text{Pred} \quad ::= \quad \ldots \text{skip} \quad | \quad v := E \quad | \quad P; Q \quad | \quad P \triangleleft c \triangleright Q \quad | \quad c \star P
 \]

 \text{skip} is a predicate

- Program \text{skip} leaves that state unchanged

 \[\text{skip} \triangleq x' = x \land y' = y \land z' = z \]

 (here assuming that our only variables are \(x, y \) and \(z \) !)

- We have a little problem here — we need to know which variables are in scope.

- \(c \) denotes a \textit{condition} (boolean expression)

- In effect, we shall define our programming constructs as shorthand for equivalent predicates
Alphabets

We associate the set of variables in scope with every predicate P:
- this set is called the alphabet of the predicate (αP).
- if variable x is in scope, the alphabet contains x and x'
- all variables mentioned in P must be in αP.
- we denote all the un-dashed alphabet variables by $\text{in} \alpha P$
- we denote all the dashed alphabet variables by $\text{out} \alpha P$

Alphabet example

consider the assignment

\[x := e \]

in a program where x, y and z are in scope.
- e can only mention these three variables
- We have

\[
\begin{align*}
\alpha(x := e) &= \{x, x', y, y', z, z'\} \\
\text{in} \alpha(x := e) &= \{x, y, z\} \\
\text{out} \alpha(x := e) &= \{x', y', z'\}
\end{align*}
\]

Alphabet labelling

We can label language constructs with their alphabet (A, say)
- skip_A and $x :=_A e$
- We can infer alphabets for other language constructs
- We often omit alphabets where obvious from context
- Frequently we single out a few variables (zero or more) and just want to refer to the rest as one — we use ν for this. so $\nu' = \nu$ means $x'_1 = x_1 \land \ldots \land x'_n = x_n$ where $x_1 \ldots x_n$ are the variables in ν.
- We are talking about using “alphabetised predicates” to give meanings to programs

skip as an alphabetised predicate

\[
\begin{align*}
\text{skip}_{\text{def}} & \quad \text{skip}_A \overset{\text{def}}{=} \nu' = \nu, \quad A = \{\nu, \nu'\} \\
\text{All the variables are unchanged} \\
\text{Example, if } A &= \{i, j, k\}, \text{ then} \\
\text{skip}_A &= \left(i' = i \land j' = j \land k' = k \right)
\end{align*}
\]
\(x := e \) as an alphabetised predicate

- the after-value of \(x \) takes on the value of \(e \), evaluated in the before-state.
- Example, if \(A = \{i, j, k\} \), then
 \[
 j :=_A i + k = (i' = i \land j' = i + k \land k' = k)
 \]

; as a binary predicate operator

- \(P; Q \) is the \textbf{sequential composition} of \(P \) with \(Q \).
- How is this expressed using our predicate notation?
- We phrase its behaviour as follows:
 “\(P; Q \) maps before-state \(\nu \) to after-state \(\nu' \), when there exists a mid-state \(\nu_m \), such that \(P \) maps \(\nu \) to \(\nu_m \), and \(Q \) maps \(\nu_m \) to \(\nu' \),”
- We get the following definition:
 \[
 \langle \langle \vdash-def \rangle \rangle P; Q \equiv (\exists \nu_m \bullet P[\nu_m/\nu] \land Q[\nu_m/\nu])
 \]
- The alphabets involved must satisfy the following conditions:
 \[
 \nu \mapsto \nu', \{x, \ldots, z\}^\prime = \{x', \ldots, z'\}
 \]
 \[
 \text{in}_\nu(P; Q) = \text{in}_\nu P
 \]
 \[
 \text{out}_\nu(P; Q) = \text{out}_\nu Q
 \]

\[\]

Sequential Composition Example

- Consider program \(t := x; x := y \), with \(t \), \(x \) and \(y \) in scope.
- We calculate:
 \[
 t := x; x := y
 = \langle \vdash-def \rangle
 t' = x \land x' = x \land y' = y; x := y
 = \langle \vdash-def \rangle
 t' = x \land x' = x \land y' = y; t' = t \land x' = y \land y' = y
 = \langle \vdash-def \rangle, \text{ noting } \nu \text{ is } t, x, y
 \]
 \[
 \exists t_m, x_m, y_m \bullet
 (t' = x \land x' = x \land y' = y)[t_m, x_m, y_m/t', x', y']
 \land (t' = t \land x' = y \land y' = y)[t_m, x_m, y_m/t, x, y]
 = \langle \vdash-def \rangle, \text{ substitution, twice } \]
 \[
 \exists t_m, x_m, y_m \bullet t_m = x \land x_m = x \land y_m = y
 \land t' = t_m \land x' = y_m \land y' = y
 \]

