
Linear transformations

of semantic spaces

for word-sense discrimination and

collocation compositionality grading

Alfredo Maldonado Guerra

Doctor of Philosophy
The University of Dublin, Trinity College

2015

Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or any other
university and it is entirely my own work. I agree to deposit this thesis in the University’s
open access institutional repository or allow the library to do so on my behalf, subject to Irish
Copyright Legislation and Trinity College Library conditions of use and acknowledgement.

Alfredo Maldonado Guerra

3

4

Abstract

Latent Semantic Analysis (LSA) and Word Space are two semantic models derived from the
vector space model of distributional semantics that have been used successfully in word-sense
disambiguation and discrimination. LSA can represent word types and word tokens in con-
text by means of a single matrix factorised by Singular Value Decomposition (SVD). Word
Space is able to represent types via word vectors and tokens through two separate kinds of
context vectors: direct vectors that count first-order word co-occurrence and indirect vec-
tors that capture second-order co-occurrence. Word Space objects are optionally reduced by
SVD. Whilst being regarded as related, little has been discussed about the specific relation-
ship between Word Space and LSA or the benefits of one model over the other, especially with
regard to their capability of representing word tokens. This thesis aims to address this both
theoretically and empirically.

Within the theoretical focus, the definitions of Word Space and LSA as presented in the
literature are studied. A formalisation of these two semantic models is presented and their
theoretical properties and relationships are discussed. A fundamental insight from this theor-
etical analysis is that indirect (second-order) vectors can be computed from direct (first-order)
vectors through a linear transformation involving a matrix of word vectors (a word matrix),
an operation that can itself be seen as a method of dimensionality reduction alternative to
SVD. Another finding is that in their unreduced form, LSA vectors and the Word Space dir-
ect (first-order) context vectors define approximately the same objects and their difference
can be exactly calculated. It is also found that the SVD spaces produced by LSA and the
Word Space word vectors are also similar and their difference, which can also be precisely
calculated, ultimately stems from the original difference between unreduced LSA vectors and
Word Space direct vectors. It is also observed that the indirect “second-order” method of
token representation from Word Space is also available to LSA, in a version of the representa-
tion that has remained largely unexplored. And given the analysis of the SVD spaces produced
by both models, it is hypothesised that, when exploited in comparable ways, Word Space and
LSA should perform similarly in actual word-sense disambiguation and discrimination exper-
iments.

In the empirical focus, performance comparisons between different configurations of LSA
and Word Space are conducted in actual word-sense disambiguation and discrimination ex-
periments. It is found that some indirect configurations of LSA and Word Space do indeed
perform similarly, but other LSA and Word Space indirect configurations as well as their dir-
ect representations perform more differently. So, whilst the two models define approximately

5

the same spaces, their differences are large enough to impact performance. Word Space’s sim-
pler, unreduced direct (first-order) context vectors are found to offer the best overall trade off
between accuracy and computational expense. Another empirical exercise involves comparis-
ons of geometric properties of Word Space’s two token vector representations aimed at testing
their similarity and predicting their performance in means-based word-sense disambiguation
and discrimination experiments. It is found that they are not geometrically similar and that
sense vectors computed from direct vectors are more spread than those computed from indir-
ect vectors. Word-sense disambiguation and discrimination experiments performed on these
vectors largely reflect the geometric comparisons as the more spread direct vectors perform
better than indirect vectors in supervised disambiguation experiments, although in unsuper-
vised discrimination experiments, no clear winner emerges. The role of the Word Space word
matrix as a dimensionality reduction operator is also explored. Instead of simply truncating
the word matrix, a method in which dimensions representing statistically associated word
pairs are summed and merged, called word matrix consolidation, is proposed. The method
achieves modest but promising results comparable to SVD. Finally, the word vectors from
Word Space are tested empirically in a task designed to grade (measure) the compositionality
(or degree of “literalness”) of multi-word expressions (MWEs). Cosine similarity measures
are taken between a word vector representing the full MWE, and word vectors represent-
ing each of its individual member words in order to measure the deviation in co-occurrence
distribution between the MWE and its individual members. It is found that this deviation
in co-occurrence distributions does correlate with human compositionality judgements of
MWEs.

6

Acknowledgements

The research presented in this thesis was supported by Science Foundation Ireland
(Grant 07/CE/I1142) as part of the Centre for Next Generation Localisation (www.cngl.ie)
at Trinity College Dublin. Some calculations were performed on the Lonsdale cluster main-
tained by the Trinity Centre for High Performance Computing. This cluster was also funded
through grants from Science Foundation Ireland.

I would like to express my sincere thanks to my supervisor Dr Martin Emms, not just
for his hands-on involvement in this research and for his support throughout the course of
my studies, but for teaching me a whole new way of deep analytical thinking without which
this thesis would have not taken shape. In fact, some of the most important contributions
included herein, such as the linear transformation formulation in Chapter 4 and the difference
between the R1 and R2 SVD projections in Chapter 3, are based on original ideas by him. I
only followed up on his big good ideas with lots of little good ideas. Credit and gratitude are
also owed to the examiners of this thesis, Dr Saturnino Luz and Dr Anna Korhonen, whose
feedback and advice strengthened this work significantly.

I would also like to thank Dr Carl Vogel for his continued help and support during my
studies as well as for initially having me admitted to the Ph.D. programme in Trinity. Simil-
arly, I would like to thank Elda Quiroga from Tecnológico de Monterrey and Masaki Itagaki
from Microsoft for their support in the preceding stages of my Ph.D. This thesis is in many
ways the product of their guidance and support.

Many thanks also go to the other Ph.D. students and post-docs for the deep technical
discussions and their spirit of camaraderie: Liliana, Héctor, Gerard, Martin, Erwan, Derek,
Anne, Roman, Stephan, Francesca, Oscar, Baoli, Nikiforos and Ielka, as well as to the “new
generation”: Akira, Grace, Kevin, Carmen, Arun and Shane. I would also like to thank the
DU Archaeological Society for providing me with a space on campus for intellectual discus-
sions that did not involve computers but dusty old bones, and in particular I wish to thank
Mary, Ciarán, Jenny, Deirdre, Pablo, Karl, Aoife, Sean, Alice, Michael, Alex, Victoria and
John Tighe for their friendship. Thank you guys, I had a blast!

Heel veel dank aan Wynzen de Vries, for his patience, encouragement and support during
my studies and for his understanding when the writing of this thesis soaked up most of my
time. Finalmente, me gustaría agradecer a mis padres, Beatriz Guerra Treviño and Alfredo
Maldonado Osorno for all their care, education and support during the first 20-something
years of my life.

7

8

Contents

Declaration 3

Abstract 5

Acknowledgements 7

Typographical conventions 13

1 Introduction 15

1.1 Motivation . 15
1.2 Operationalising context computationally 20
1.3 Research questions and thesis structure 24

2 Linguistic Background 31

2.1 What is a word? . 32
2.1.1 Word tokens and word types . 32
2.1.2 Multi-word expressions and collocations 33
2.1.3 Ngrams . 36

2.2 What is a word sense? . 37
2.2.1 Structuralist lexical semantics . 39
2.2.2 Word senses and the role of context 42
2.2.3 Characterising context . 46
2.2.4 The distributional hypothesis of lexical semantics 49
2.2.5 Meaning beyond context . 52

3 Computational Background 57

3.1 Natural language processing tasks . 58
3.1.1 WSX: Word-sense disambiguation, discrimination and induction . . 60

3.1.1.1 Word-sense disambiguation 61
3.1.1.2 Word-sense discrimination 64

3.1.2 Measuring the compositionality of multi-word expressions 65
3.2 The vector space model of information retrieval 67
3.3 The VSM as a distributional lexical semantics model 75
3.4 Latent Semantic Analysis . 78

9

3.4.1 SVD: the mathematical foundation of LSA 79
3.4.2 Projecting word and segment vectors into the reduced space 81
3.4.3 The R1 and R2 projections in the literature 86
3.4.4 Semantic properties of LSA . 87

3.4.4.1 Semantic relations . 88
3.4.4.2 Polysemy . 93
3.4.4.3 Noise reduction . 95

3.5 Word Space . 95
3.5.1 The word matrix: representing word types 96
3.5.2 Context vectors: representing word tokens 97

3.6 Syntagmatic space and paradigmatic space 102

4 Linear Transformations in Word Space and LSA 107

4.1 W as a linear map . 108
4.2 Direct and indirect token representations 110

4.2.1 Token representations via C . 111
4.2.1.1 D-C-UR: Unreduced direct context vectors 112
4.2.1.2 D-C-R1/2: SVD-reduced direct context vectors 112
4.2.1.3 I-C-UR: Unreduced indirect context vectors via C 114
4.2.1.4 I-C-R1/2: SVD-reduced indirect context vectors via C . . 115

4.2.2 Token representations via W . 115
4.2.2.1 I-W-UR: Unreduced indirect context vectors via W . . . 115
4.2.2.2 I-W-R1/2: SVD-reduced indirect context vectors via W . 116

4.2.3 Token representations via A . 117
4.2.3.1 D-A-UR: Unreduced segment vectors 117
4.2.3.2 D-A-R1/2: SVD-reduced segment vectors 117
4.2.3.3 I-A-UR: Unreduced indirect context vectors via A 118
4.2.3.4 I-A-R1/2: SVD-reduced indirect context vectors via A . . 118

4.2.4 A (toy) numerical comparison . 119
4.3 A comparison between LSA and Word Space 122

4.3.1 A vs W: The difference and relationship between the unreduced
spaces of LSA and Word Space 123

4.3.2 Decomposition of W . 126
4.4 Summary . 133

5 WSX experiments: direct vs. indirect Word Space token spaces 135

5.1 Corpora . 136
5.2 Geometric experiments . 137
5.3 Supervised disambiguation . 140
5.4 Unsupervised discrimination . 141

10

5.5 Comparisons and conclusions . 143

6 WSX experiments: unreduced vs. SVD-reduced token spaces 145

6.1 Background . 145
6.2 Methodology . 148
6.3 Experimental results . 149

6.3.1 General observations . 149
6.3.2 Direct vectors: D-A vs. D-C . 150
6.3.3 Indirect vectors: I-W vs. I-A and I-C 151

6.4 Conclusions . 151

7 Word matrix consolidation as a dimensionality reduction method 153

7.1 Statistical word matrix . 154
7.2 Reduction by consolidation . 156
7.3 Experiments and conclusions . 157

8 Measuring MWE compositionality via Word Space 161

8.1 DISCO 2011 Shared Task . 162
8.1.1 The multi-word expressions . 163
8.1.2 Evaluation of systems’ output . 164
8.1.3 Issues regarding the human judgements 165

8.2 Methodology . 166
8.3 Preliminary definitions . 167
8.4 Results and conclusion . 170

9 Conclusions and future work 175

9.1 Summary of contributions . 176
9.2 Future work . 178

Bibliography 181

Index 195

11

12

Typographical conventions

• Bold will be used for important linguistic and technical terms when defined. E.g. a
word token is a specific instance of a particular word in a text.

