A Trees and Cursors

A.1 General Trees

We shall define a generic tree over an arbitrary type as being an element of that type coupled with a list of sub-trees, themselves trees of the same type

\[T \in \text{Tree } A \cong A \times (\text{Tree } A)^* \]

This structure is very general and covers most concrete tree types, so long as the branching factor is finite. The tree picture here

![Tree Diagram](image)

can be represented by the following expression:

\[(a_1, (a_2, \Lambda, (a_3, ((a_4, \Lambda), (a_5, \Lambda))))\]

or alternatively:

\[
\begin{align*}
T_1 &= (a_1, (T_2, T_3)) \\
T_2 &= (a_2, \Lambda) \\
T_3 &= (a_3, (T_4, T_5)) \\
T_4 &= (a_4, \Lambda) \\
T_5 &= (a_5, \Lambda)
\end{align*}
\]

(Note that \(T_i\) is the tree whose root-node contains \(a_i\)).

We shall introduce the idea of sibling number \(\xi\) as being the index of a sub-tree in the list containing it and its siblings. The root of a tree always has its sibling number equal to one. The sibling numbers corresponding to the trees above are:

\[
\begin{align*}
\xi(T_1) &= 1 \\
\xi(T_2) &= 1 \\
\xi(T_3) &= 2 \\
\xi(T_4) &= 1 \\
\xi(T_5) &= 2
\end{align*}
\]

A.2 Abstract Syntax Trees

Abstract syntax trees are typically described recursively, using tagged disjoint unions of products (sum-of-products form). These can be represented using the general tree notion introduced above by introducing an invariant that requires each tree \((a, \tau)\) to be well-formed, where the component \(a\) now contains the
tag and other auxiliary information. The invariant will typically constrain the
length of \(\tau \), based on the value of \(a \).

Given a predicate \(P \) on Tree \(a \), we can introduce a tree invariant based on \(P \) as follows:

\[
\text{inv-Tree } a \quad : \quad (\text{Tree } a \to \mathbb{B}) \to \text{Tree } a \to \mathbb{B} \\
\text{inv-Tree}[P](a, \tau) \quad \triangleq \quad P(a, \tau) \land \forall [P]_{\tau}
\]

Consider a binary tree structure defined using sum-of-products form:

\[
\text{BTree } b \quad \triangleq \quad \text{LEAF } b \\
\quad \mid \quad \text{BRANCH } (\text{BTree } b) (\text{BTree } b)
\]

We can representing this using Tree by the following definitions:

\[
\text{BTreeNode } b \quad \triangleq \quad \text{LEAF } b \\
\quad \mid \quad \text{BRANCH } \\
\text{BTok} : \quad \text{Tree}(\text{BTreeNode } b) \to \mathbb{B} \\
\text{BTok}(\text{LEAF } \bot, \tau) \quad \triangleq \quad \text{1en } \tau = 0 \\
\text{BTok}(\text{BRANCH}, \tau) \quad \triangleq \quad \text{1en } \tau = 2 \\
\text{BTree } b \quad \triangleq \quad \text{Tree}(\text{BTreeNode } b) \mid \text{inv-Tree}[\text{BTok}]
\]

All that follows in this section can be applied to such trees by finding a mapping as just described. In general we shall work with standard abstract syntax tree definitions directly and apply the cursor operations to them directly, without making the translation explicit.

A.3 Cursors

We wish to define the notion of a cursor which can point to a given (sub-)tree, and is capable of being moved around the tree:
The cursor needs not only to be able to identify the sub-tree to which it currently points, but also needs to be to find the parents of the sub-tree. We shall also want to easily identify the next sibling, of any given sub-tree. This leads us to view a cursor as (references to) a (sub-)tree along with a list of (references to) the parents in reverse order, each coupled with it position, or, in other words, a non empty list of (references to) trees and sibling numbers:

\[c \in \text{Curs} A \equiv (N \times \text{Tree} A)^+ \]

We can identify the cursors above as:

\[c_1 = \langle (1, T_2), (1, T_1) \rangle \]
\[c_2 = \langle (1, T_1) \rangle \]
\[c_3 = \langle (2, T_3), (1, T_1) \rangle \]
\[c_4 = \langle (1, T_4), (2, T_3), (1, T_1) \rangle \]

We can view \(c_4 \) as:

This structure may seem a little elaborate, but makes it very easy to define an invariant stating that a cursor must be a consistent match with a tree. By this is meant that any (sub-)tree entry in the cursor list is the designated sub-tree of the next entry:

\[i_{\text{inv-Curs}} : \text{Curs} A \to \mathbb{B} \]
\[i_{\text{inv-Curs}}(\langle s, T \rangle) \quad \triangleq \quad s = 1 \]
\[i_{\text{inv-Curs}}(\langle s, T \rangle : (s', (a, \tau)) : c) \quad \triangleq \quad s \in \text{inds} \tau \]
\[\land \quad T = \tau[s] \]
\[\land \quad i_{\text{inv-Curs}}(\langle s', (a, \tau) \rangle : c) \]

Recursion Termination Proof Obligation:

Trivial - base case is singleton list, recursive call is applied to tail, and there is no empty-list case.

Another way of viewing the invariant is to consider the cursor as a sequence:

\[\langle (s_1, (a_1, \tau_1)), \ldots, (s_i, (a_i, \tau_i)), \ldots, (s_n, (a_n, \tau_n)) \rangle \]

and the invariant as stating, for all \(i \in \{1 \ldots n - 1\} \), that:

\[s_i \in \text{inds} \tau_{i+1} \quad \text{and} \quad t_i = \tau_{i+1}[s_i] \quad \text{and} \quad s_n = 1 \]

A.4 Manipulating Cursors

A cursor has no meaning independently of the tree with which it is associated, so we shall build and manipulate cursors by means of trees.
A.4.1 Make Cursor

Given a tree, we can define a cursor that points to the tree root node:

\[
\text{mkCurs} : \text{Tree A} \rightarrow \text{Curs A} \\
\text{mkCurs } T \triangleq \langle 1, T \rangle
\]

Invariant Preservation Proof Obligation:

\[\text{inv-Curs (mkCurs } T) \equiv \text{TRUE}\]

Proof:

\[
\begin{align*}
\text{inv-Curs (mkCurs } T) \\
= & \quad \text{(defn. of mkCurs)} \\
\text{inv-Curs } \langle 1, T \rangle \\
= & \quad \text{(1st case of inv-Curs)} \\
1 \equiv 1 \\
= & \quad \langle \rangle \\
\text{True}
\end{align*}
\]

A.4.2 Get Tree

To complete the circle, we provide a function to return the tree pointed to by a cursor (effectively discarding any ability to find parents):

\[
\text{getTree} : \text{Curs A} \rightarrow \text{Tree A} \\
\text{getTree } c \triangleq \pi_2(\text{hd } c)
\]

No Invariant Preservation Proof Obligation.
A.4.3 Down Cursor

Given a cursor, we can define a partial function that moves it down to the \(i \)th sub-tree, provided such a sub-tree exists:

\[
down C : \mathbb{N} \rightarrow \text{Curs} A \rightarrow \text{Curs} A
\]

\[
\text{pre-down} C[i] ((s, (a, \tau)) : c) \equiv i \in \text{inds} \tau
\]

\[
down C[i] ((s, (a, \tau)) : c) \equiv (i, \tau[i]) : (s, (a, \tau)) : c
\]

Invariant Preservation Proof Obligation:

\[
\text{inv-Curs} \ c \land \text{pre-down} C[i] c \Rightarrow i_{\text{inv-Curs}}(\down C[i]c)
\]

We shall assume \(\text{inv-Curs} \ c \) and \(\text{pre-down} C[i] c \), and seek to show \(i_{\text{inv-Curs}}(\down C[i]c) \).