- We continue:
 \[
 \exists t_m, x_m, y_m \bullet t_m = x \land x_m = x \land y_m = y
 \land t' = t_m \land x' = y_m \land y' = y
 = \langle \vdash-def \rangle
 \]
 \[
 t' = x \land x' = y \land y' = y
 \]\n
- We see that the net effect is like the simultaneous assignment \(t, x := x, y \),
 \(t \) now has the value of \(x \), and \(x \) has the value of \(y \).
as a ternary predicate operator

- $P \triangleleft c \triangleright Q$, behaves like P, if c is true, otherwise it behaves like Q.
- Definition:
 \[
 \langle \langle \triangleright ,-def \rangle \rangle P \triangleleft c \triangleright Q = c \land P \lor \neg c \land Q
 \]
- Alphabet constraints
 \[
 \begin{align*}
 \text{in}_\alpha (P \triangleleft c \triangleright Q) &= \alpha c = \text{in}_\alpha P = \text{in}_\alpha Q \\
 \text{out}_\alpha (P \triangleleft c \triangleright Q) &= \text{out}_\alpha P = \text{out}_\alpha Q
 \end{align*}
 \]

* as a binary predicate operator

- Program $c \odot P$ checks c, and if true, executes P, and then repeats the whole process.
- We won’t define it yet, instead we give a law that describes how a while-loop can be “unrolled” once:
 \[
 \langle \langle \triangleright ,-unroll \rangle \rangle c \odot P = (P ; c \odot P) \triangleleft c \triangleright \text{skip}
 \]
- If c is False, we skip, otherwise we do P followed by the whole loop ($c \odot P$) once more.
- Alphabet constraints
 \[
 \begin{align*}
 \text{in}_\alpha (c \odot P) &= \alpha c = \text{in}_\alpha P \\
 \text{out}_\alpha (c \odot P) &= \text{out}_\alpha P = (\text{in}_\alpha P)'
 \end{align*}
 \]

Example

- Program: $\langle \langle \triangleright \rangle \rangle a \geq b \triangleright (t := a ; a := b ; b := t)$, with alphabet $A = \{a, a', b, b', t, t'\}$
- Meaning:
 \[
 \begin{align*}
 \text{skip}_A &\triangleleft a \geq b \triangleright t :=_A a ; a :=_A b ; b :=_A t \\
 &= \langle \langle \triangleright ,-def \rangle \rangle a \geq b \land \text{skip}_A \\
 \lor \neg (a \geq b) \land (t :=_A a ; a :=_A b ; b :=_A t) \\
 &= \langle \langle \triangleright ,-def \rangle \rangle a \geq b \land \text{skip}_A \\
 \lor \neg (a \geq b) \land (t :=_A a ; a :=_A b ; b :=_A t) \\
 \end{align*}
 \]

Loop example

- $f := 1 ; x := n ; (x > 1) \ast (f := f \ast x ; x := x - 1)$
- Meaning:
 \[
 \begin{align*}
 f' &= f \land x' = 1 \land x = x - 1 \\
 \end{align*}
 \]

There must be a better way !! (next week)
Mini-Exercise 3

Q3.1 Expand out and simplify the predicate definition of
the following program fragment

\[f := f \cdot x; \ x := x - 1 \]

Use the Proof-Section format described in class.
(due in next Thursday, 12noon, in class)
Class 8

all the other variables …

- Consider computing the semantics of

\[
x := x + y; \quad y := x - y; \quad x := x - y
\]

in a scope with variables \(s, t, u, v, w, x, y, z\).

- The program only mentions \(x\) and \(y\), but we have to carry equalities around for \(s, t, u, w\) and \(z\).

- We can tidy-up using the 1-pt law, but this is tedious and error prone.

- Can we show that the above program swaps the values of \(x\) and \(y\), without mentioning the other variables?