• Italics will be used for lexical linguistic units such as words, multi-word expressions,
ngrams, lexemes, morphemes, etc. when mentioned in the exposition of the text rather
than when they are used in a linguistic example (unless the term is italicised for emphasis
in the linguistic example). E.g. In the example, bank is used in its ‘financial institution’
sense.

• Small caps are used for lexemes (word roots) and as features in componential analysis
examples and features of vector examples. E.g. Tired is a word form of the lexeme tire.
The dimensions of vector w are [money, account, river, water].

• Text surrounded in “double quotes” will usually be direct quotations or linguistic ex-
amples embedded in the running text.

• Text surrounded in ‘single quotes’ will usually be senses or meanings of words. They
will also be used as glosses for non-English language words. E.g. In the example, bank
is used in its ‘financial institution’ sense. The correct Spanish term is vino tinto ‘red
wine’ rather than the more literal *vino rojo.

• Ungrammatical and semantically anomalous phrases and examples will be preceded by
a star. E.g. “*He kicked the pail”, “*Colourless green ideas sleep furiously”, *vino rojo
(lit. ‘red wine’).

• Linguistic variables found in text will be represented by lower-case Greek letters. For
example, word type variables will be commonly represented by the letters τ (tau) and
υ (upsilon), word token variables will be represented by letters such as κ (kappa) and
λ (lambda) and sense variables (i.e. a variable holding the sense or “semantic value” of
a word) by σ (sigma). Greek letters are not exclusively reserved for linguistic variables
however, and so in a few instances Greek letters will be employed as numerical variables
in conventional formulae (e.g. the usage of λ as a variable denoting an eigenvalue of a
matrix).

• All vectors are represented with bold lower-case letters like a or w or words like bank.
Normally, these vectors will represent word types in the Latent Semantic Analysis and

13

Typographical conventions

Word Space approaches. Some of these word type vectors will be used in function form,
taking a variable as an argument: e.g. w(τ) is the word (type) vector of type τ .

• A context vector will be represented by a bold lower-case letter c, with its order indicated
as a superscript. For example, a direct (first-order) context vector will be represented
by c1 and an indirect (second-order) context vector by c2. In some cases, the matrix
from which a context vector is derived will be used as its superscript instead: e.g. cH is
an indirect context vector derived from matrix H. When discussing the context vector
of a particular token κ, the vector will be used in function form: e.g. c1(κ) will be the
direct (first-order) context vector of a specific token κ in a corpus or document and
cH(κ) will be the indirect context vector, of κ, derived from matrix H.

• Sense vectors are represented by a lower-case Gothic s and a superscript indicating their
order. E.g.: s1, s2

• All matrices are represented with bold upper-case letters. For example, word matrices
will be represented as W whereas matrices consisting of context vectors will be repres-
ented by C.

• Non-bold, subscripted, lower-case letters are used as scalars belonging to the vectors
or matrices introduced above. For example, ci would be the i-th element in a context
vector c1(κ) and wij would be the number of times the i-th word co-occurs with the
j-th word in word matrix W. An alternative index notation to refer to the i-th element
in a vector will be [c1(κ)]i.

• Sets are represented as upper case letters in calligraphic script, e.g.: D. The cardinality
of a set is indicated by surrounding the set in bars: |D|. A scalar expression surrounded
in bars indicates the absolute value of the scalar expression: |xi − µi|.

14

1 Introduction

1.1 Motivation

As most aspects of human life settle into an interconnected on-line world, the amount of
textual information generated each day accumulates at an unprecedented speed. As a con-
sequence, new computer tools are created daily in order to access such information (search
engines), to channel the information into coherent categories (blogs, Twitter, news readers,
email classifiers), to make the information available to people around the world (machine
translation), etc. Whilst all of these tools might look very different from each other, they all
handle the same type of data: human language manifesting in text form.

From a structuralist perspective (de Saussure, 1916), human language can be seen as a
communication system based on signs consisting of a signifier (sounds, letters, words) that
represent a signified (meaning, concept) and on rules (syntactic, semantic, etc.) that dictate
how those signs are combined to form meaningful utterances. For example, in (1.1.1) below,
the signifier flight signifies a journey made through air by means of aeroplanes while RyanAir
refers to a commercial airline and Dublin and London to two European cities:

(1.1.1) RyanAir provides flights between Dublin and London.

A syntactic rule tells us that the verb to provide takes one noun phrase as a subject and another
noun phrase as a direct object, and therefore an English speaker will parse this sentence in this
manner:

S

NP

RyanAir

VP

V

provides

NP

flights between Dublin and London

(1.1.2)

A problem with human language is ambiguity. Consider the following example:

(1.1.3) Time flies like an arrow.

15

Motivation Introduction

The signifier flies is a verb that normally means moving through space. However, most English
speakers will interpret the sentence as a figure of speech, a simile, relating the speed of the
passage of time with the speed in which an arrow flies (i.e. very fast). This figurative reading
of the sentence produces parse tree (1.1.4):

S

NP

Time

VP

V

flies

NP

like an arrow

(1.1.4)

However, an alternative though improbable reading, interpreting like as the verb meaning
to enjoy or to take pleasure from, forces the whole sentence to state that there is a particular
type of fly, called “time flies”, that are fond of a particular arrow. The parse tree for this
interpretation is (1.1.5):

S

NP

Time flies

VP

V

like

NP

an arrow

(1.1.5)

While contrived, this example illustrates that language can present ambiguities at different
levels. In this case, the ability to perceive a figure of speech or not can cause two distinct parse
structures (syntactic ambiguity), each assigning a different part of speech (morpho-syntactic
ambiguity) and meaning (lexical semantic ambiguity) to the elements flies and like. The fact
that the interpretation depicted by (1.1.5) is easily perceived as forced or improbable, illus-
trates that (human) language users are good at dealing with language ambiguity. If emerging
software tools are to succeed in helping people make sense of the vast information on the
Internet, they will also have to deal with these ambiguities. It is this type of lexical semantic
ambiguity that this thesis is concerned with.

As a specific example of what is meant by lexical semantic ambiguity, consider the word
rock. It could mean a ‘natural solid consisting of one or more minerals’, a ‘genre of popular
music usually involving the use of electric guitars’ or it could even refer to other less frequent
concepts, such as the ‘stick-shaped sweet usually sold in sea-side resorts in the UK and Ireland’,
or even people names like Rock Hudson. This potential semantic ambiguity in words might
not be a characteristic immediately acknowledged, but it is pervasive in the lexicon. For

16

Introduction Motivation

example, it has been estimated that any of the 121 most frequent nouns in English have 7.8
meanings on average (Ng and Beng Lee, 1996).

When confronted with this fact, most people agree that usually the context of a word will
help in disambiguating its meaning. And in fact that is what people do in every day language
since words do not occur in isolation, but in specific conversational or textual situations. So
when dealing with lexical semantic ambiguity computationally, the attention usually shifts to
the role of context as well. As an example of the power of context to disambiguate words,
consider the two book titles in (1.1.6) and (1.1.7) below, illustrating how the correct sense
of rock can be easily determined by taking into account the other words in the title (i.e. the
context to the ambiguous word rock):

(1.1.6) Rock fractures in geological processes

(1.1.7) Rock and popular music in Ireland: before and after U2

In fact the problem of ambiguity at the lexical level was identified early in the first efforts of
machine translation in the 1940s and 1950s. Weaver (1955) recognised in those early days
that translating a text word by word was difficult without taking into account the context
in which those words occurred in since it is impossible to tell the intended meaning of each
word in isolation. But if the translation of each word was decided based on the other words
surrounding it (its context), then it should be possible to determine their meaning with more
certainty. This insight led to the research programme known today as word-sense disambig-

uation (WSD) (Ide and Véronis, 1998; Agirre and Edmonds, 2007, pp. 4-7; Navigli, 2009),
which is the computational task of determining the sense of a given word as it occurs in a
given context. Normally, the sense assigned to the word in context comes from a pre-defined
list of possible senses for that word. A successful early example is the seminal Lesk Algorithm
(Lesk, 1986), which disambiguates an instance of polysemous word in context by measuring
the overlap (the number of words in common) between its context (the words surrounding
the polysemous word) and the words used in each of the definitions for every sense of that
word in an electronic dictionary. The sense that maximises such overlap is selected as the
meaning of the word instance. The computerisation of dictionaries and the curation of elec-
tronic lexical resources such as WordNet (Miller, 1995; Fellbaum, 1998) in the 1980s and
1990s led to a surge in WSD research that continues to this day. Today, WSD is treated as
a corpus-based classification problem: given an occurrence of a polysemous word in text and
a list of senses for that word, classify the occurrence at hand based on its context. For this
classification to take place, a machine learning classifier is usually trained on a corpus that
feature the polysemous word(s) that have been already manually disambiguated. Because the
required list of word senses has to be manually curated and because a training corpus has to be
manually sense-tagged, it is said that this task is supervised. The major criticism about tradi-
tional word-sense disambiguation is that it is time consuming and expensive to both maintain
the list of word senses and to manually tag high volumes of text. This is often termed the “in-
formation bottleneck”. Besides, it is not easy (or even possible!) to list every sense for a word

17

Motivation Introduction

as that word may modulate or adapt its sense depending on the nature, domain or register of
the corpus (Kilgarriff, 1997). Sometimes it is easy to distinguish between the senses of a poly-
semous word, but phenomena such as regular polysemy and metaphorical extension make the
task of listing every single potential sense of a word a virtually impossible task. This has led
to the development of unsupervised methods such as word-sense discrimination (WSDisc)
or word-sense induction (WSI)1.