We shall proceed by the cases:

\[
c = \langle (s, (a, \tau)) \rangle \quad \text{and} \quad c = \langle (s, (a, \tau)) : (s', (a', \tau')) : c \rangle
\]

Case 1. \(c = \langle (s, (a, \tau)) \rangle \) We assume:

\[
\text{inv-Curs} \langle (s, (a, \tau)) \rangle
\]

\[
\text{pre-down} C[i] \langle (s, (a, \tau)) \rangle : i \in \text{inds} \tau
\]

Proof of Case 1:

\[
\text{inv-Curs} (\down C[i] \langle (s, (a, \tau)) \rangle)
\]

\[
\text{(defn.} \ \down C) \quad \text{inv-Curs} \langle (i, \tau[i]), (s, (a, \tau)) \rangle
\]

\[
\text{(defn.} \ \text{inv-Curs}) \quad i \in \text{inds} \tau \land \tau[i] = \tau[i] \land \text{inv-Curs} \langle (s, (a, \tau)) \rangle
\]

\[
\text{(Ass.} \ \text{pre-down} C, \text{inv-Curs}) \quad \text{TRUE} \land \tau[i] = \tau[i] \land \text{TRUE}
\]

\[
\text{(def.of} \ \text{and} \ \text{prop.calc.)} \quad \text{TRUE}
\]

Case 2. \(c = \langle (s, (a, \tau)) : (s', (a', \tau')) : c \rangle \) We assume:

\[
\text{inv-Curs} \langle (s, (a, \tau)) : (s', (a', \tau')) : c \rangle
\]

\[
\text{pre-down} C[i] \langle (s, (a, \tau)) : (s', (a', \tau')) : c \rangle : i \in \text{inds} \tau
\]

Proof of Case 2:

\[
\text{inv-Curs} (\down C[i] \langle (s, (a, \tau)) : (s', (a', \tau')) : c \rangle)
\]

\[
\text{(defn.} \ \down C) \quad \text{inv-Curs} \langle (i, \tau[i]), (s, (a, \tau)) : (s', (a', \tau')) : c \rangle
\]

\[
\text{(defn.} \ \text{inv-Curs}) \quad i \in \text{inds} \land \tau[i] = \tau[i] \land \text{inv-Curs} \langle (s, (a, \tau)) : (s', (a', \tau')) : c \rangle
\]

\[
\text{(Ass.} \ \text{pre-down} C, \text{inv-Curs}) \quad \text{TRUE} \land \tau[i] = \tau[i] \land \text{TRUE}
\]

\[
\text{(def.of} \ \text{and} \ \text{prop.calc.)} \quad \text{TRUE}
\]

\[\blacksquare\]
A.4.4 Up Cursor

Given a cursor, we can define a partial function that moves it up to its parent tree, provided such a parent tree exists:

\[
\text{upC} : \text{Curs } A \rightarrow \text{Curs } A
\]
\[
\text{pre-upC } c \equiv \text{len } c > 1
\]
\[
\text{upC } c \equiv \text{tl } c
\]

Invariant Preservation Proof Obligation:

\[
\text{inv-Curs } c \land \text{pre-upC } c \Rightarrow \text{inv-Curs(} \text{upC } c \text{)}
\]

We shall assume \(\text{inv-Curs } c \) and \(\text{pre-upC } c \), and seek to show \(\text{inv-Curs(} \text{upC } c \text{)} \).

As the precondition only holds if \(\text{len } c > 1 \), we take the case

\[
c = (s, T) : (s', (a, \tau)) : c
\]

and assume the invariant:

\[
\text{inv-Curs}((s, T) : (s', (a, \tau)) : c) : s \in \text{inds } \tau \land T = \tau[s] \\
\land \text{inv-Curs}((s', (a, \tau)) : c)
\]

Proof:

\[
\text{inv-Curs(} \text{upC}((s, T) : (s', (a, \tau)) : c) \text{)}
\]
\[
= (\text{defn. upC})
\]
\[
\text{inv-Curs}((s', (a, \tau)) : c)
\]
\[
= (\text{Ass. inv-Curs})
\]
\[
\text{TRUE}
\]

\[\clubsuit\]
A.4.5 Next Cursor

Given a cursor, we can define a partial function that moves it to its next sibling tree, provided such a sibling tree exists:

\[
\text{nxtSib} : \text{Curs } A \rightarrow \text{Curs } A
\]

\[
\text{pre-nxtSib} ((s, T) : \Lambda) \equiv \text{FALSE}
\]

\[
\text{pre-nxtSib} ((s, T) : (s', (a, \tau)) : c) \equiv s + 1 \in \text{inds } \tau
\]

\[
\text{nxtSib} ((s, T) : (s', (a, \tau)) : c) \equiv (s + 1, \tau[s + 1] : (s', (a, \tau)) : c
\]

Invariant Preservation Proof Obligation:

\[
\text{inv-Curs } c \land \text{pre-nxtSib } c \Rightarrow \text{inv-Curs(nxtSib } c)
\]

We shall assume \text{inv-Curs } c and \text{pre-nxtSib } c, and seek to show \text{inv-Curs(nxtSib } c). As the precondition only holds if \text{len } c > 1, we take the case

\[
c = (s, T) : (s', (a, \tau)) : c'
\]

for arbitrary (possibly null) \(c'\), and assume precondition and invariant:

\[
\text{inv-Curs}((s, T) : (s', (a, \tau)) : c') : s \in \text{inds } \tau \land T = \tau[s]
\]

\[
\land \text{inv-Curs}(s', (a, \tau)) : c'
\]

\[
\text{pre-nxtSib}((s, T) : (s', (a, \tau)) : c') : s + 1 \in \text{inds } \tau
\]

Proof:

\[
\text{inv-Curs(nxtSib}((s, T) : (s', (a, \tau)) : c')
\]

\[
= (\text{defn. nxtSib})
\]

\[
\text{inv-Curs}((s + 1, \tau[s + 1]) : (s', (a, \tau)) : c')
\]

\[
= (\text{defn. inv-Curs})
\]

\[
s + 1 \in \text{inds } \tau \land \tau[s + 1] = \tau[s + 1] \land \text{inv-Curs}(s', (a, \tau)) : c'
\]

\[
= (\text{Ass. pre-nxtSib.inv-Curs})
\]

\[
\text{TRUE} \land \tau[s + 1] = \tau[s + 1] \land \text{TRUE}
\]

\[
= (\text{iff of } \land \text{ and prop. calc.})
\]

\[
\text{TRUE}
\]

A.4.6 Cursor Children Number

We often want to know the number of children associated with the current cursor:

\[
\text{chldNum} : \text{Curs } A \rightarrow \mathbb{N}
\]

\[
\text{chldNum } ((_, (_ : \tau)) : _) \equiv \text{len } \tau
\]