- What we need are laws that work at the programming language level (a.k.a. “Laws of Programming”)

Laws of Imperative Programming

- When we give a law stating that programs \(p_1\) and \(p_2\) are the same:

\[
p_1 = p_2
\]

we are stating that both programs have the same behaviour, i.e. that they change the state in the same way.

- Given that our programs are predicates, we can simply use predicate calculus to prove such laws as theorems in the usual way.

- The laws typically show how various combinations of language constructs are related.

(Some) Laws of Programming

- Here \(P\), \(Q\) and \(R\) stand for arbitrary programs, \(A\) for an arbitrary alphabet, \(x\), \(y\) and \(z\) for arbitrary variables, and \(c, e\) and \(f\) for arbitrary expressions

\[
\langle \text{skip-alt} \rangle \quad \text{skip}_A = \ x :=_A x, \quad x \in A
\]
\[
\langle \text{skip-unit} \rangle \quad \text{skip} \ ; \ P = P
\]
\[
\langle \text{-skip-unit} \rangle \quad P \ ; \ \text{skip} = P
\]
\[
\langle \text{-assoc} \rangle \quad P \ ; (Q \ ; R) = (P \ ; Q) \ ; R
\]
\[
\langle \text{:=seq} \rangle \quad x := e; \quad x := f = x := f[e/x]
\]
\[
\langle \text{:=swap} \rangle \quad x := e; \quad y := f = y := f[e/x]; \quad x := e, \quad y \not\in e
\]
\[
\langle \text{<|>|true} \rangle \quad P <\text{True} > Q = P
\]
\[
\langle \text{<|>|false} \rangle \quad P <\text{False} > Q = Q
\]
\[
\langle \text{<|>|seq} \rangle \quad (P c > Q); \ R = (P ; R) c > (Q ; R)
\]
Proof of \langle skip \rangle

- **Goal**: \(\text{skip} \) = \(x := A \) \(x \)
- **Strategy**: reduce rhs to lhs
- **Proof**:
 \[
 x := A \]
 \[
 = \quad \langle := \text{-def} \rangle, \ A = \{ x, x', \nu, \nu' \} \]
 \[
 x' = x \land \nu' = \nu \]
 \[
 = \quad \langle \text{skip} \text{-def} \rangle, \ A = \{ x, x', \nu, \nu' \} \]
 \[
 \text{skip}_A \]

Proof of \langle skip; \rangle

- **Goal**: \(\text{skip} \); \(P \) = \(P \)
- **Strategy**: reduce lhs to rhs
- **Proof**:
 \[
 \text{skip} ; P
 \]
 \[
 = \quad \langle \text{skip} \text{-def} \rangle \]
 \[
 \nu' = \nu \land P
 \]
 \[
 = \quad \langle ; \text{-def} \rangle \]
 \[
 \exists v_m \bullet v_m = \nu \land P[v_m/\nu]
 \]
 \[
 = \quad \langle \exists \text{-1pt} \rangle \]
 \[
 (P[v_m/\nu])[\nu/\nu_m]
 \]
 \[
 = \quad \text{substitution} \ 'inverse' \]
 \[
 P \]

Laws of Substitution

- We have used some “laws of substitution” in our proofs.
- These too have a rigorous basis.
- First, we promote substitution to be part of our predicate language:
 \[
 \text{Pred} \ ::= \ldots | P[e_1, \ldots, e_n/v_1, \ldots, v_n]
 \]
- Next we define its effect on predicates.

Defining Single Substitution

\[
\begin{align*}
 k[e/x] & \equiv k \\
 v[e/x] & \equiv v, \ v \neq x \\
 x[e/x] & \equiv e \\
 (e_1 + e_2)[e/x] & \equiv e_1[e/x] + e_2[e/x] \\
 (\neg P)[e/x] & \equiv \neg P[e/x] \\
 (P \land Q)[e/x] & \equiv P[e/x] \land Q[e/x] \\
 (\forall x \bullet P)[e/x] & \equiv \forall x \bullet P \\
 (\forall v \bullet P)[e/x] & \equiv \forall v \bullet P[e/x], \ v \neq x, \ v \not\in e \\
 (\forall v \bullet P)[e/x] & \equiv \forall w \bullet (P[w/v])[e/x], \ v \neq x, \ v \not\in e, w \not\in P, e, x
 \end{align*}
\]

The constructs not mentioned above follow the same pattern.
We shall now look at the last four lines in more detail.
Substitution and Quantifiers (I)

\((\forall x \cdot P)[e/x] \equiv \forall x \cdot P\)

The simplest case: \(x\) is simply not free in \(\forall x \cdot P\), so nothing changes.