Word-sense discrimination (Schütze, 1998) is a relaxation of the original word-sense dis-
ambiguation task that does not rely on a pre-defined list of word senses is available and instead
seeks to automatically induce the senses of a word by clustering the contexts in which it ap-
pears. The assumption is that each of such clusters represents a different sense of the word in
question. The clusters are then used to classify new instances, as done in WSD. It is considered
an unsupervised approach because of its lack of a sense list and because there is no need to
manually tag any training corpus. However, it is very common during experimentation to use
a manually sense-tagged test corpus for evaluation purposes. The terms word-sense induction
and word-sense discrimination are often used interchangeably. However, one could argue that
the initial clustering step in word-sense discrimination could be described as a word-sense
induction phase. This thesis takes this view and so will consider word-sense discrimination
as a two-step process: a sense induction step in which context clustering takes place and a
discrimination proper step in which individual contexts are assigned to the cluster deemed
more appropriate by some classification algorithm.

There are also hybrid, semi-supervised approaches to WSD. One group of such approaches
use an unsupervised algorithm to learn senses from untagged text based on a sense invent-
ory. For example, in Buitelaar et al. (2001) co-occurrence statistics in untagged text of words
that are represented in a WordNet-like taxonomy are computed first. Then, the occurrence
of an ambiguous word is tagged with the WordNet sense that maximises a score computed
by traversing the taxonomy of each candidate sense and by contrasting each transversal’s co-
occurrence statistic average with the co-occurrence statistics of the ambiguous word and the
words co-occurring with it. Another group of semi-supervised approaches are those that auto-
matically annotate senses in untagged corpora based on a small set of sense-tagged examples.
Yarowsky (1995) describes an example of these bootstrapping methods.

As we have seen, words convey meaning; a meaning that varies as a function of context.
As words combine with other words in that context to form larger constructions such as
phrases and sentences, a “larger” meaning emerges from such a construction. Language is
a productive communication system as it allows the production and understanding of new
combinations of units (such as words) that have never been experienced by language users
(Lyons, 1981, Sec. 1.5). And whilst this productivity is not random but governed by the
rules of grammar, language users are free to creatively produce utterances in a potentially

1A note on abbreviations: When discussing one of these word-sense-related tasks, the task full name or its
abbreviation will be used (WSD, WSDisc, WSI). However, if a discussion applies to all three tasks or if the
specific task is not that relevant for the present discussion, the collective abbreviation WSX will be used.

18

Introduction Motivation

infinite number of ways without the need of ever breaking free from the constraints posed
by these rules (Chomsky, 1972, p. 100). Despite the ability that human beings have to
use language productively and creatively, there is strong evidence to suggest that language
users often recycle prefabricated chunks of word combinations (Cowie, 1988; Sinclair, 1991)
which Firth (1957) calls collocations. Such collocations range from idiomatic expressions like
saved by the bell and kick the bucket to multi-word terminological units like weapons of mass
destruction and operating system, passing through clichés and simple recurring phrases like a at
this moment in time, all that jazz, boys will be boys, at the speed of light, opposites attract, moving
forward, etc.

There is a category of collocations that, in addition to showing frequent recurrence, seem
to form a self-contained and opaque semantic unit. For example, the idiomatic expression to
throw in the towel cannot be correctly interpreted as ’to give up’ without recurring to know-
ledge of boxing, from where the expression originated. These collocations are called non-

compositional since they cannot be interpreted using the standard mechanisms of compos-
ition of language, that is, by following the traditional rules of syntax and semantics without
recurring to knowledge outside the usual senses of each constituent word. Non-compositional
collocations pose a significant problem in many natural language processing problems such
as machine translation, where we do want to avoid providing literal translations to idiomatic
expressions. This issue poses another layer of lexical ambiguity to consider. Notice however,
that context can also help in disambiguating whether a collocation is compositional or not.
When used in its metaphorical, idiomatic sense, to throw in the towel will be likely surrounded
by words and phrases suggesting competition and surrender, and will be unlikely surrounded
by words suggesting the actual physical hurling of absorbent cloths to the floor.

Whilst the study of word senses and collocations is of great interest to lexical semantics
and linguistics in general, they have practical implications for different natural language pro-
cessing tasks. As already mentioned, WSD was first identified and defined within the context
of machine translation. Indeed, explicit WSD is necessary in traditional, rule-based machine
translation at least from a theoretical point of view. Many actual rule-based machine transla-
tion systems however do not include an explicit WSD module, although the most successful
commercial rule-based system, Systran, does include a WSD module (Resnik, 2007). Statist-
ical machine translation systems generally do not include such a WSD module. Since these
systems face a lexical choice comparable to the one faced by WSD components, it is often said
that they perform their own implicit WSD as the source language context provides clues as
to the correct translation of ambiguous words (Och, 2002, p. 53). Nevertheless, there have
been efforts to integrate explicit WSD modules in statistical machine translation. Carpuat
and Wu (2007) is a successful example that showed a consistent improvement of phrase-based
statistical machine translation from Chinese to English by disambiguating ambiguous source
words and phrases by assigning them their corresponding target translation directly, instead
of assigning their dictionary or WordNet sense to such ambiguous word and phrases.

Besides machine translation, WSD is being applied to many NLP tasks like information ex-

19

Operationalising context computationally Introduction

traction, named-entity classification, co-reference determination, acronym expansion, among
others (Agirre and Edmonds, 2005, p. 11).

Unsupervised WSDisc methods have also been applied to NLP tasks such as information
retrieval. For instance, Véronis (2004) developed a system that produced graphs of word co-
occurrences from text corpora that was able to discriminate the linguistic usages (senses) of
highly ambiguous search queries, whilst Navigli and Crisafulli (2010) performed clustering
of the results returned by the Yahoo! web search engine based on the induced senses of the
words contained in the search result snippets.

WSDisc and compositionality measurement of MWEs can be used in lexicography and
terminography (terminology management). For example, WSDisc can be used in a concord-
ancing system that attempts to induce the senses of the word being searched and clusters
the concordances based on these word senses and presents them as distinct groups to the
lexicographer or terminologist. A MWE compositionality measuring tool could help a ter-
minologist determine whether a multi-word term can be split into smaller sub terms or not
(presumably a low compositional multi-word term will be more atomic and will not tend
to have sub terms). A low compositionality grade on a multi-word term can also indicate
translators not to translate such a term literally and to instead look for a suitable equivalent
idiomatic expression in their target language.

1.2 Operationalising context computationally

Lexical ambiguity can manifest in at least two ways: in the way that words can acquire different
senses depending on use and in the way that some words will form partnerships that have
non-transparent or idiomatic meanings. Context provides language users with clues as to
how to resolve such ambiguities. But if we are to use context to help computers resolve lexical
ambiguities we need a way to operationalise our intuitions computationally.

First, let us take a closer look the notion of context. At one level, context can be understood
as the situation in which a linguistic expression is uttered. This notion of situational context
is emphasised by Malinowski (1935) by stating that language has to be researched in its con-
text of situation in anthropological studies. He even argues that language plays an active role
in human behaviour. A notion that is further refined by Austin (1962) with his distinction
between performative and declarative sentences, a notion that later developed into the speech
act theory of what eventually became linguistic pragmatics (Lyons, 1981, Sec. 5.6; Geeraerts,
2010, Sec. 4.2.3). Similarly, Wittgenstein (1968) explains that a word’s meaning is determ-
ined by its use, an idea that brings us to a more immediate and linguistic characterisation of
context. Given a particular word or expression of interest, its syntagmatic context is formed
by the words and expressions that surround it in an instance of its usage (sec. 2.2.3, p. 46).
When dealing with text corpora, often this is the only type of context readily available. Even
without access to a situational context, syntagmatic context alone can be quite informative
with regard to lexical meaning. For example, Firth (1957) observed that much of the mean-

20

Introduction Operationalising context computationally

ing of the word cows can be deduced from the words it collocates with in expressions such
as “they are milking the cows” or “cows give milk”. The words co-occurring with a word of
interest are indicative of its properties. This intuition can be extended to help in the resol-
ution of word-sense ambiguities. For example, contexts using the word bank in its financial
sense would likely involve words such as account, balance, money, deposit, steal, etc. whereas
contexts using the same word in its ‘edge of body of water’ sense will likely include words such
as river, sand, water, canal, fish, and so on (Stubbs, 2002, p. 15). Each sense of the word bank
are likely to produce mutually exclusive (or nearly mutually exclusive) sets of context words.
The theoretical underpinnings of this intuition is Harris’ (1954) distributional hypothesis,
which states that words occurring in similar contexts will tend to have similar meanings. The
assumption is that a difference in distribution entails a difference in meaning.