A.4.7 Cursor Sibling Number

We often want to know the current sibling number:

\[
\text{sibNo} : \text{Curs } A \rightarrow \mathbb{N}
\]

\[
\text{sibNo } ((s, _ : _) \equiv s
\]
A.4.8 Root Cursor

We might want to know when a cursor denotes the tree root:

\[
\text{isRoot} : Curs \ A \rightarrow \mathbb{B} \\
\text{isRoot } c \triangleq c \equiv \langle 1, _ \rangle
\]

A.4.9 Leaf Cursor

We might want to know when a cursor denotes a leaf node:

\[
\text{isLeaf} : Curs \ A \rightarrow \mathbb{B} \\
\text{isLeaf } c \triangleq (\pi_2 \circ \pi_2 \circ \text{hd})|c = \Lambda
\]
A.4.10 First Leaf Cursor

Given a cursor, we can define a partial function that moves it to the first leaf in the (sub-)tree denoted by that cursor:

\[
\text{fstLeaf} : \ Curs \ A \rightarrow \ Curs \ A
\]

\[
\text{fstLeaf} \ c \ \triangleright\ \text{isLeaf} \ c \rightarrow \ c,
\]

\[
\rightarrow \text{fstLeaf(downC}[1]c)\]

Recursion Termination Proof Obligation:

Let \(h(c) \) denote the height of the (sub-)tree denoted by \(c \). Then, \(\text{isLeaf} \ c \equiv h(c) = 1 \) and \(\text{downC} \) reduces \(h \) by 1.

Invariant Preservation Proof Obligation:

\[
i_{\text{inv-Curs}} \ c \Rightarrow i_{\text{inv-Curs}}(\text{fstLeaf} \ c)
\]

We shall prove this by induction on the height of \(c \):

\[
P(n) \equiv h(c) = n \Rightarrow (\text{inv-Curs} \ c \Rightarrow i_{\text{inv-Curs}}(\text{fstLeaf} \ c))
\]

Base Case: \(h(c) = 1 \)

\[
h(c) = 1 \Rightarrow (\text{inv-Curs} \ c \Rightarrow i_{\text{inv-Curs}}(\text{fstLeaf} \ c))
\]

We shall assume \(h(c) = 1 \)

\[
i_{\text{inv-Curs}} \ c \Rightarrow i_{\text{inv-Curs}}(\text{fstLeaf} \ c)
\]

\[
= \ (\text{defn. } \text{fstLeaf})
\]

\[
i_{\text{inv-Curs}} \ c \Rightarrow i_{\text{inv-Curs}}(\text{isLeaf} \ c \rightarrow \ c, \ldots)
\]

\[
= \ (\text{prop. } h(c) = 1 \equiv \text{isLeaf} \ c, \text{ conditional})
\]

\[
i_{\text{inv-Curs}} \ c \Rightarrow i_{\text{inv-Curs}} \ c
\]

\[
= \ (\text{prop. calc.})
\]

\[
\text{TRUE}
\]

Inductive step: \(h(c) = n \)

we assume this property holds for all \(c' \) where \(h(c') < n \), for \(n > 1 \). We show that it will hold for \(c \) with height \(n \). We assume:

\[
h(c') < n \Rightarrow (\text{inv-Curs} \ c' \Rightarrow i_{\text{inv-Curs}}(\text{fstLeaf} \ c'))
\]

and

\[
h(c) = n
\]

We want to show:

\[
i_{\text{inv-Curs}} \ c \Rightarrow i_{\text{inv-Curs}}(\text{fstLeaf} \ c)
\]

We begin by stating a previous proof result, stating that \(\text{downC} \) preserves the invariant, justified by the fact that the precondition is satisfied \((h(c) > 1 \Rightarrow \text{pre-downC}[1]c) \) and our assumption, instantiated with \(c' = \text{downC}[1]c \), which is justified by the property that \(h(\text{downC}[1]c) < h(c) \):
\[\text{inv-Curs}(c) \Rightarrow \text{inv-Curs(downC[1]c)}\]
\[\wedge\]
\[\text{inv-Curs(downC[1]c)} \Rightarrow \text{inv-Curs(fstLeaf(downC[1]c)})\]
\[\Rightarrow (A \Rightarrow B \wedge B \Rightarrow C \Rightarrow A \Rightarrow C)\]
\[\text{inv-Curs(c)} \Rightarrow \text{inv-Curs(fstLeaf(downC[1]c))}\]
\[= \text{(prop. } h(c) > 1 \equiv \neg \text{Leaf c, conditional)}\]
\[\text{inv-Curs c} \Rightarrow \text{inv-Curs}(\text{isLeaf c} \Rightarrow c, \text{fstLeaf(downC[1]c)})\]
\[= \text{(defn. } \text{fstLeaf})\]
\[\text{inv-Curs c} \Rightarrow \text{inv-Curs(fstLeaf c)}\]

A.4.11 Last Cursor

We might want to know when a cursor lies along the last sibling edges in the tree. In the event that the cursor is a leaf cursor, then it denotes the last leaf.

\[
\begin{align*}
\text{isLast} & : \text{Cars A} \rightarrow B \\
\text{isLast c} & \equiv \text{isRoot c} \rightarrow \text{TRUE}, \\
& \ \text{sibNo c = chldNum(upC c)} \\
& \ \wedge \ \text{isLast(upC c)}
\end{align*}
\]

Recursion Termination Proof Obligation: The base case is when the cursor is root, i.e. a singleton list. The recursive call is to upC, which shortens the cursor list by one.
A.4.12 Find First non-Last Ancestor Cursor

Given a cursor, we define a function that searches upward for the first ancestor which is not itself a “last” sibling:

\[
\text{non\text{-}LAnC} : Curs A \rightarrow Curs A
\]

\[
\text{pre\text{-}non\text{-}LAnC} \ c \ \equiv \ \neg\text{is\text{-}Last} \ c
\]

\[
\text{non\text{-}LAnC} \ c \ \equiv \ \begin{cases} \text{if sibNo} \ c < \text{childNum}(\text{upC} \ c) \\ \text{then} \ c \\ \text{else} \ \text{non\text{-}LAnC}(\text{upC} \ c) \end{cases}
\]

Recursion Termination Proof Obligation:
The base case is a non-root cursor whose head meets a certain condition (Note that \(\text{isRoot} \ c \Rightarrow \text{isLast} \ c\)). The recursive case shortens the cursor length. The pre-condition ensures that the base case is reached before the cursor becomes singleton, i.e. root.

Invariant Preservation Proof Obligation:

\[
\text{inv}\text{-}Curs \ c \land \text{pre\text{-}non\text{-}LAnC} \ c \ \Rightarrow \ \text{inv}\text{-}Curs(\text{non\text{-}LAnC} \ c)
\]

We first observe that the precondition requires \(\text{len} \ c > 1\), so we shall instantiate \(c\) as follows:

\[
c = c_1
\]

\[
c_1 = (s_1, T_1) : c_2
\]

\[
c_2 = (s_2, T_2) : c'
\]

\[
T_i = (a_i, \tau_i), \quad i \in \{1, 2\}
\]

where \(c'\) is the rest of the cursor (possibly null). Note that the following identities hold:

\[
s_i = \text{sibNo} \ c_i
\]

\[
\text{childNum} \ c_i = \text{len} \ \tau_i
\]

\[
c_2 = \text{upC} \ c_1
\]

By expanding all definitions using the instantiation above, and distributing a function application through a conditional, we are being asked to prove that assuming the invariant,

\[
s_1 \in \text{inds} \ \tau_2 \land T_1 = \tau_2[s_1] \land \text{inv}\text{-}Curs \ c_2
\]

and precondition,

\[
\neg(s_1 = \text{len} \ \tau_2 \land \text{is\text{-}Last} \ c_2)
\]

leads to the conclusion

\[
s_1 < \text{len} \ \tau_2 \rightarrow \text{inv}\text{-}Curs \ c_1, \ \text{inv}\text{-}Curs(\text{non\text{-}LAnC} \ c_2)
\]

We proceed by case-analysis, noting that \(s_1\) is either less than or equal to \(\text{len} \ \tau_2\) (it can’t be greater, by the invariant).