Substitution and Quantifiers (II)

\((\forall v \cdot P)[e/x] \equiv \forall v \cdot P[e/x], \; v \neq x, \; v \notin e\)

- We are not substituting for \(v\), and \(v\) does occur in \(e\), so there is no possibility of name capture.
- We simply recurse to the body predicate \(P\).

Substitution and Quantifiers (III)

\((\forall v \cdot P)[e/x] \equiv \forall w \cdot (P[w/v])[e/x], \; v \neq x, \; v \epsilon e, \; w \notin P, \; e, \; x\)

- The tricky case, where \(v\) occurs in \(e\).
- To avoid name capture of \(v\) in \(e\):
 - Pick a fresh variable \(w\) — i.e. one not currently in use.
 - \(\alpha\)-rename the bound and binding occurrences of \(v\) to \(w\).
 - Then recurse into the now \(\alpha\)-renamed body \(P\).

Laws of single substitution

- We can identify a number of useful laws
 - subst-inv: \(P[x/y][y/x] = P, \; x \notin P\)
 - subst-comp: \(P[e/x][f/x] = P[e[f/x]/x]\)
 - subst-swap: \(P[e/x][f/y] = P[f/y][e/x], \; x \notin f, \; y \notin e\)

- We shall not prove these laws at this point
 - to do so requires induction,
 - over the grammar (?!) of our predicate language.
Substitution Law examples

- **subst-inv**: $P[x/y][y/x] = P, \ x \not\in P$
- $(x + y)[z/x][x/z] = (z + y)[x/z] = x + y$
- The side-condition matters:
 - $(x + y)[y/x][x/y] = (y + y)[x/y] = x + x$
 - $(x + y)[x/y][y/x] = (x + x)[y/x] = y + y$
- **subst-comp**: $P[e/x][f/x] = P[e[f/x]/x]$
 - $x[x + y/x][z/x] = (x + y)[z/x] = z + y$
 - $x[(x + y)[z/x]/x] = x[z + y/x] = z + y$

Simultaneous Substitution

- Simultaneous substitution does several replacements at once:
 - $(x + y)[y^2, k + x/x, y] = y^2 + k + x$
- In general, it is not the same as doing each replacement one at a time:
 - $(x + y)[y^2/x][k + x/y] = (y^2 + y)[k + x/y] = (k + x)^2 + k + x$
- When the first substitution does not introduce the “target” of the second, then we can do them one at a time.

Laws of Simultaneous Substitution

- Order of substitutions does not matter:
 - **subst-comm**: $P[e, f/x, y] = P[f, e/y, x]$
- We can merge in later substitutions if they don’t act on earlier replacements:
 - **subst-seq**: $P[e/x][f/y] = P[e, f/x, y], \ y \not\in e$
- The above law generalises to many substitutions:
 - $P[e_1, \ldots, e_n/x_1, \ldots, x_n][f/y] = P[e_1, \ldots, e_n, f/x_1, \ldots, x_n, y]$
 - (provided $y \not\in e_1, \ldots, e_n$)

Proof of **⟨⟨; -assoc⟩⟩**

- **Goal**: $P; (Q; R) = (P; Q); R$
- **Strategy**: reduce both lhs and rhs to same predicate
- **Proof**: hold on tight!
Proof «;−assoc» (lhs)

\[P : (Q ; R) = (\exists \nu_m \cdot Q[\nu_m/\nu] \land R[\nu_m, \nu]) \]

Proof «;−assoc» (rhs)

\[(P ; Q) ; R = (\exists \omega, \omega' \cdot \omega Q \cup \omega R) \]

Proof using Laws (example)

● Goal:

\[(f := 1; x := n; f := f \cdot x; x := x - 1) \]

\[= \]

\[(f := n; x := n - 1) \]