This is the basic intuition behind most methods of word-sense disambiguation and discrim-
ination. In fact, Lesk’s algorithm directly operationalises the distributional hypothesis. As we
shall see in Section 3.2 (p. 67) this intuition can be formalised and eventually expanded into
what is now known as the vector space model (VSM) (Salton, 1971; Salton et al., 1975) used
in information retrieval and eventually adopted in distributional lexical semantics. The VSM
encodes a context of an ambiguous word as an occurrence vector, i.e. a multidimensional
array in which each dimension represents a word in some pre-defined vocabulary and keeps
count of the number of times that each word occurs in the context. The core component of
the VSM is a word-document or word-context matrix A. The rows of such a matrix represent
word types and the columns documents or shorter text segments such as paragraphs or sen-
tences. An element aij in this matrix, in its most basic form, effectively counts occurrences of
a word type τi in a document or segment (context) δj.

Notice that these representations only take into account the words present (or absent) in
a context to estimate semantic similarity or relatedness. They do not take into account other
information such as syntax (word order). Because of this feature, these representations, which
are at the core of the VSM, are usually called bag of words models. Despite this simplicity,
the VSM has been quite successful in its native application domain, information retrieval,
specifically in the task of ranking the documents in a text collection according to their relev-
ance to a user query. This property of finding documents relevant to a user query has been
interpreted to be a proxy for semantic similarity. That is, if the words used in a document
are similar in meaning to the words in a user query, and the VSM considers the document to
be relevant to the query, then perhaps the same VSM-based relevance metric can be applied
to natural language processing problems where measuring semantic similarity between words
is the solution or part of the solution. For example, Landauer and Dumais (1997), Turney
(2001) and Rapp (2003) tested different variants of the VSM in the synonym section of the
Test of English as a Foreign Language (TOEFL). In this section of the test, candidates are
asked to select the correct synonym from a list of candidate synonyms. The VSM-based sys-
tems developed by these researchers obtained scores between 65% to 93%, similar to those
achieved by skilled L2 English speakers and native speakers of English. Also, a VSM system

21

Operationalising context computationally Introduction

developed by Turney (2006) was tested on the multiple-choice analogy section of the SAT
exam and achieved a score of 56%, similar to what human test-takers achieve who on average
score 57%.

The link between the VSM and lexical semantics is so strong that, some variants of the
VSM, such as LSA, are often seen as plausible models of a major component of human lexical
semantic learning (Bullinaria and Levy, 2007; Landauer, 2007). But VSMs are also applied in
language tasks beyond semantics. For example, within information retrieval itself, VSMs find
applications beyond the traditional ranking of documents based on queries. An extension of
this basic application is cross-lingual information retrieval, in which documents written in one
language are returned for queries written in another language (Dumais et al., 1997). Another
information retrieval area where VSMs have been applied to are text categorisation (Sebastiani,
2001) and document clustering (Manning et al., 2008), important tasks in organising large
text collections. Automatic essay grading, document segmentation by subtopics, question
answering and call routing are some of the other natural language processing tasks where the
VSM has found application (Turney and Pantel, 2010).

Given its success in lexical semantics and other areas of natural language processing, it
is not surprising to find that many, if not most, WSX methods are based on a variant of
the VSM (Agirre and Stevenson, 2007). This thesis focuses on the VSM in part because of
this success and in part because it is virtually language independent as it requires very little
linguistic pre-processing, making it available to languages for which computational language
resources (such as parsers or part-of-speech taggers) are not available or underdeveloped. This
language neutrality property can, in addition, help shed some light on how far we can get with
as little resources as possible and by only deriving statistics from the text itself. In particular,
this thesis focuses on two instances of the VSM: Latent Semantic Analysis (Deerwester et al.,
1990; Landauer and Dumais, 1997) and Word Space (Schütze, 1992, 1998).
Latent Semantic Analysis (LSA) is a direct adaptation of Salton’s VSM, which usesA to rep-

resent word types and text segments. The characteristic that distinguishes LSA from Salton’s
VSM is the usage of Singular Value Decomposition (SVD) (Golub and Van Loan, 1989;
Berry, 1992) in order to project the word type and segment vectors in A to a lower dimen-
sionality space. Levin et al. (2006) applied LSA to WSD with a view to applying it to WSDisc
at a future stage. They used the text segments containing occurrences of the ambiguous word
as proxies for token representations of that ambiguous word.
Word Space constructs a word-word co-occurrence matrix (or word matrix), denoted here

as W, in which an element wij counts the instances of word type τi occurring in the vicinity
of word type τj. The rows and columns in W are word vectors that represent word types

and are used to compute indirect word token representations called second-order context

vectors. Given a target word token in context, a second-order context vector is computed
by aggregating (by summing or averaging) the word vectors corresponding to the words co-
occurring with the target word in a particular context. Before computing second-order context
vectors, Word Space optionally reduces the dimensionality of these word vectors via SVD in

22

Introduction Operationalising context computationally

order to obtain reduced context vectors. Strictly speaking, context vectors computed from
SVD-reduced word vectors do not count second-order co-occurrence per se since they are
aggregating vectors in a different (orthogonal) vector space that do not hold word frequencies
as such any more. Also, Kontostathis and Pottenger (2006) demonstrated that SVD-reduced
spaces potentially capture co-occurrence information of an order higher than second-order.
Because of this, we shall prefer the term indirect context vectorswhen discussing second-order
context vectors in general. There is also a first-order context vector variant (Pedersen and
Bruce, 1997), which represents an instance of a target word in context by counting the words
that co-occur directly with the target word within the word window. To contrast them with
their indirect (second-order) counterparts, we shall refer to them as direct context vectors.
While not traditionally included within the Word Space framework, direct context vectors
are related to word vectors and in consequence to indirect context vectors: the word vector
of a word type τ can be computed by summing the direct context vectors for every token
κ of τ in the corpus (see Def. 3.5.3, p. 101; Maldonado-Guerra and Emms, 2012). For
our purposes, we shall consider Word Space to have three inter-related components: a word
matrix of word vectors representing types and two token representations: direct (first-order)
and indirect (second-order) context vectors. Contrast this three-component system with LSA’s
matrix A which is able to simultaneously represent word types and tokens in the same matrix.

This thesis is concerned primarily with the competing token representations given by Word
Space and LSA. In spite of the attention given by the WSX literature to these two specific
representations, very few works have attempted to compare one with the other. And those few
works that attempt this comparison usually do not fully analyse their properties or the exact
mathematical relationship between the two models. For example, Pedersen (2010) compares
the performance of variants of LSA and Word Space in WSDisc experiments, but he assumes a
straightforward relationship between LSA and Word Space which he does not test (see Section
4.3, p. 122). Sahlgren (2006), Utsumi and Suzuki (2006) and Utsumi (2010) also performed
empirical comparisons between LSA and Word Space based on identifying semantic relations
(such as synonymy, hyponymy, collocation, etc.) but again did not perform an analytical
comparison between the spaces represented by both models. This thesis aims to fill this gap in a
systematic manner by first analysing the mathematical relationships between Word Space and
LSA analytically and then by performing WSX benchmarks in order to attempt to establish
which model is best suited for WSX.

Whilst the main focus of the thesis is the study of the spaces produced by LSA and Word
Space and their impact on the disambiguation and discrimination of word senses, the thesis
also explores, as a secondary topic, the problem of automatically assessing the compositionality
of multi-word expressions (see Section 2.1.2, p. 33 and Chapter 8). This topic is included in
this thesis as the method presented to perform this assessment is based on Word Space.

The specific line of enquiry is made more explicit in the research questions that shape the
structure of this thesis in Section 1.3.

23

Research questions and thesis structure Introduction

1.3 Research questions and thesis structure

The topic of research for this thesis centres on vector space representations useful for resolving
lexical ambiguities in an unsupervised way. The primary vector space representation studied
is Schütze’s Word Space, with LSA as a secondary model to compare it against. Both models
represent the same objects (types and tokens) in their own way. Since both models are based
on word counts, use SVD but construct different matrices, it seems reasonable to ask whether
the two models are equivalent, approximate or completely different. Little has been discussed
about their exact relationship or the benefits of one model over the other for word senses. This
is one of the questions that this thesis seeks to address. Also, Word Space itself has two sep-
arate token representations (direct or first-order context vectors and indirect or second-order
context vectors), so another valid question to pursue is whether they are similar or different,
and whether they perform similarly or differently in WSX. This leads to the following research
questions:

1. What is the relationship between type representations in LSA’s matrix A and Word
Space matrix W?

2. What is the relationship between the token vectors defined in LSA’s A and Word Space
first-order context vectors and second-order context vectors?

3. Are the SVD-projected type and token representations in LSA and Word Space equi-
valent, similar or different?

4. For WSX experiments, which token representations are better? LSA-based or Word
Space-based representations?

5. What is the relationship between the two token representations (direct/first-order and
indirect/second-order) offered by Word Space? Are they both approximations of each
other or are they different?

6. Which Word Space token representation is better for WSX?

During the analysis of Word Space token representations (Chapter 4), it is observed that
second-order context vectors can be computed from first-order context vectors via a matrix
multiplication by the word matrix. It is shown that this operation can be regarded as a linear
transformation or projection not unlike the projections usually performed via SVD as a means
of dimensionality reduction. As a consequence, dimensionality reductions based on this linear
transformation are explored. In order to be used as a dimensionality-reducing linear map,
W ∈ Rm×n must meet n < m (see Sec. 4.1, p. 108). That is, W must map vectors in Rm

to Rn, with Rn being a lower dimensional (and potentially denser) vector space. This means
that the features selected for the “output” dimensionality Rn must be different to the “input”
dimensionality Rm. The strategy to produce this “output” dimensionality presented in this
thesis is a novel one, and is termed word matrix consolidation. In word matrix consolidation,

24

Introduction Research questions and thesis structure

the columns of a word matrix are merged and summed together (or consolidated) based on
syntagmatic similarity. An algorithm is proposed to perform these consolidations and several
criteria for consolidation are explored. This brings us to the next research questions:

7. Is word matrix consolidation a viable method of dimensionality reduction?

8. Do indirect (second-order) context vectors computed from consolidated matrices per-
form better than from non-consolidated matrices in WSX experiments? That is, does
the consolidation process produce better performing vectors?