Case 1: \(s_1 < \text{len} \ \tau_2\)
\[s_1 < \text{len } \tau_2 \rightarrow \text{inv-Cars } c_2, \text{ inv-Cars}(\text{nonLAnC } c_2) \]

= (Case 1, conditional)

\[\text{inv-Cars } c_1 \]

= (Ass. (inv))

\[True \]

Case 2: \(s_1 = \text{len } \tau_2 \)

\[s_1 < \text{len } \tau_2 \rightarrow \text{inv-Cars } c_1, \text{ inv-Cars}(\text{nonLAnC } c_2) \]

= (Case 2, conditional)

\[\text{inv-Cars}(\text{nonLAnC } c_2) \]

We need to show this subject to the assumptions given above, i.e.
We shall prove this by induction on the length of \(c \).

Base Case: \(\text{len } c = 2 \)

In this case we have \(c_2 = \langle (s_2, T_2) \rangle \) so, after expansion of \(\text{inv-Cars } c_2 \), our proof obligation becomes,

\[s_1 = \text{len } \tau_2 \land s_1 \in \text{inds } \tau_2 \land T_1 = \tau_2[s_1] \]

\[\land s_2 = 1 \]

\[\land \neg(s_1 = \text{len } \tau_2 \land \text{isLast}(\langle s_2, T_2 \rangle)) \]

\[\Rightarrow \text{inv-Cars}(\text{nonLAnC } c_2) \]

However, \(\text{isLast}(\langle 1, T_2 \rangle) \equiv True \), so the antecedent is false, meaning the implication is true.

Inductive Step: \(\text{len } c > 2 \)

We shall assume the law true for \(c_1 \),

\[s_1 = \text{len } \tau_2 \land s_1 \in \text{inds } \tau_2 \land T_1 = \tau_2[s_1] \]

\[\land \text{inv-Cars } c_2 \]

\[\land \neg(s_1 = \text{len } \tau_2 \land \text{isLast } c_2) \]

\[\Rightarrow \text{inv-Cars}(\text{nonLAnC } c_2) \]

and seek to show that this implies it is true for \(c_0 \), which is defined as

\[c_0 = \langle s_0, T_0 \rangle : c_1 \quad \text{where } \quad T_0 = (a_0, \tau_0) \]

i.e.

\[s_0 = \text{len } \tau_1 \land s_0 \in \text{inds } \tau_1 \land T_0 = \tau_1[s_0] \]

\[\land \text{inv-Cars } c_1 \]

\[\land \neg(s_0 = \text{len } \tau_1 \land \text{isLast } c_1) \]

\[\Rightarrow \text{inv-Cars}(\text{nonLAnC } c_1) \]

We expand the consequent and distribute the invariant through the conditional:

\[s_0 = \text{len } \tau_1 \land s_0 \in \text{inds } \tau_1 \land T_0 = \tau_1[s_0] \]

\[\land \text{inv-Cars } c_1 \]

\[\land \neg(s_0 = \text{len } \tau_1 \land \text{isLast } c_1) \]

\[\Rightarrow s_1 < \text{len } \tau_2 \rightarrow \text{inv-Cars } c_1, \text{ inv-Cars}(\text{nonLAnC } c_2) \]
If $s_1 < \text{len } \tau_2$ then we have $\text{inv-Curs } c_1$ in both antecedent and consequent, so it is trivially true.

If $s_1 = \text{len } \tau_2$ then we want to show:

\[
\begin{align*}
\sigma_0 &= \text{len } \tau_1 \land \sigma_0 \in \text{inds } \tau_1 \land T_0 = \tau_1[\sigma_0] \\
\land & s_1 = \text{len } \tau_2 \\
\land & \text{inv-Curs } c_1 \\
\land & \neg(s_0 = \text{len } \tau_1 \land \text{isLast } c_1) \\
\Rightarrow & \text{inv-Curs}(\text{nonLAnc } c_2)
\end{align*}
\]

We can simplify the last antecedent using the first:

\[
\begin{align*}
\sigma_0 &= \text{len } \tau_1 \land \sigma_0 \in \text{inds } \tau_1 \land T_0 = \tau_1[\sigma_0] \\
\land & s_1 = \text{len } \tau_2 \\
\land & \text{inv-Curs } c_1 \\
\land & \neg\text{isLast } c_1 \\
\Rightarrow & \text{inv-Curs}(\text{nonLAnc } c_2)
\end{align*}
\]

We expand isLast c_1, using fact $\neg\text{isRoot } c_1$

\[
\begin{align*}
\sigma_0 &= \text{len } \tau_1 \land \sigma_0 \in \text{inds } \tau_1 \land T_0 = \tau_1[\sigma_0] \\
\land & s_1 = \text{len } \tau_2 \\
\land & \text{inv-Curs } c_1 \\
\land & \neg(s_1 = \text{len } \tau_2 \land \text{isLast } c_2) \\
\Rightarrow & \text{inv-Curs}(\text{nonLAnc } c_2)
\end{align*}
\]

we use the 4th antecedent to simplify last:

\[
\begin{align*}
\sigma_0 &= \text{len } \tau_1 \land \sigma_0 \in \text{inds } \tau_1 \land T_0 = \tau_1[\sigma_0] \\
\land & s_1 = \text{len } \tau_2 \\
\land & \text{inv-Curs } c_1 \\
\land & \neg\text{isLast } c_2 \\
\Rightarrow & \text{inv-Curs}(\text{nonLAnc } c_2)
\end{align*}
\]

Expanding $\text{inv-Curs } c_1$ gives antecedents that include the hypothesis antecedents, so we can then assert its consequent, which is what we are try to show here. ✷
A.4.13 Next Leaf Cursor

Given a leaf cursor, we can define a partial function that moves it to the next leaf in the tree, provided such a leaf exists. We in fact handle the case of a general (non-root) cursor, in which case we return the first leaf of its next sibling

\[
\text{nxtLeaf} : \text{Curs } A \rightarrow \text{Curs } A
\]
\[
\text{pre-nxtLeaf } \text{c} \ \equiv \ \neg \text{isLast } \text{c}
\]
\[
\text{nxtLeaf } \text{c} \ \equiv \ \text{fstLeaf} \circ \text{nxtSib} \circ \text{nonLAnc} \text{c}
\]

Invariant Preservation Proof Obligation:

\[
\begin{align*}
\text{inv-Curs } \text{c} \\
& \land \ \neg \text{isLast } \text{c} \\
& \Rightarrow \ \text{pre-nxtSib} (\text{nxtLeaf } \text{c})
\end{align*}
\]

The precondition for \text{nxtLeaf} is identical to that for \text{nonLAnc}, being \neg \text{isLast } \text{c}, so we can deduce that the call to it will preserve the invariant. The operation \text{fstLeaf} is total and preserves the invariant. So all we need to show is that the result of \text{nonLAnc} satisfies the precondition of \text{nxtSib}, given that the call to \text{nonLAnc} is itself OK:

\[
\begin{align*}
\text{inv-Curs } \text{c} \\
& \land \ \neg \text{isLast } \text{c} \\
& \Rightarrow \ \text{pre-nxtSib} (\text{nonLAnc } \text{c})
\end{align*}
\]

First we note that \text{pre-nxtSib} (\text{c}) implies that \text{c} is \text{non-Root}, i.e. that \text{len } \text{c} > 1.