● Strategy: reduce lhs to rhs

● Proof:

\[f := 1; x := n; f := f \cdot x; x := x - 1 \]

\[= \]

\["\cdot \text{swap}, f \notin n" \]

\[f := 1; f := f \cdot n; x := n; x := x - 1 \]

\[= \]

\["\cdot \text{seq}" \]

\[f := 1 \cdot n; x := n - 1 \]

\[= \]

\["\text{arithmetic}" \]

\[f := n; x := n - 1 \]
Subtleties with Substitution (I)

Consider the following proof of \(\langle \langle \text{:=}-\text{seq} \rangle \rangle\) reducing LHS to RHS:

\[
\begin{align*}
\text{x} &\overset{\text{:=}}{=} e; \text{x} \overset{\text{:=}}{=} f \\
&= \text{" \langle \langle \text{:=}-\text{def} \rangle \rangle \" } A = \{x, x', \nu, \nu'\} \\
x' &\overset{\text{:=}}{=} e \land \nu' = \nu; \text{x}' = f \land \nu' = \nu \\
&= \text{" \langle \langle \text{:=}-\text{def} \rangle \rangle \" } A = \{x, x', \nu, \nu'\} \\
\exists x_m, \nu_m \bullet (x' = e \land \nu' = \nu)[x_m, \nu_m/x', \nu'] \\
&\land (x' = f \land \nu' = \nu)[x_m, \nu_m/x, \nu] \\
&= \text{" substitution, noting that e has no dashed vars \" } \\
\exists x_m, \nu_m \bullet x_m = e \land \nu_m = \nu \land x' = f[x_m, \nu_m/x, \nu] \land \nu' = \nu_m \\
&= \text{" \langle \langle \exists-1\text{pt} \rangle \rangle \" } x_m = e, \nu_m \not\in e, \nu \\
x' &\overset{\text{:=}}{=} f[e, \nu/x, \nu] \land \nu' = \nu \\
&= \text{" ignore [\nu/\nu], \langle \langle \text{:=}-\text{def} \rangle \rangle \" } \\
x &\overset{\text{:=}}{=} f[e/x]
\]

Subtleties with Substitution (II)

- We might have been tempted to apply \(\langle \langle \text{:=}-\text{def} \rangle \rangle\) first, “do” the substitution, and then use \(\langle \langle \text{:=}-\text{def} \rangle \rangle\):

\[
\begin{align*}
\text{x} &\overset{\text{:=}}{=} e; \text{x} \overset{\text{:=}}{=} f \\
&= \text{" \langle \langle \text{:=}-\text{def} \rangle \rangle \" } \\
\exists x_m, \nu_m \bullet (x' = e)[x_m, \nu_m/x', \nu'] \\
&\land (x' = f)[x_m, \nu_m/x, \nu] \\
&= \text{" doing substitution into assignment \" } \\
\exists x_m, \nu_m \bullet x \overset{\text{:=}}{=} e \\
&\land x_m = f[x_m, \nu_m/x, \nu] \\
&= \text{" \langle \langle \text{:=}-\text{def} \rangle \rangle, twice \" } \\
\exists x_m, \nu_m \bullet x' = e \land \nu' = \nu \\
&\land x_m' = f[x_m, \nu_m/x, \nu] \land \nu' = \nu
\]

- What is \(x_m'\)? We seem to have a problem!

The Problem

- Sequential composition is designed to work with predicates using \(x, \nu\) for before-variables, and \(x'\) and \(\nu'\) for after variables.
- In \(x := e\), the variable \(x\) stands for the program variable, and not its initial value.
- We cannot do substitutions safely until we have expanded its definition.
- In fact, we cannot determine what its free variables are until it has been expanded.

- What is \(x_m'\)? We seem to have a problem!
Non-substitutable Predicates

- Some of our new predicate (programming) constructs are non-substitutable (n.s.).
- Substitution can only be applied to these once their definitions have been expanded.
- We have assignment as one example, but there are others:

 \[
 \text{skip} \quad P; \quad Q \quad c \times P
 \]

- Of the new constructs so far, only conditional is substitutable:

 \[
 (P \land c \Rightarrow Q)[e/x] = P[e/x] \land c[e/x] \Rightarrow Q[e/x]
 \]

Simultaneous Assignment

- We introduce a further extension to predicate syntax, simultaneous assignment:

 \[
 \text{Pred} ::= \ldots
 \| \quad x_1, \ldots, x_n := e_1, \ldots, e_n
 \]

- We introduce shorthands: \(\vec{x} \) and \(\vec{e} \) for \(x_1, \ldots, x_n \) and \(e_1, \ldots, e_n \) resp.