9. Is the word matrix consolidation of dimensionality reduction better, the same or worse
than SVD for WSX?

The questions presented so far explore only one type of lexical ambiguity: word sense ambi-
guity. The other type of lexical ambiguity explored by this thesis is the compositionality of
multi-word expressions such as collocations. The distributional hypothesis implies that the
syntagmatic distribution of semantically unrelated words will be different (i.e. words with
unrelated meanings will co-occur with different words) whereas the syntagmatic distribution
of semantically related words will be similar (i.e. words with related meanings will co-occur
with more or less the same words). A non-compositional collocation such as red tape in its
bureaucratic sense will co-occur with words relating to government, bureaucracy, politics,
etc., whereas the predominant senses of the individual words red and tape will perhaps have
little to do with government, bureaucracy or politics. This intuition is operationalised via the
computation of cosines between Word Space word vectors computed from instances of the
collocation and word vectors computed from instances of the collocation’s individual words.
A low cosine value is interpreted to indicate non- or low-compositionality whereas as higher
values as medium- or even high-compositionality. This brings us to the last research question
of the thesis:

10. Can cosine measures between collocation vectors and individual word vectors be used
as a reliable and unsupervised method of collocation compositionality measure?

The overall thesis structure and the main outcomes can be outlined as follows.

Chapter 1 is this introductory chapter.

Chapter 2 introduces basic concepts of linguistic theories that will be used throughout the
thesis. The concepts of word, type, token, collocation and word sense are discussed in detail.
The chapter is drawn against a structuralist/neo-structuralist backdrop from which most of
the intuitions regarding the distributional hypothesis of lexical semantics emerge. It presents
the methodological lexicographic concepts of Onomasiology and Semasiology, which roughly
correspond to the Supervised and Unsupervised approaches in word-sense disambiguation
and discrimination. It also presents the two main types of lexical semantics relations between
words: syntagmatic relations and paradigmatic relations.

25

Research questions and thesis structure Introduction

Chapter 3 fleshes out some of the concepts studied in Chapter 2 in computational terms.
For example, it defines word types and word tokens in terms of the Word Space and LSA vector
models. The chapter serves mostly as a background and literature review for the comparisons
and experiments that will be presented in subsequent chapters. The chapter also makes lin-
guistic interpretations from the syntagmatic and paradigmatic point of views of methods of
semantic similarity computation via cosine. Some aspects of this chapter were published in
Maldonado-Guerra and Emms (2012) and Emms and Maldonado-Guerra (2013).

Chapter 4 is in some ways a continuation of Chapter 3 (e.g. it describes how SVD can
be applied to Word Space objects) but also makes the main theoretical contributions of the
thesis, the most fundamental of which is an equivalent formulation of Word Space indirect
(second-order) context vectors as the product of a linear transformation of direct (first-order)
context vectors via the word matrix (question 5). The case is made to view indirect (second-
order) context vectors as projections in an alternative vector space that could also be used for
dimensionality reduction in a way reminiscent of the application of SVD to project vectors
in lower dimensionality spaces. This linear transformation view also makes the application
of SVD to Word Space objects more transparent and comparable to the way it is applied in
LSA. The chapter also makes analytical and numerical comparisons between Word Space and
LSA (questions 1, 2, 3) and finds that the token and type representations offered by both
models, as normally formulated in the literature, are approximations of each other and that
their difference can be exactly calculated. This chapter also shows that the same mechanism
of indirect context vector construction available to Word Space is also available to LSA, a
mechanism that has not been widely exploited or studied. Some aspects of this chapter were
published in Maldonado-Guerra and Emms (2012).

Chapter 5 looks closer at the relationship between the two token representations offered
by Word Space: direct (first-order) and indirect (second-order) context vectors (questions 5,
6). This is done via geometric and WSX experiments. The geometric experiments attempt to
measure the rough similarity of both vector representations and predict their performance in
WSX experiments by looking into two geometrical properties: parallelism and angular spread.
In parallelism, direct and indirect sense vectors (computed by taking the centroid of context
vectors of a target word for a particular sense) are compared by means of cosine measures. If
the cosine measures are high, it is assumed that the two sense vectors are approximations of
each other (i.e. roughly “parallel”) whereas if they are low then the two sense vectors are not
approximations of each other (i.e. not “parallel”). It is found that direct and indirect sense
vectors are not parallel or approximate to each other. So they are indeed different types of
vectors. The angular spread is the measure of how far apart, according to the cosine measure,
sense vectors of a given order (first or second) for different senses of a target word are from
each other on average. A low cosine average is interpreted to mean that the sense vectors are far
apart from each other and therefore a classification or clustering algorithm based on centroids

26

Introduction Research questions and thesis structure

(like Rocchio, K-Means, Expectation-Maximisation for Gaussian mixtures, etc.) will be able
to discriminate senses of a word more easily and therefore achieve good performance. Con-
versely, it is assumed that a high cosine average will make it more difficult for a classification
or clustering algorithm to distinguish among the sense of a particular word token, translating
in poorer performance. The angular spread, therefore can be a performance predictor for each
kind of token vector. In these experiments, pairwise cosine comparisons between direct sense
vectors of a target word for different senses are computed and the resulting cosine measures
are averaged. This number is taken to be the angular spread for direct context vectors for
that particular target word. The same exercise is repeated for indirect sense vectors, and the
resulting average of pairwise cosine measures is taken to be the angular spread for the indir-
ect context vectors. It is found that direct context vectors have a lower cosine average (are
more spread) and that indirect context vectors have a higher cosine average (are less spread),
so the prediction is that direct context vectors will perform better than indirect context vec-
tors. After the geometric experiment results are analysed, supervised WSD and unsupervised
WSDisc experiments are performed. For the supervised WSD experiments, the direct context
vectors comfortably outperform the indirect context vectors, largely reflecting the predictions
from the angular spread experiments. However, for the unsupervised WSDisc experiments,
no clear winner emerges, with the difference in performance between both vector types com-
ing much closer together. However, it has to be stressed that the overall performance scores
of the unsupervised experiments are much lower (between 12% and 25% lower) than the su-
pervised experiments, which is congruent with other results in the literature highlighting that
unsupervised methods generally perform worse than supervised methods (Pedersen, 2007).
The experimental results in this chapter were published in Maldonado-Guerra and Emms
(2012).

Chapter 6 reports the results of an empirical comparison between LSA direct and indirect
token vectors and Word Space direct and indirect context vectors in supervised WSD and
unsupervised WSDisc experiments. Chapter 4 establishes that the LSA-based and the Word
Space-based token representations are approximations of each other. The experiments repor-
ted in this chapter seek to demonstrate whether they also perform similarly in WSX settings
or whether one performs better than the other (question 4). The experiments in this chapter
are largely based on the supervised and unsupervised experiments performed in Chapter 5.
However, the comparison between LSA-based and Word Space-based token representations
is slightly more complicated since Word Space is capable of producing two indirect vector
representations (based in C and W), whereas LSA can only produce one indirect vector rep-
resentation (based on A). In addition, experiments were performed using unreduced versions
of context vectors as well as SVD-reduced versions of context vectors. For the SVD-reduced
versions, experiments were conducted at different truncation levels (e.g. at 50, 100, 150, ...,
1000 dimensions). Overall, it was found that indirect Word Space vectors based on C do per-
form similarly to indirect LSA vectors based onA. However, only one variant of SVD-reduced

27

Research questions and thesis structure Introduction

(called “R2 projections”) direct Word Space vectors based on C only perform similarly to the
same variant of SVD-reduction to direct LSA vectors based on A in supervised experiments,
whilst all other dimensionalities (R1 projections and unreduced) and supervised experiments
perform differently across the two kinds of direct token vectors. Also, indirect Word Space
token representations based on W perform differently to both indirect Word Space token
representations based on C and indirect LSA vectors based on A. So, in sum, despite the
approximations found in Chapter 4, not all LSA vector configurations will perform similarly
to their Word Space counterparts in all circumstances. It can be seen that these configura-
tions somewhat offset the performance that they will achieve in supervised or unsupervised
experiments. Other interesting observations made by this chapter include that for most con-
figurations SVD-reduction does not help performance, and that the best trade-off between
computational expense and performance in the supervised case is given by unreduced direct
Word Space context vectors, and in the unsupervised case by unreduced indirect Word Space
context vectors, although other unreduced context vectors perform similarly, a result some-
what echoing Chapter 5, where no clear winner was found for the unsupervised experiments.

Chapter 7 goes back to the definition of indirect context vectors as a transformation of
direct context vectors via a word matrix introduced in Chapter 4 and attempts to use this
insight as an alternative method of dimensionality reduction. The specific method used is
word matrix consolidation (question 7). Matrix consolidation is compared with unreduced
and SVD-reduced direct and indirect Word Space vectors in supervised and unsupervised
experiments (questions 8, 9). Whilst word matrix consolidation can perform similarly and
sometimes slightly better to SVD, it still does not provide an increase in performance when
compared to unreduced vectors. An advantage over SVD though is that matrix consolidation
does not require the user to provide the number of dimensions to keep in advance. While
not being an overwhelmingly better alternative to dimensionality reduction, matrix consol-
idation does show that viewing the indirect context vector construction method as a linear
transformation opens the door to the exploration of novel methods of token representation.