We shall instantiate \text{c} as follows:

\[
\begin{align*}
\text{c} &= \text{c}_1 \\
\text{c}_1 &= (s_1, T_1) : \text{c}_2 \\
\text{c}_2 &= (s_2, T_2) : c' \\
T_i &= (a_i, \tau_i), \ i \in \{1, 2\}
\end{align*}
\]

where \(c'\) is the rest of the cursor (possibly null). Instantiating up to \text{c}_1 we obtain:

\[
\begin{align*}
\text{inv-Curs} ((s_1, T_1) : \text{c}_2) \\
& \land \ \neg \text{isLast} ((s_1, T_1) : \text{c}_2) \\
& \Rightarrow \ \text{pre-nxtSib} (\text{nonLAnc} ((s_1, T_1) : \text{c}_2))
\end{align*}
\]

We expand definitions, noting that \text{isRoot } \text{c} = \text{FALSE} in passing:

\[
\begin{align*}
s_1 \in \text{inds } \tau_2 & \land T_1 = \tau_2 [s_1] \land \text{inv-Curs } \text{c}_2 \\
& \land \ \neg (s_1 = \text{len } \tau_2 \land \text{isLast } \text{c}_2) \\
& \Rightarrow \ \text{pre-nxtSib} (s_1 < \text{len } \tau_2 \rightarrow ((s_1, T_1) : \text{c}_2) \circ (\text{nonLAnc } \text{c}_2))
\end{align*}
\]

We perform a case split:

Case 1: \(s_1 < \text{len } \tau_2\)
We add the case assumption, simplify and evaluate the conditional:

\[s_1 < \text{len } \tau_2 \land T_1 = \tau_2[s_1] \land \text{inv-Curs } c_2 \]
\[\land \neg(s_1 = \text{len } \tau_2 \land \text{isLast } c_2) \]
\[\Rightarrow \text{pre-nxtSib}((s_1, T_1); c_2) \]

We expand defn. of pre-nxtSib:

\[s_1 \in \text{inds } \tau_2 \land T_1 = \tau_2[s_1] \land \text{inv-Curs } c_2 \]
\[\land \neg(s_1 = \text{len } \tau_2 \land \text{isLast } c_2) \]
\[\Rightarrow s_1 + 1 \in \text{inds } \tau_2 \]

But, \(s_1 < \text{len } \tau_2 \Rightarrow s_1 + 1 \in \text{inds } \tau_2 \), so we are done.

Case 2: \(s_1 = \text{len } \tau_2 \)

We add the case assumption, simplify and evaluate the conditional:

\[s_1 = \text{len } \tau_2 \land T_1 = \tau_2[s_1] \land \text{inv-Curs } c_2 \]
\[\land \neg(s_1 = \text{len } \tau_2 \land \text{isLast } c_2) \]
\[\Rightarrow \text{pre-nxtSib}((\text{nonLAnc } c_2)) \]

We shall prove this by induction on the length of \(c \).

Base Case: \(\text{len } c = 2 \)

Expanding \(c_2 \) with \(c' = \Lambda \):

\[s_1 = \text{len } \tau_2 \land T_1 = \tau_2[s_1] \land \text{inv-Curs}((s_2, T_2)) \]
\[\land \neg(\text{isRoot}((s_2, T_2))) \]
\[\Rightarrow \text{pre-nxtSib}((\text{nonLAnc}((s_2, T_2)))) \]

Expanding definition of \(\text{inv-Curs} \) and isLast:

\[s_1 = \text{len } \tau_2 \land T_1 = \tau_2[s_1] \land s_2 = 1 \]
\[\land \neg(\text{isRoot}((s_2, T_2))) \Rightarrow \text{TRUE, \ldots} \]
\[\Rightarrow \text{pre-nxtSib}((\text{nonLAnc}((s_2, T_2)))) \]

Expanding definition of isRoot:

\[s_1 = \text{len } \tau_2 \land T_1 = \tau_2[s_1] \land s_2 = 1 \]
\[\land \neg(s_2 = 1 \Rightarrow \text{TRUE, \ldots}) \]
\[\Rightarrow \text{pre-nxtSib}((\text{nonLAnc}((s_2, T_2)))) \]

The antecedent is false, so the implication immediately follows.

Inductive Case: \(\text{len } c > 2 \)
We assume
\[s_1 = \text{len} \, \tau_2 \land T_1 = \tau_2[s_1] \land \text{inv-Curs } c_2 \]
\[\land \neg \text{isLast } c_2 \]
\[\Rightarrow \text{pre-nxtSib}(\text{nonLAnC } c_2) \]
and show it implies
\[s_0 = \text{len} \, \tau_1 \land T_0 = \tau_1[s_0] \land \text{inv-Curs } c_1 \]
\[\land \neg \text{isLast } c_1 \]
\[\Rightarrow \text{pre-nxtSib}(\text{nonLAnC } c_1) \]
where \(c_0 = (s_0, T_0) : c_1 \).

We expand the consequent and distribute the pre-condition through the conditional:
\[s_0 = \text{len} \, \tau_1 \land T_0 = \tau_1[s_0] \land \text{inv-Curs } c_1 \]
\[\land \neg \text{isLast } c_1 \land s_1 < \text{len} \, \tau_2 \]
\[\Rightarrow s_1 < \text{len} \, \tau_2 \rightarrow \text{pre-nxtSib } c_1 \land \text{pre-nxtSib}(\text{nonLAnC } c_2) \]
We do a case split
Case 1: \(s_1 < \text{len} \, \tau_2 \)
Adding the case, and evaluating the conditional
\[s_0 = \text{len} \, \tau_1 \land T_0 = \tau_1[s_0] \land \text{inv-Curs } c_1 \]
\[\land \neg \text{isLast } c_1 \land s_1 < \text{len} \, \tau_2 \]
\[\Rightarrow \text{pre-nxtSib } c_1 \]
Evaluating pre-nxtSib, noting that \(\neg \text{Root } c_1 \) is true:
\[s_0 = \text{len} \, \tau_1 \land T_0 = \tau_1[s_0] \land \text{inv-Curs } c_1 \]
\[\land \neg \text{isLast } c_1 \land s_1 < \text{len} \, \tau_2 \]
\[\Rightarrow s_1 + 1 \in \text{inds } \tau_2 \]
This reduces to true, given that \(s_1 + 1 \in \text{inds } \tau_2 \equiv s_1 < \text{len } \tau \).
Case 2: \(s_1 = \text{len} \, \tau_2 \)
Adding the case, and evaluating the conditional
\[s_0 = \text{len} \, \tau_1 \land T_0 = \tau_1[s_0] \land \text{inv-Curs } c_1 \]
\[\land \neg \text{isLast } c_1 \land s_1 = \text{len} \, \tau_2 \]
\[\Rightarrow \text{pre-nxtSib}(\text{nonLAnC } c_2) \]
Expand isLast \(c_1 \)
\[s_0 = \text{len} \, \tau_1 \land T_0 = \tau_1[s_0] \land \text{inv-Curs } c_1 \]
\[\land \neg (s_1 = \text{len} \, \tau_2 \land \text{isLast } c_2) \land s_1 = \text{len} \, \tau_2 \]
\[\Rightarrow \text{pre-nxtSib}(\text{nonLAnC } c_2) \]
Use case to simplify:

\[s_0 = \text{len} \tau_1 \land T_0 = \tau_1[s_0] \land \text{inv-Curs } c_1 \land \neg \text{isLast } c_2 \land s_1 = \text{len} \tau_2 \Rightarrow \text{pre-nxtSib(nonLAnc } c_2) \]