- Its meaning is that the expressions \(e_1 \) through \(e_n \) are evaluated, and then all the \(x_i \) are updated simultaneously:

 \[
 \langle \langle \text{sim-:=def} \rangle \rangle \quad \vec{x} := \vec{e} \quad \Leftrightarrow \quad x_1' = e_1 \land \ldots \land x_n' = e_n \land \nu' = \nu,
 \]

 \[
 A = \{ x_1, \ldots, x_n, x_1', \ldots, x_n', \nu, \nu' \}
 \]

Swapping “trick” revisited

- Re-consider computing the semantics of

 \[
 x := x + y; \quad y := x - y; \quad x := x - y
 \]

 in a scope with variables \(s, t, u, v, w, x, y, z \)

- We’d like to use the laws of programming, so we can ignore \(s, t, u, v, w \) and \(z \).

- We can’t use \(\langle \langle \text{:=swap} \rangle \rangle \), because the side-condition does not hold.

- We can’t use \(\langle \langle \text{:=seq} \rangle \rangle \), because we don’t have two assignments to the same variable one after the other.

- In fact it’s not clear what laws would work: after the first two assignments we have \(x' = x + y \land y' = x \land \nu' = \nu \) whilst at the end we get \(x' = y \land y' = x \land \nu' = \nu \).

Laws of Simultaneous Assignment

- A single assignment to \(y \) can always be merged with a preceding simultaneous assignment to \(\vec{x} \), provided \(y \notin \vec{x} \):

 \[
 \langle \langle \text{sim-:=merge} \rangle \rangle \quad \vec{x} := \vec{e}; \quad y := f \quad = \quad \vec{x}, y := \vec{e}, \{ f[e/x] \}
 \]

- Proof, reducing lhs to rhs:

 \[
 \vec{x} := \vec{e}; \quad y := f
 \]

 \[
 = \quad \langle \langle \text{sim-:=def} \rangle \rangle, \langle \langle \text{:=def} \rangle \rangle
 \]

 \[
 \vec{x}' = \vec{e} \land y' = y \land \nu' = \nu; \quad \vec{x}' = \vec{x} \land y' = f \land \nu' = \nu
 \]

 \[
 = \quad \langle \langle \text{:=def} \rangle \rangle, \text{and substitute } \]

 \[
 \exists x_m, y_m, \nu_m. \quad x_m = \vec{e} \land y_m = y \land \nu_m = \nu
 \]

 \[
 \land \vec{x}' = x_m \land y' = f[x_m, y_m, \nu_m, \vec{x}, y, \nu] \land \nu' = \nu_m
 \]

 \[
 = \quad \langle \langle \text{:=1pt} \rangle \rangle
 \]

 \[
 \vec{x}' = \vec{e} \land y' = f[\vec{e}, y, \nu/\vec{x}, y, \nu] \land \nu' = \nu
 \]

 \[
 = \quad \langle \langle \text{sim-:=def} \rangle \rangle, \text{ignoring } [y, \nu/\nu', \nu] \]

 \[
 \vec{x}, y := \vec{e}, f[\vec{e}/\vec{x}]
 \]
Laws of Simultaneous Assignment (II)

- If \(y \in \vec{x} \), the sequencing law has to be slightly different
 \[
 \langle \text{sim-}:=\text{-seq} \rangle \quad \vec{x}, y := \vec{\epsilon}, f; \ y := g = \vec{x}, y := \vec{\epsilon}, g|\vec{\epsilon}, f/\vec{x}, y
 \]