Chapter 8 reports the adaptation of the Word Space word matrix for measuring the com-
positionality of multi-word expressions (MWEs) in a fully unsupervised manner (question
10). The method developed works on bigrams only (i.e. 2-word MWEs) and assumes that
one of the words in the bigram is the node (or headword) and the other one is the collocate
(or modifier) (Geeraerts, 2010, p. 170). It directly compares the semantic similarity between
the node and the full MWE and between the collocate and the full MWE by computing
a cosine similarity score between the word vectors representing the node, the collocate and
the full MWE. A system implementing three variations of this method participated in the
Distributional Semantics and Compositionality (DISCO 2011) shared task (Biemann and
Giesbrecht, 2011). Systems were given a set of bigrams that had different degrees of com-
positionality. Their compositionality or non-compositionality was assessed by native speakers

28

Introduction Research questions and thesis structure

based on “how literal” each bigram sounded to them. These judgements were then averaged
and converted to a scale between 0 and 100, where 0 means non-compositional and 100 is
fully compositional. Systems were evaluated on their ability to predict this average numeric
score and to classify bigrams as either low compositional, medium compositional or highly
compositional. The shared task organisers refer to this categorisation as the “coarse” predic-
tion task. One of the variations of the system reported in this thesis achieved a fifth place
(out of 15) in the overall numerical prediction task, whereas another of the variations also
achieved fifth place in the overall coarse prediction task. However, it achieved first place in
the coarse verb-object subset of bigrams. The system description and the experimental results
were published in Maldonado-Guerra and Emms (2011).

Chapter 9 presents the main concluding points of the thesis and discusses areas for future
work.

The main contributions of the thesis can be summarised as follows. SVD is usually taken as a
blackbox/cookbook method that is supposed to have certain semantic properties that are rarely
explained or justified. There is some veil of mysticism as to its inner workings with researchers
keeping a distance with the mathematical definitions and implications of the method. This
thesis attempts to lift this veil and make SVD more transparent by showing that LSA and
Word Space have some clear relationships. Researchers have intuitively acknowledged a link
between the two models, with some making simplistic assumptions in respect to this link. This
is the first time these assumptions are tested and we show that whilst there is indeed a clear
link between the two models, their relationship is not as straightforward as one might initially
think. Based on these observations, this thesis constructs several variants of both models and
tests them empirically in WSD and WSDisc experiments, showing in general that SVD in
either model does not tend to help very much in these tasks. In addition, the experimental
results reflect the non-trivial relationship between the models, indicating that success, or lack
thereof, in one model is not necessarily indicative of the other model’s performance. However,
given that the relationship between the two models is clearly known, it is possible to use
a system implementing one model in order to make representations in the other model by
modifying the values appropriately in the system’s matrices.

29

Research questions and thesis structure Introduction

30

2 Linguistic Background

This chapter introduces and defines several aspects of linguistic theory used or referred to
throughout this thesis. In doing so, relevant literature on the topic is also reviewed or referred
to. The interpretation of linguistic terminology often depends on the linguistic school or
branch one chooses to use as a reference. This chapter discusses several of these terms, some-
times considering differing philosophical views, and defines the terms as they pertain to the
scope of this thesis. The aim of this process is to reduce ambiguity and increase the precision
of the interpretation of the different linguistic terms and concepts employed. Since the thesis
subject matter is word-sense disambiguation and discrimination, it seems appropriate to focus
the discussion with what we understand by the concepts of word and word sense.

Theword can be considered to be the smallest linguistic unit that carries meaning. It is from
the way in which words combine in larger linguistic units, such as phrases or sentences, that the
larger unit’s overall meaning emerge. Given its importance, most empirical research in word-
sense disambiguation and discrimination use some computational representation of words as
features in their systems (Navigli, 2009). Section 2.1 attempts to define the concept of word
mostly from a written language perspective, since the experimental work reported in this thesis
is done on written language corpora. It also defines the linguistic concept of collocations,
recurring multi-word partnerships that often carry a special or non-literal meaning. This
section also introduces the concept of ngrams, which have resulted convenient and practical
from a computational point of view even if they do not necessarily emerge from any theoretical
linguistic tradition.

If we are ready to admit that a word can carry meaning, we need to understand how it
is that words come to mean something. Do words have their own natural, true meaning or
do language users arbitrarily assign meanings to words? How does context help a language
user determine the meaning of a word? Section 2.2 introduces some essential concepts from
lexical semantics that address these questions. The approach taken by this section is from a
structuralist/neo-structuralist point of view. The specific sequence of theories exhibited in this
section culminates with the distributional hypothesis of lexical semantics which is operation-
alised in Chapter 3 and is exploited in all the models described in the thesis. However, this
sequence of lexical semantics theories is far from exhaustive. There are many other theories
not covered here simply because they do not directly feed into the distributional hypothesis
or because they are not amenable to be operationalised computationally.

31

What is a word? Linguistic Background

2.1 What is a word?

2.1.1 Word tokens and word types

When dealing with written text, it is convenient to conceive words as clusters of contiguous
characters bound by white space or punctuation marks, such as full stops, commas, quotation
marks, etc. From a computational point of view, this definition is quite useful as it enables the
employment of simple regular expressions for identifying words automatically. However, this
definition is somewhat problematic. For example, many Asian languages such as Chinese and
Japanese do not use white space as a word boundary. Instead all words appear contiguously in
the text making it difficult to determine where a word starts and where a word ends without
knowledge of the language in question. Another problem is that many languages, including
English, also employ the full stop to indicate an abbreviation. Different tokenisation solutions
have been proposed and their discussion is beyond the focus of this thesis, so the interested
reader is directed to Manning and Schütze (1999, sec. 4.2.2) for a comprehensive discussion.

Assuming that there is a mechanism to correctly split a string of text into separate words,
we come to the question of what to count as a word. Consider this famous quote by Samuel
Johnson:

(2.1.1) When a man is tired of London, he is tired of life, for there is in London all that life
can afford.

In total there are 22 words, of which 17 are distinct words. In lexicography, a word token

is a specific instance of a particular word in a text, whilst a word type can be seen as the
class to which a word token belongs to. In Example (2.1.1), the word type is has 3 word
tokens and the word types tired, of and London have 2 word tokens each. We are starting to
see that the term word is slightly imprecise as it could be used to mean word type or word
token, depending on context. And as we shall see in Section 3.5, this distinction will be very
important in the mathematical definitions of context vectors (word tokens) and word vectors
(word types).

A further way to conceive a word is by considering its canonical or “dictionary” form. For
instance, it is possible to remark that this quote is an example of the usage of the words be
and tire even if they do not appear in their canonical form at all, but in their inflected forms
is and tired, respectively. More specifically, we say that the words is and tired are word forms

or realisations of the lexemes be and tire, respectively. This shows again that there are some
more precise terms for different conceptions of the term word and this thesis will prefer to
use these when this precision is important but will freely use the less technical term word as
an umbrella term covering word forms and lexemes or when this precise distinction is not
needed.

Based on their meaning, words can be classified into two major groups: content words

(also known as open-class words, full words or lexical words) and function words (also called
closed-class words, stop words, grammatical words, empty words or form words). Content

32

Linguistic Background What is a word?

words are considered to carry most of the meaning (semantic content) in any given sentence or
phrase. Verbs, nouns, adverbs and adjectives are usually considered to be content words. They
are so-called open class because new words in these part of speech categories are regularly added
as new inventions, discoveries and definitions are made. London, afford and man are examples
of content words in (2.1.1). By contrast, function words are words like articles, prepositions
and pronouns, to which new members are rarely added and whose purpose is mostly to interact
with content words and other function words in order to form grammatical and meaningful
phrases and sentences. Function words are often perceived to carry little semantic content. In
(2.1.1) of, in and that are examples of function words. In natural language systems (notably
in information retrieval), function words are specifically called stop words and are usually
filtered out or ignored during processing due to the belief in their low semantic currency and
in order to make savings on technical aspects such as storage requirements, and in order to
reduce potential noise. In fact, there are some content words that sometimes are included
in stop word lists, such as forms of the verb be (is, are, was, etc.) and auxiliaries1 (can, do,
would, etc.) As a consequence, this thesis will prefer the term stop word to refer to those
words usually included in a typical information retrieval system’s stop word list and the term
content word for any word not belonging to this list.

2.1.2 Multi-word expressions and collocations

The concept of word can be further expanded if we consider so-called multi-word expressions

or units, i.e. recurring sequences of individual words that form a unit, such as prime minis-
ter, public house or Republic of Ireland. These word combinations form a whole unit and yet
each member in the combination can be seen as unit in itself: prime and minister, public and
house, Republic, of and Ireland. The notion of the usage of recurring multi-word expressions is
termed collocation in the linguistics literature (Firth, 1951; Halliday, 1961; McIntosh, 1966;
Lyons, 1966; Sinclair, 1966). There is a wide range of collocation types. Idioms such as once
in a blue moon, red tape or red herring are the ones that more readily come to mind. But
other types of collocations include figurative expressions and clichés (talking to a brick wall,
the crack of dawn, strike a balance, safe and sound, law and order, to be honest), multi-word
terminology (collateral damage, support vector machine, machine readable passport), named en-
tities (United Nations, European Economic Area, Barack Obama), phrasal verbs and complex
verbal expressions (look for, make up someone’s mind), etc. Unfortunately there is no single
definition for the concept of collocation and there tends to be a slightly different treatment
of the term between computational linguistics and general linguistics. For example, many
natural language processing works often assume collocations are contiguous strings of words,

1Notice that the set of verbs that are considered auxiliaries in English is quite small and rarely new members
are added to it. Based on this, they should perhaps be considered function words and not content words.
However, since verbs are considered content words then, for consistency, auxiliaries should also be considered
content words by their virtue of being verbs. This issue shows that these terms are contentious and so a
practical definition, rather than a theoretical definition, is usually adopted.