Expand \textit{inv-Curs } c_1:

\[s_0 = \text{len} \tau_1 \land T_0 = \tau_1[s_0] \land s_1 \in \text{inds } \tau_1 \land T_1 = \tau_2[s_1] \land \text{inv-Curs } c_2 \land \neg \text{isLast } c_2 \land s_1 = \text{len} \tau_2 \Rightarrow \text{pre-nxtSib(nonLAnc } c_2) \]

We now have all the hypothesis antecedents present, so the consequent follows.

\[\blacklozenge \]

A.4.14 All Children Cursors

Given a leaf cursor, we can define a function returns a sequence of cursors, each denoting a child:

\[
\begin{align*}
\text{allChild} : & \quad \text{Curs A} \rightarrow (\text{Curs A})^* \\
\text{allChild } c & \equiv \text{down}^*(1\ldots\text{siNo } c) \\
\text{where} \\
\text{down } i & \equiv \text{downC}[i]c
\end{align*}
\]

Invariant Preservation Proof Obligation:

\[
\text{inv-Curs } c \Rightarrow \forall[\text{inv-Curs}](\text{allChild } c)
\]

We observe that we simply build a sequence by evaluating \text{downC}[i]c for every \(i \in \text{inds } c \). Each call satisfies the pre-condition, and this operator has already been shown to preserve the invariant. If there are no children then an empty list is returned which vacuously satisfies the \(\forall \).

\[\blacklozenge \]
A.5 Shorthands

We introduce some shorthands to produce some more terse expressions.

\[
\begin{align*}
\text{Curs } T & \equiv \text{mkCurs } T \\
\text{Tree } c & \equiv \text{getTree } c \\
\text{c ↓ i} & \equiv \text{downC[i]} c \\
\text{c ↑} & \equiv \text{upC } c \\
\text{c ↑} & \equiv \text{nxtSib } c \\
\#c & \equiv \text{childNum } c \\
\&c & \equiv \text{sibNo } c \\
\text{R } c & \equiv \text{isRoot } c \\
\text{L } c & \equiv \text{isLeaf } c \\
\alpha c & \equiv \text{fstLeaf } c \\
\Omega c & \equiv \text{isLast } c \\
\&c & \equiv \text{nonLAnc } c \\
\text{c ⊥} & \equiv \text{nxtLeaf } c \\
\text{C } c & \equiv \text{allChld } c
\end{align*}
\]
A.6 Shorthand Definitions

We re-state all the definitions here using these shorthands.

\[
\begin{align*}
Curs & : \quad Tree A \rightarrow Curs A \\
Curs T & \equiv \langle (1, T) \rangle \\
Tree & : \quad Curs A \rightarrow Tree A \\
Tree c & \equiv \pi_2(\text{hd } c) \\
\downarrow i & : \quad Curs A \rightarrow Curs A \\
& \quad ! \quad i \in \text{inds } \tau \\
((s, (a, \tau)) : c) \downarrow i & \equiv (i, \tau[i]) : (s, (a, \tau)) : c \\
\uparrow & : \quad Curs A \rightarrow Curs A \\
& \quad ! \quad \text{len } c > 1 \\
\mathbf{c} \uparrow & \equiv \text{tl } \mathbf{c} \\
\uparrow & : \quad Curs A \rightarrow Curs A \\
((s, T) : A) & \quad ! \quad \text{false} \\
& \quad ! \quad s + 1 \in \text{inds } \tau \\
((s, T) : (s', a, \tau)) : c \uparrow & \equiv (s + 1, \tau[s + 1]) : (s', (a, \tau)) : c \\
\# & : \quad Curs A \rightarrow \mathbb{N} \\
\#((s, \tau)) : \downarrow & \equiv \text{len } \tau \\
\downarrow & : \quad Curs A \rightarrow \mathbb{N} \\
\downarrow((s, \tau)) : \downarrow & \equiv s
\end{align*}
\]
\[
\begin{align*}
R & : \text{Curs } A \to \mathbb{B} \\
R_e & \triangleq e \equiv \langle 1, \omega \rangle \\
L & : \text{Curs } A \to \mathbb{B} \\
L_e & \triangleq (\pi_2 \circ \pi_2 \circ \text{hd})e = \Lambda \\
\alpha & : \text{Curs } A \to \text{Curs } A \\
\alpha_e & \triangleq L_e \rightarrow e, \\
& \quad \rightarrow \alpha(e \downarrow 1) \\
\Omega & : \text{Curs } A \to \mathbb{B} \\
\Omega_e & \triangleq R_e \rightarrow \text{TRUE}, \\
& \quad \rightarrow \#(e) \land \Omega(e) \\
\exists & : \text{Curs } A \to \text{Curs } A \\
\exists_e & \triangleq \neg R_e \land \neg \Omega_e \\
\exists_e & \triangleq \#(e) < \#(e) \rightarrow e, \quad \exists_e \\
\downarrow & : \text{Curs } A \to \text{Curs } A \\
\downarrow & \triangleq \neg R_e \land \neg \Omega_e \\
\downarrow_e & \triangleq \alpha((\exists_e) \uparrow) \\
\mathcal{C} & : \text{Curs } A \to \text{Curs } A \\
\mathcal{C}_e & \triangleq D^s(1 \ldots \#e) \text{ where } D_i \equiv e \downarrow i
\end{align*}
\]
A.7 Height Properties

In order to discharge some proof obligations we need to perform induction over tree heights. Here we develop a small sub-theory linking tree heights to cursor lengths and other related attributes.

We define the height of a tree as follows:

\[h : \text{Tree} \rightarrow \mathbb{N} \]
\[h(a, \tau) \triangleq 1 + \max(h^a\tau) \]
\[\text{where } \max\Lambda = 0 \]

The height of a cursor is the height of the (sub-)tree indicated by it:

\[h : \text{Curs} \rightarrow \mathbb{N} \]
\[h((s, T) : e) \triangleq h(T) \]

Note that we overload the symbol \(h \) — its use will be clear from context.