- Proof, reducing lhs to rhs:
 \[
 \begin{align*}
 \vec{x}, y := \vec{\epsilon}, f; \ y := g \\
 &= \langle \text{sim-}:=\text{-def} \rangle, \langle :=\text{-def} \rangle \\
 \vec{x}^f = \vec{\epsilon} \land y' = f \land \nu' = \nu; \ \vec{x}^f = \vec{x} \land y' = g \land \nu' = \nu \\
 &= \langle :=\text{-def} \rangle, \text{and substitute } \nonumber \\
 \exists x_m, y_m, \nu_m \bullet \vec{x}^f = \vec{\epsilon} \land y_m = f \land \nu_m = \nu \\
 \land \vec{x}' = \vec{x}_m \land y' = g[\vec{x}_m, y_m, \nu_m/\vec{x}, y, \nu] \land \nu' = \nu_m \\
 &= \langle \exists\text{-lpt} \rangle \\
 \vec{x}^f = \vec{\epsilon} \land y' = g|\vec{\epsilon}, f/\vec{x}, y, \nu \land \nu' = \nu \\
 &= \langle \text{sim-}:=\text{-def}, \text{ignoring } \nu/\nu \rangle \\
 \vec{x}, y := \vec{\epsilon}, g|\vec{\epsilon}, f/\vec{x}, y
 \end{align*}
 \]

Swapping Trick Proof

- Goal:
 \[
 x := x + y; \ y := x - y; \ x := x - y = x, y := y, x
 \]
- Proof, reducing lhs to rhs:
 \[
 \begin{align*}
 x := x + y; \ y := x - y; \ x := x - y \\
 &= \langle \text{sim-}:=\text{-seq} \rangle \\
 x, y := x + y, (x - y)[x + y/x]; \ x := x - y \\
 &= \langle :=\text{-seq} \rangle \\
 x, y := (x - y)[x + y, (x + y) - y/x, y], (x + y) - y \\
 &= \langle :=\text{-def} \rangle, \text{and substitute } \nonumber \\
 x, y := x + y - ((x + y) - y), (x + y) - y \\
 &= \langle \text{arith} \rangle \\
 x, y := y, x
 \end{align*}
 \]

Messing with notation

- Is simultaneous assignment a programming language construct?
- Depends on the language:
 - in languages like C, Java, it is not allowed
 - in Handel-C it is allowed, as it targets hardware and so we have real parallelism
- It does not matter!
 - It is a predicate with a sensible meaning
 - It is convenient for certain proofs
 - It can describe outcomes concisely that are not possible using only single assignments, e.g. \(x, y := y, x \).
- Not all predicate language extensions have to be “code”.

Programs as Predicates

- If programs are predicates, then we can join them up using predicate notation.
 - e.g \(\text{prog}_1 \land \text{prog}_2 \)
 - e.g \(\text{prog}_1 \lor \text{prog}_2 \)
 - e.g \(\text{prog}_1 \Rightarrow \text{prog}_2 \)
- We can also mix them with non-program predicates
 - e.g \(\text{prog} \land \text{pred} \)
 - e.g \(\text{prog} \lor \text{pred} \)
 - e.g \(\text{prog} \Rightarrow \text{pred} \)
- Do these make sense? If so, how?
- Are any of these useful?
Consider the following:

\((x := 2) \land (x := 3) \)
\((x := 2) \land (y := 3) \)
\((x := 2) \land x = 2 \)
\((x := 2) \land y = 3 \)

What behaviour do these describe?

Not unexpectedly, we get \textbf{false}
we cannot assign 2 and 3 to \(x \) (at the same time)

We get a predicate stating that the assignment occurred, in
a starting state where \(x \) had value 2.

It is the same as \textbf{Skip} \land x = 2
Examining \((x := 2) \land y = 3\)

- \[(x := 2) \land y = 3 = " \text{\texttt{:=def}} \]

- \(x' = 2 \land v' = v \land y = 3\)

- We get a predicate stating that the assignment occurred, in a starting state where \(y\) had value 3.

Programs and Conjunction—Comment

- Conjoining two programs \((\text{prog}_1 \land \text{prog}_2)\) easily leads to contradiction
- Predicate \(\text{prog} \land \bar{x} = \bar{e}\) describes a run of \(\text{prog}\) that started in a state where variables \(\bar{x}\) had values \(\bar{e}\).
- Remember, \(x := e\) means \(x\) is changed, and that all other \textit{variables are left unchanged}.