33

What is a word? Linguistic Background

whereas linguistic works will also investigate collocations that are not consecutive but whose
components co-occur within a short distance between each other (see e.g. Sinclair, 1991).
For instance, make and remark can collocate in phrases such as make a remark, make an inap-
propriate remark, make an unhelpful and distasteful remark, etc. Apart from the requirement
of frequent and near co-occurrence, Manning and Schütze (1999, p. 184) enumerate three
other typical requirements or characteristics of collocations2:

• Non-substitutability – A word making up a collocation often cannot be substituted by
another word, not even by a similar word or even a synonym. For example, in once in
a blue moon the adjective blue cannot be substituted by a similar word like green or red,
as the idiom is fixed and cannot be changed. Similarly, translating literally red wine
into Spanish would render the anomalous *vino rojo which, while being an accurate de-
scription of the wine’s colour, is not the usual vino tinto that any native speaker would
instantly recognise. The non-substitutability characteristic is not an absolute require-
ment however, as some collocations do allow it in a limited manner. For example, heavy
smoker can take the form chain smoker and to know one’s onions is equivalent to to know
one’s stuff.

• Non-modifiability – Collocations cannot be modified by adding words or by changing
grammatical characteristics. For example to get a frog in one’s throat cannot become
*to get an ugly frog in one’s throat. This is especially important in idioms such as kick
the bucket. English speakers would find anomalous the sentence *she was about to kick
her bucket, even if there is nothing ungrammatical about the substitution of a definite
article with a possessive determiner. The non-modifiability criterion is also optional,
however, as some collocations do allow a limited degree of modification. For example
seeing is believing can become seeing really is believing.

• Non-compositionality – A collocation is not necessarily the “sum of its parts”, that is,
it cannot always be interpreted as a literal composition of its constituents. The mean-
ing of x kicked the bucket cannot be understood from a standard open-choice analysis as
this would arrive at interpreting that x kicked an actual bucket, rather than interpreting
that x died. Similarly, red tape in its government bureaucracy sense require the language
user to have knowledge additional to the language’s grammar in order to correctly in-
terpret the phrase. The property of non-compositionality is not confined to idiomatic
expressions: public house (from which the word pub is derived) which usually desig-
nates an establishment that provides patrons with alcoholic drinks to be consumed on
the premises, is somewhat non-compositional. And again, not all collocations are non-
compositional: orange juice, apple juice and many technical terms (machine readable
passport, internet service provider) are rather compositional common collocations.

2Some examples here are borrowed from Singleton (2000)

34

Linguistic Background What is a word?

Not all these three characteristics are required for every single collocation and perhaps we
should consider as a collocation any recurrent word combination that fulfils at least one of
these three characteristics. From a lexicographical perspective, Benson (1989) puts forward
a similar argument even if he does not employ the same terminology. He considers that fre-
quent word combinations should be listed as lexical entries in a dictionary when they fulfil
at least one of the following two criteria: 1) have “peculiar semantics” and 2) be arbitrary. A
word combination has peculiar semantics when its meaning cannot be understood by literally
interpreting the combination, i.e. when it is non-compositional. If a word combination can
be interpreted literally, then it should not be listed as a lexical entry, i.e. it should not be
considered a collocation. For example, the following adjectives should not be considered col-
locates of evidence: absolute, additional, certain, considerable, conspicuous, gratifying, hopeful,
even if they frequently modify this noun. This is because they are compositional, i.e. they
form normal and literal “adjective plus noun” combinations that any (competent) speaker
of English would understand by just applying this grammar rule without recurring to any
external knowledge. The inclusion of such compositional combinations will rarely if ever be
consulted by the dictionary’s potential users, making the dictionary bigger and not necessar-
ily more useful. By contrast, a combination with peculiar semantics such as heavy smoker,
which of course does not literally describe a smoker who is overweight or simply physically
heavier than the average smoker, would be more useful, for example to an L2 learner of Eng-
lish, to be listed in a dictionary as an entry. The criterion of arbitrariness is a combination of
the non-substitutability and non-modifiability characteristics. For example, Benson considers
that make an estimate should be a dictionary entry because it is not a free word combination
as it is not possible to say *make an estimation. Similarly, he considers commit treason (not
*commit treachery) and warmest greetings (not *hot greetings) to also be arbitrary non-free word
combinations. Benson’s arguments are grounded in good lexicographic practice: the ultimate
decision on what constitutes a lexical entry in a dictionary is based on a trade-off between
its potential usefulness for a dictionary user and the cost of making the dictionary bigger by
adding that entry. It is more of an engineering principle than a linguistic insight, even if
the requirements he lists are based on interesting linguistic properties. A similar pragmatic
view is usually also taken in computational linguistics and so the study on non-compositional
multi-word expressions is increasing in the field. As an example of the importance of pro-
cessing multi-word expressions, consider a machine translation engine. It would be desirable
for such an engine to be able to translate the French prendre une décision as make a decision
and not literally as *take a decision while there is no reason to stop it from translating preuve
supplémentaire literally as additional evidence.

It has recently been found that it is difficult to categorically distinguish every collocation in
a binary, mutually exclusive manner as either compositional or non-compositional, and that
instead shades or degrees of compositionality should be considered for a given collocation
(Bannard et al., 2003; Katz and Giesbrecht, 2006). For example, while it is clear that red
herring is completely non-compositional and orange juice is very much compositional, heavy

35

What is a word? Linguistic Background

smoker lies somewhere in between: it does describe a type of smoker, one who smokes too
much but not an overweight one as we have seen. So, we could say that heavy smoker has
some sort of medium-to-low compositionality but it is by no means fully non-compositional.
Red light is a collocation that, depending on meaning or use, will have a different degree of
compositionality. Consider these three sentences:

(2.1.2) Many LEDs emit red light.

(2.1.3) The car stopped at a red light.

(2.1.4) Disappointingly, the project got the red light.

It is clear that (2.1.2) is clearly compositional since it literally describes light that is red in
colour. Whilst (2.1.3) describes a scenario in which a light that is red in colour is involved, it
can be argued that red light has acquired the more abstract meaning of a traffic control device
signalling the car to stop. This usage involves some literal usage (the signal is in the form of a
light that is red in colour) but it also carries other meanings associated to traffic conventions
as well as electronic devices designed to enforce these conventions in actual streets. Since
(2.1.4) involves decoding a metaphor by exploiting additional knowledge (i.e. a notion of
traffic conventions mapped into a business situation), this usage of red light exhibits very low
compositionality.

The present discussion on collocations has touched informally on some aspects of semantics,
especially when describing non-compositionality. This informal introduction to semantic no-
tions should suffice for the purposes of this discussion. However, Section 2.2 addresses in
general the topic of lexical semantics more rigorously within a structuralist and distribution-
alist setting and, in particular, Section 2.2.5 revisits some aspects of the semantic notions of
collocations discussed here, against the same structuralist and distributionalist backdrop.

2.1.3 Ngrams

Lexical units as we have discussed so far can be singleton words or multi-word expressions like
collocations. In the computational linguistics literature, a sequence of characters with no space
in between is usually termed a unigram, whilst sequences that include one space in between
are termed bigrams, two spaces, trigrams, etc. The numeric prefix attached to the -gram suffix
keeps count of the number of contiguous non-space characters members (unigram members)
present. They are collectively called ngrams or n-grams (Manning and Schütze, 1999, p. 193).
Notice that these definitions completely disregard whether or not a unigram is itself composed
of two identifiable words like in the cases of teapot or website. Also, it is important to mention
that it is somewhat flawed to define lexical units in terms of the written form given that written
language is only one manifestation of spoken language and there is evidence, for example, that
young children as well as non-literate people are able to identify and isolate single words in
speech (Singleton, 2000, ch. 1). This implies that human intuitions as to what a word is are

36

Linguistic Background What is a word sense?

not a consequence of literacy and therefore we need not base our definitions in terms of the
written form. However, it can be difficult to operationalise such human intuitions in a natural
language processing system that deals primarily or exclusively with text and so a theoretical
compromise must be reached. While crude, these definitions are useful for computational
operationalisation and because they are divorced of any particular linguistic or philosophical
consideration of what a word or a lexical unit is, they can work inside more complex linguistic
concepts. For example, certain ngrams are collocations (e.g. public house, machine readable
passport). This thesis will therefore make extensive use of the terms unigram, bigram, trigram,
ngram, etc. as defined so far. Furthermore, it extends the concepts of word token and word
types to ngrams. That is, it is possible to consider a particular instance of an ngram a token,
and that ngram a lexicographic type in its own right.

2.2 What is a word sense?

At the core of any discussion about word senses resides the question of how is it that a word
carries meaning. The link between linguistic form and meaning has been discussed since
antiquity. Perhaps its oldest incarnation is Plato’s Cratylus dialogue between Hermogenes,
Cratylus and Socrates3. This dialogue discusses whether there is an inherent correctness in the
names given to things or whether names are given to things by convention. Cratylus believes
the names things receive are natural and therefore come from the things themselves. Socrates
explains that the sounds (phonemes) used in a word should be appropriate to the thing they
are the subject of. Hermogenes opposes this view stating that the naming of things follows
custom and convention, that words are not related in any way to the essence of the things
they name. Socrates rejects this idea explaining that words have one true meaning, even if
sometimes the meaning of a word changes. Socrates cites a few etymological examples but
also struggles to find the origin of some words, blaming the difficulty on what we today would
call the processes of language change: “Saying, if there is a word we do not know about, that
it is of foreign origin. Now this may be true of some of them, and also on account of the lapse
of time it may be impossible to find out about the earliest words; for since words get twisted
in all sorts of ways, it would not be in the least wonderful if the ancient Greek word should be
identical with the modern foreign one.” (Plat. Crat. 421e-d). The discussion is not conclusive
but the idea that words have a true and natural meaning was extremely influential until the end
of the 18th Century, when serious objective research gave birth to the discipline of historical
linguistics. Up until that point, etymologies were constructed based on whatever ideas of
word purity were in vogue at any given time. By contrast, based on objective formal and
semantic analysis of cognates, i.e. versions of semantically-related words in different languages,
historical linguistics was able to reconstruct the historical relationships between languages
and the reconstruction of theorised ancient languages such as Proto-Germanic or Proto-Indo-

3An English translation by Fowler (1921) is freely available on-line at
http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.01.0172:text=Crat.