Property Summary

\[h(e) \geq 1 \]
\[h(e \downarrow i) < h(e) \]
\[h(e) < h(e \uparrow) \]
\[L e \equiv h(e) = 1 \]

In all cases above, we have side conditions stating that all invariants and pre-conditions hold. These are made explicit in the proofs.
A.7.1 Proof of $h(c) \geq 1$

\[
 h((s, (a, \tau)) : c') =
 \begin{align*}
 \text{(defn. h on C_{ars})} \\
 h(a, \tau) \\
 \geq \text{(arithmetic)} \\
 1
 \end{align*}
\]

A.7.2 Proof of $h(c \downarrow i) < h(c)$

Let $c = (s, (a, \tau)) : c'$. The precondition requires that \(i \in \text{inds } \tau \).

\[
 h((s, (a, \tau)) : c') =
 \begin{align*}
 \text{(defn. h on C_{ars})} \\
 h(a, \tau) \\
 \geq \text{(arithmetic)} \\
 \max(h^*\tau) \\
 > \text{(prop. of max)} \\
 h(\tau[i]) \\
 = \text{(defn of h on C_{ars})} \\
 h((i, \tau[i]) : (s, (a, \tau)) : c') \\
 = \text{(defn of \downarrow)} \\
 h(((s, (a, \tau)) : c') \downarrow i)
 \end{align*}
\]
A.7.3 Proof of $h(c) < h(c \uparrow)$

Let $c = (s, (a, \tau)) : c'$. Precondition requires $1 \leq c > 1$, so let $c = (s_1, \tau_2[s_1]) : (s_2, (a_2, \tau_2)) : c'$.

\[
\begin{align*}
 h((s_1, \tau_2[s_1]) : (s_2, (a_2, \tau_2)) : c') &= (\text{defn. } h \text{ on } \textit{Curs}) \\hline
 h(\tau_2[s_1]) \leq (\text{prop. of max}) \\hline
 \text{max}(h^*\tau_2) < (\text{arithmetic}) \\hline
 1 + \text{max}(h^*\tau_2) &= (\text{defn of } h \text{ on } \textit{Tree}) \\hline
 h(a_2, \tau_2) &= (\text{defn. of } h \text{ on } \textit{Curs}) \\hline
 h((s_2, (a_2, \tau_2)) : c') &= (\text{defn. of } \uparrow) \\hline
 h(((s_1, \tau_2[s_1]) : (s_2, (a_2, \tau_2)) : c') \uparrow)
\end{align*}
\]
A.7.4 Proof of $Lc \equiv h(c) = 1$

Let $c = (s, (a, \tau)) : c'$.

Case 1: $Lc \Rightarrow h(c) = 1$

\[
L((s, (a, \tau)) : c') = (\text{defn. } L) \\
(\pi_2 \circ \pi_2 \circ \text{hd}) ((s, (a, \tau)) : c') = \Lambda \\
= (\text{defn or } \pi_2 \text{ and } \text{hd}) \\
\tau = \Lambda \\
\Rightarrow (\text{rewriting } \tau) \\
h(c) = h((s, (a, \Lambda)) : c')) = (\text{def. of } h \text{ on } Cur)$ \\
h(c) = h(a, \Lambda) = (\text{def. of } h \text{ on } Tree) \\
h(c) = 1 + \max(h^*\Lambda) = (\text{prop. of } \max) \\
h(c) = 1 + 0 = (\text{arithmetic}) \\
h(c) = 1
\]

Case 2: $Lc \Leftarrow h(c) = 1$

\[
h((s, (a, \tau)) : c') = 1 = (\text{def. } h \text{ on } Cur) \\
h(a, \tau) = 1 = (\text{def. } h \text{ on } Tree) \\
1 + \max(h^*\tau) = 1 = (\text{arithmetic}) \\
\max(h^*\tau) = 0 = (\text{prop. of } \max, \text{ given that } h(c) > 0 \text{ for all } c) \\
\tau = \Lambda = (\text{defn or } \pi_2 \text{ and } \text{hd}) \\
(\pi_2 \circ \pi_2 \circ \text{hd}) ((s, (a, \tau)) : c') = \Lambda = (\text{defn. } L) \\
L((s, (a, \tau)) : c')
\]

\[\text{\bullet}\]
A.8 Cursor Properties

Property Summary

\[\text{Tree}(\text{Curs } T) = T \]
\[(\mathbf{c} \downarrow i) \uparrow = \mathbf{c} \]
\[(\lfloor \mathbf{c} \rfloor) \in \{1 \ldots \#(\mathbf{c} \uparrow)\} \]
\[(\mathbf{c} \uparrow) \downarrow (\lfloor \mathbf{c} \rfloor) = \mathbf{c} \]
\[\mathbf{c} \downarrow = (\mathbf{c} \uparrow) \downarrow (\lfloor \mathbf{c} \rfloor + 1) \]
\[(\mathbf{c} \downarrow) \uparrow = \mathbf{c} \uparrow \]
\[L(\alpha \mathbf{c}) = \text{TRUE} \]
\[L(\mathbf{c} \parallel) = \text{TRUE} \]
\[R \mathbf{c} \Rightarrow \Omega \mathbf{c} \]
\[R(\text{Curs}(\text{Tree } \mathbf{c})) = \text{TRUE} \]

In all cases above, we have side conditions stating that all invariants and preconditions hold. These are made explicit in the proofs.

In particular, if \text{len } \mathbf{c} > 1, then the cursor will have form \(\mathbf{c}_1 : \mathbf{c}_2 : \mathbf{c}' \) where \(\mathbf{c}_i = (s_i, (a_i, \tau_i)) \). However the invariant requires \((a_1, \tau_1) = \tau_2[s_1] \), so when we instantiate \(\mathbf{c} \) of length greater than one, we do so as

\[\mathbf{c} = (s_1 \tau_2[s_1]) : (s_2, (a_2, \tau_2)) : \mathbf{c}' \]
A.8.1 Proof of $\text{Tree}(\text{Curs } T) = T$

$$\begin{align*}
\text{Tree}(\text{Curs } T) \\
= & \text{(def. } \text{Curs)} \\
= & \text{(def. } \text{Tree)} \\
= & \pi_2(\text{hd}(\{1, T\})) \\
= & \text{(def. } \pi_2 \text{ and hd)} \\
T
\end{align*}$$

A.8.2 Proof of $(c \downarrow i) \uparrow = c$

Take $c = (s, (a, \tau)) : c'$ where $i \in \text{inds } \tau$:

$$\begin{align*}
((s, (a, \tau)) : c') \downarrow i \\
= & \text{(def. of } \downarrow) \\
(\bar{i}, \tau[i]) : (s, (a, \tau)) : c' \\
= & \text{(def. of } \uparrow) \\
(s, (a, \tau)) : c'
\end{align*}$$

A.8.3 Proof of $(\bar{i}c) \in \{1\ldots\#(c \uparrow)\}$

The precondition for \uparrow requires that $\text{len } c > 1$. So let $c = (s_1, \tau_2[s_1]) : (s_2, (a_2, \tau_2)) : c'$ in

$$\begin{align*}
(\bar{i}c) \in \{1\ldots\#(c \uparrow)\} \\
= & \text{(bar } c = s_1) \\
= & \text{(s_1 } \in \{1\ldots\#(c \uparrow)\}) \\
= & \text{(expand } c) \\
= & \text{(def. } \uparrow) \\
= & \text{(len } s_1) \\
= & \text{(def. } \text{inds } \tau_2) \\
= & \text{(inv-Curs } c \text{ asserts the above)} \\
T \text{H}
\end{align*}$$
A.8.4 Proof of \((c \uparrow) \downarrow (\lceil c \rceil) = c\)

The precondition for \(\uparrow\) requires \(\text{len}(c) > 1\), so let

\[c = (s_1, \tau_2[s_1]) : (s_2, (\alpha_2, \tau_2)) : c' \]

We note also that

\[\lceil c \rceil = s_1 \]

We reduce the lhs:

\[
\begin{align*}
(c \uparrow) \downarrow (\lceil c \rceil) \\
= & \text{ (instantiation satisfying pre-\(\uparrow\))} \\
= & \text{ (def. \(\uparrow\))} \\
= & \text{ (def. \(\downarrow\))} \\
= & \text{ (instantiation)} \\
= & c
\end{align*}
\]
A.8.5 **Proof of** $c \Downarrow \downarrow (\#c + 1)$

The precondition for \uparrow requires $\text{len } c > 1$, so let

$$c = (s_1, \tau_2[s_1]) : (s_2, (\alpha_2, \tau_2)) : c'$$

We note also that

$$\#c = s_1$$

The precondition for \uparrow requires that $s_1 + 1 \in \text{inds } \tau_2$.