Programs and Disjunction

- Consider the following:
 - \((x := 2) \lor (x := 3)\)
 - \((x := 2) \lor (y := 3)\)
 - \((x := 2) \lor x = 2\)

Examining \((x := 2) \lor (x := 3)\)

- \[(x := 2) \lor (x := 3) = " \text{\texttt{:=def}}, \text{\texttt{twice}} \]

- \(x' = 2 \lor x' = 3 \land v' = v\)

- Variable \(x\) ends up having either value 2 or 3, and all other variables are unchanged.
- The choice between 2 or 3 is arbitrary — nothing here states how that choice is made.
Examining \((x := 2) \lor (y := 3)\)

- \((x := 2) \lor (y := 3)\)
 = "\(\def \times\), twice "
 \(x' = 2 \land y' = y \land \nu' = \nu \lor x' = x \land y' = 3 \land \nu' = \nu\)
 = "\(\land \lor \)-distr "
 \((x' = 2 \land y' = y \lor x' = x \land y' = 3) \land \nu' = \nu\)

- Either \(x\) ends up having value 2, or \(y\) ends up equal to 3, and all other variables are unchanged.
- The choice between changing \(x\) or \(y\) is arbitrary — nothing here states how that choice is made.

Examining \((x := 2) \lor x = 2\)

- \((x := 2) \lor x = 2\)
 = "\(\def \times\), twice "
 \(x' = 2 \land \nu' = \nu \lor x = 2\)

- Either \(x\) becomes 2, or we started with \(x\) equal to 2 and then \textit{anything} could have happened!
 - if \(x\) is not equal to 2 to start, then it equals 2 at the end and no other variable changes
 - if \(x\) equals 2 at the beginning, then the final values of \textit{all} variables are arbitrary.

Programs and Disjunction—Comment

- Disjoining two programs \((prog_1 \lor prog_2)\) denotes an arbitrary choice between the two behaviours.
- Predicate
 \(prog \lor \bar{x} = \bar{e}\)

 tells us that we get:
 - the behaviour of \(prog\), if initial values of \(\bar{x}\) are \textit{not all} equal to \(\bar{e}\);
 - arbitrary behaviour, if they are all equal.

Programs and Negation

- How do we “not” assign something?
 \(\neg (x := e)\)

- Let’s calculate:
 \(\neg (x := e)\)
 = "\(\def \times\) "
 \(\neg (x' = e \land \nu' = \nu)\)
 = "\(\def \times\lor \def \times\lor \) "
 \(x' \neq e \lor \nu' \neq \nu\)

- So, \(\neg (x := e)\) is any situation where
 - either \(x\) does not end up with value \(e\)
 - or some other variable gets changed
Consider the following:

\[(x := 2) \Rightarrow (x := 3)\]
\[(x := 2) \Rightarrow (y := 3)\]
\[(x := 2) \Rightarrow x' = 2\]
\[(x := 2) \Rightarrow x' \in \{1, \ldots, 10\}\]

This can only be true if the assignment \(x := 2\) does not happen.

This is always true: if we assign 2 to \(x\), then the final value of \(x\) is 2.
Examining $(x := 2) \Rightarrow x' \in \{1, \ldots, 10\}$

- $(x := 2) \Rightarrow x' \in \{1, \ldots, 10\)$
 - "\texttt{\langle \langle :=-\text{def} \rangle \rangle}"
 - $x' = 2 \land \nu' = \nu \Rightarrow x' \in \{1, \ldots, 10\}$
 - "\texttt{\langle \Rightarrow-\text{def}, \text{deMorgan} \rangle}"
 - $x' \neq 2 \lor \nu' \neq \nu \lor x' \in \{1, \ldots, 10\}$
 - "\texttt{\langle \text{excluded-middle} \rangle}"
 - \texttt{true} \lor \nu' \neq \nu \lor x' \in \{1, \ldots, 10\}
 - "\texttt{\langle \lor-\text{zero} \rangle}"
 - \texttt{true}

- This is always true: if we assign 2 to x, then the final value of x is between 1 and 10.

Programs and Implication—Comment

- Predicate $\text{prog}_1 \Rightarrow \text{prog}_2$ is true if
 - the before-after relationship described by prog_1 does not hold, or ...
 - prog_1 holds, and the behaviour described by prog_2 somehow includes the behaviour of prog_1

- Predicate $\text{prog} \Rightarrow \text{pred}$ is true if
 - the before-after relationship described by prog does not hold, or ...
 - prog holds, and the situation described by pred is covered by the behaviour of prog