Reduce the lhs:

$$c \Downarrow \downarrow$$

\Downarrow (instantiation)

$$((s_1, \tau_2[s_1]) : (s_2, (\alpha_2, \tau_2)) : c') \Downarrow$$

\Downarrow (def. \Downarrow

$$((s_1 + 1, \tau_2[s_1 + 1]) : (s_2, (\alpha_2, \tau_2)) : c')$$

Reduce the rhs:

$$(c \uparrow) \downarrow (\#c + 1)$$

\uparrow (instantiation satisfying pre-\uparrow

$$(((s_1, \tau_2[s_1]) : (s_2, (\alpha_2, \tau_2)) : c') \uparrow \downarrow (s_1 + 1)$$

\uparrow (def. \uparrow

$$((s_2, (\alpha_2, \tau_2)) : c') \downarrow (s_1 + 1)$$

\downarrow (def. \downarrow

$$((s_1 + 1, \tau_2[s_1 + 1]) : (s_2, (\alpha_2, \tau_2)) : c')$$

The two reductions give identical results. ♦
A.8.6 Proof of \((c \downarrow) \uparrow = c \uparrow \)

The precondition for \(\uparrow \) requires \(\text{len } c > 1 \), so let

\[
c = (s_1, \tau_2[s_1]) : (s_2, (a_2, \tau_2)) : c'
\]

The precondition for \(\uparrow \) requires that \(s_1 + 1 \in \text{inds } \tau_2 \).

Reduce the lhs:

\[
\begin{align*}
(c \downarrow) \uparrow \\
&= \text{(instantiation)} \\
&= (((s_1, \tau_2[s_1]) : (s_2, (a_2, \tau_2)) : c') \uparrow) \uparrow \\
&= \text{(def. \(\downarrow \))} \\
&= (s_1 + 1, \tau_2[s_1 + 1]) : (s_2, (a_2, \tau_2)) : c' \uparrow \\
&= \text{(def. \(\uparrow \))} \\
&= (a_2, (a_2, \tau_2)) : c'
\end{align*}
\]

Reduce the rhs:

\[
\begin{align*}
c \uparrow \\
&= \text{(instantiation satisfying pre-\(\uparrow \))} \\
&= ((s_1, \tau_2[s_1]) : (s_2, (a_2, \tau_2)) : c') \uparrow \\
&= \text{(def. \(\uparrow \))} \\
&= (a_2, (a_2, \tau_2)) : c'
\end{align*}
\]

The two reductions give identical results. ✤
A.8.7 Proof of $L (\alpha \mathfrak{c}) = \text{True}$

We prove this by strong induction on the height of \mathfrak{c}:

$$P(n) \equiv h(\mathfrak{c}) = n \land L (\alpha \mathfrak{c})$$

Base case: $h(\mathfrak{c}) = 1$
Take $h(\mathfrak{c}) = 1$ as an assumption.

$$L (\alpha \mathfrak{c}) = (\text{defn. alpha})$$
$$L (L \mathfrak{c} \rightarrow \mathfrak{c}, \alpha(\mathfrak{c} \downarrow 1)) = (\text{prop. } h(\mathfrak{c}) = 1 \equiv L \mathfrak{c}, \text{conditional})$$
$$L \mathfrak{c} = (\text{prop. } h(\mathfrak{c}) = 1 \equiv L \mathfrak{c})$$
$$\text{TRUE}$$

Inductive Case: $h(\mathfrak{c}) = n$
We assume the property holds for all \mathfrak{c}' where $h(\mathfrak{c}') < n$. We then show it will also hold for \mathfrak{c}. So, we assume

$$h(\mathfrak{c}') < n \Rightarrow L (\alpha \mathfrak{c}')$$

$$L (\alpha \mathfrak{c}) = (\text{defn. alpha})$$
$$L (L \mathfrak{c} \rightarrow \mathfrak{c}, \alpha(\mathfrak{c} \downarrow 1))$$

We do a case split on $L \mathfrak{c}$.

Case 1: $L \mathfrak{c}$
The proof proceeds as per the $h(\mathfrak{c}) = 1$ case from here.

Case 2: $\neg L \mathfrak{c}$

$$L (L \mathfrak{c} \rightarrow \mathfrak{c}, \alpha(\mathfrak{c} \downarrow 1)) = (\neg L \mathfrak{c}, \text{conditional})$$
$$L (\alpha(\mathfrak{c} \downarrow 1)) = (\text{prop. } h(\mathfrak{c} \downarrow i) < h(\mathfrak{c}), \text{assumption, modus ponens})$$
$$\text{True}$$

A.8.8 Proof of $L (\mathfrak{c} \uparrow) = \text{True}$

$$L (\mathfrak{c} \uparrow) = (\text{def. } \uparrow)$$
$$L (\alpha((\mathfrak{c} \uparrow) \uparrow)) = (\text{Property } L (\alpha \mathfrak{c}') \text{ with } \mathfrak{c}' = (\mathfrak{c} \uparrow) \uparrow)$$
$$\text{TRUE}$$
A.8.9 **Proof of** $R\ c \Rightarrow \Omega\ c$

Let $c = (s, (a, \tau)) : c'$ in

\[
R((s, (a, \tau)) : c')
\]

= (def. R)

\[
((s, (a, \tau)) : c') = \langle 1, _ \rangle
\]

⇒ (pattern matching)

\[
c = \langle 1, (a, \tau) \rangle
\]

= (func. distr. over $=$)

\[
\Omega\ c = \Omega(\langle 1, (a, \tau) \rangle)
\]

= (defn. of Ω)

\[
\Omega\ c = R(\langle 1, (a, \tau) \rangle) \rightarrow \text{TRUE} , \ldots
\]

= (defn. of R)

\[
\Omega\ c = \langle 1, (a, \tau) \rangle = \langle 1, _ \rangle \rightarrow \text{TRUE} , \ldots
\]

⇒ (pattern matching)

\[
\Omega\ c = \text{TRUE} \rightarrow \text{TRUE} , \ldots
\]

= (conditional)

\[
\Omega\ c = \text{TRUE}
\]

= (prop. calc.)

\[
\Omega\ c
\]

\[\blacklozenge\]

A.8.10 **Proof of** $R(C\text{ars}(\text{Tree}\ c)) = \text{True}$

Let $c = (s, (a, \tau)) : c'$ in

\[
R(\text{C\text{ars}}(\text{Tree}((s, (a, \tau)) : c')))\]

= (def. of Tree)

\[
R(\text{C\text{ars}}((a, \tau)))
\]

= (def. of $\text{C\text{ars}}$)

\[
R(\langle 1, (a, \tau) \rangle)
\]

= (def. of R)

\[
\langle 1, (a, \tau) \rangle = \langle 1, _ \rangle
\]

⇒ (pattern matching)

\[
\text{TRUE}
\]