37

http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.01.0172:text=Crat.

What is a word sense? Linguistic Background

CONCEPT (REFERENCE)

SYMBOL
(e.g. WORD)

REAL WORLD
PHENOMENON
(REFERENT)

Figure 2.2.1: The semiotic triangle – A mental concept can be seen as a pointer to a phe-
nomenon in the real world and a linguistic symbol, in turn, as a pointer to the
mental concept, producing an indirect association between the linguistic symbol
and the real world phenomenon, represented here as a dotted line.

European (Geeraerts, 2010, ch. 1).
By the early 20th Century, this shift towards an analytical framework in linguistics began

favouring Hermogenes’ idea of meaning by custom and convention against Socrates’ ideals of
true meaning. An influential conceptualisation of this notion is the denotational or referential
mechanism between words and real world entities. Through their famous semiotic triangle,
adapted in Figure 2.2.1, Ogden and Richards (1936, p. 11) posit that a linguistic symbol like a
word or phrase is linked to a concept (a reference) which itself is some mental representation
of a real world phenomenon (a referent) such as an object, an animal, a place, an action,
an abstract entity, etc. The only connection between the symbol and the actual real world
phenomenon is indirect, via its mental representation (the concept)4.

This model presents several shortcomings. First, it does not account for situations in which
more than one word or expression is associated with the same meaning (synonymy) as well as
cases where one word or expression is associated with more than one meaning (homonymy
or polysemy). Furthermore, not all words are easily associated to real world phenomena.
Function words like and, if and that as well as expressions relating to mythological entities
(tooth fairy, unicorn, etc.) clearly illustrate this issue. These words do not have a real world
referent, however we can agree that they all have a meaning (in the case of the function words
this would be some sort of grammatical, functional meaning). Likewise, there could be one
single real world phenomenon having several meanings, as in the commonly cited case of the
morning star and the evening star: both relate to the physical planet Venus, but the two stars
are considered to have different meaning because they appear in the sky at different times of
the day.

4Notice, however that in some cases such as that of onomatopoeic words like cuckoo, meow and crash, there
is a clear connection between the form and the sound it refers to. This is the exception rather than the
rule however, for the majority of words in a given language are non-onomatopoeic, making no obvious
connection between form and referent.

38

Linguistic Background What is a word sense?

This is not to say that the semiotic triangle model is wrong and we should take Socrates’
position. It simply is incomplete. A more modern incarnation of this model is studied under
the heading of a more general property of human language: its arbitrariness. This property
considers that the connection between linguistic form and meaning is arbitrary as it is not
possible to determine the meaning of a form from the form alone as well as it is impossible to
predict the form that a meaning will take (Lyons, 1981, p. 19).

2.2.1 Structuralist lexical semantics

Structuralism in linguistics originated with Ferdinand de Saussure’s work at the turn of the
20th Century. One of its central ideas is that language is a symbolic system that has proper-
ties and principles governing how the linguistic sign functions as a sign. It considers that as
a system, language is rather autonomous from psychological processes. That is, even if lan-
guage is evidence of human cognition, it is regular enough that it can be studied on its own,
independently of any considerations to human cognition.

In structuralist semantics, Ferdinand de Saussure recognises that there is indeed a relation-
ship between a lexical unit (signifiant) and meaning (signifié) as in the referential/denotational
model illustrated by the semiotic triangle. However, this relationship is downplayed, and in
the case of the American Bloomfieldan school of structuralism, this referential/denotational
aspect of meaning is rejected completely (Singleton, 2000, p. 67). The reason why the refer-
ential/denotational aspect of meaning is downplayed or rejected is that it depicts meaning as
a psychological concept or a mental representation, something that lies outside the linguistic
system, something that cannot be observed directly. As mentioned previously, the goal of
structuralism is to study language in its own right, based on its own principles and rules. So,
anything that is considered to be outside the linguistic system cannot be studied by structur-
alist linguistics. If we are to study semantics from a structuralist linguistics perspective, we
need to bring it into the linguistic structure. De Saussure attempts to do this by stressing that
there is a relationship between a lexical unit and other structures in the language and that this
has to be considered as part of the meaning of the lexical unit. He uses a monetary analogy
comparing coins with words: just as the value of a coin is determined both by the goods it can
buy as well as by its relationship with with coins and banknotes of other denominations in the
same monetary system, the (semantic) value of a word is determined by the meanings it can
be exchanged for as well as by its relationships with other words and phrases in the linguistic
system (de Saussure, 1916, part II, ch. 4).

For example, a €5 banknote can be exchanged for certain goods or services of certain value
(i.e. those marked with a price of €5) so we say that the value of that banknote is defined
in terms of goods and services priced at €5. Likewise, the word cat can be “exchanged” for
the concept of ‘domesticated feline felis catus’ in the referential/denotational system, so we say
that the semantic value of cat is that of that concept. But in addition, the value of the €5
banknote can be defined in terms of other banknotes and coins in the Euro currency system:

39

What is a word sense? Linguistic Background

a €5 banknote is equivalent to five €1 coins or ten 50c coins, etc. Likewise, we can define
cat in terms of other words and expressions such as pet, feline, animal, companion, kills mice,
etc. Indeed, structuralism developed three ideas to define words in terms of other words and
expressions in the linguistic system: lexical field theory, componential analysis and relational
semantics.
Lexical field theory (Trier, 1934; Weisgerber, 1954) considers that the semantic value of a

linguistic expression is determined by the total set (field) of other linguistic expressions that
are semantically related to it. Field theory considers that there are “areas of meaning” that
can be covered by linguistic expressions like words or phrases. An “area of meaning” can
be conceived as an n-dimensional continuum on which words (or more generally linguistic
expressions) can be placed, with each word covering a different sub-area of the continuum. As
an illustration, if we visualise this “area of meaning” continuum as a 2-D plane upon which
each word covers a rectangular sub-area of meaning, we would end up forming a mosaic of
words. The position of a word in the mosaic and the sub-area of the mosaic the word covers
determines its semantic value.

Lexical field theory terminology is not standardised and some authors use terms like se-
mantic field, conceptual field and lexical field as synonyms whereas others treat them as quite
different concepts. In this thesis, we follow the terminology defined by Lyons (1977, ch.
8): The n-dimensional “area of meaning” that we described above is a conceptual field. A
1-dimensional example that Lyons presents is the continuum of colour which is a physical
reality that exists independent of language but that we can perceive as human beings. Differ-
ent individual languages will then structure this continuum differently. English for example
will divide up this continuum into distinct ranges within the continuum and call them red,
orange, yellow, green, blue, etc. The word blue for example covers a range of the colour con-
tinuum, which is distinct and separate for example from the range covered by red. The set of
words that cover this conceptual field is called a lexical field. So, the full set of English words
identifying ranges and points along the colour conceptual field is the colour lexical field. No-
tice that the members of lexical fields need not be mutually exclusive. Some will cover the
same or nearly the same range like violet and purple, giving rise to true or partial synonyms.
Some words will also cover a sub-range covered by another word. For example, azure can be
seen as a sub-range (a hyponym) of blue. Conceptual fields can also be discrete, an example is
that of vehicles whose lexical field would feature members such as: car, bus, train, motorcycle,
bicycle, unicycle, etc. The notion of lexical fields given here is very much the initial conceptu-
alisation put forward by Trier. However, it is not Lyon’s final refined definition, which will be
detailed in Section 2.2.2. But until then and in the remainder of this section, we will continue
to work with Trier’s original notion of a lexical field as conceptualised so far.
Componential analysis is an extension of lexical field theory. Given the items in a lex-

ical field, componential analysis identifies the features or components that discriminate each
member of the lexical field from each other. Consider the previous vehicle conceptual field
example. We could decompose each member of the lexical field as in Table 2.2.1. By con-

40

Linguistic Background What is a word sense?

Table 2.2.1: Example of a componential decomposition of the vehicle lexical field
Vehicle Engine-powered Multi-passenger Private On Rail Wheels

car + + + + – 4

bus + + + – – 4-6

train + + + – + 6+

motorcycle + + – + – 2

bicycle + – – + – 2

unicycle + – – + – 1

trasting the items in the lexical field, we can discover the characteristics that differentiate each
item form the rest. If an item presents a characteristic we use a plus sign (+) in that char-
acteristic for that item. Conversely, a minus sign (–) is used to indicate that an item lacks
certain characteristic. For example, by reading Table 2.2.1 we learn that a car is a 4-wheeled,
multi-passenger, privately-owned vehicle that is powered by an engine. We also learn that cars
are not driven on rail tracks.

Both lexical field theory and componential analysis have shortcomings, however. For ex-
ample, not all conceptual fields can be objectively charted as continuous or even discrete
areas of meaning. Even the colour and the vehicle fields could be organised in very different
ways by different speakers. It is difficult if not impossible to define lexical fields or perform
componential analyses in an uncontroversially universal manner. Even if we ignore this for
a moment and agree by convention on a set of lexical fields, we will find anomalies in these
lexical fields. For instance, it will be difficult to avoid overlaps or gaps. In the vehicle con-
ceptual field above we could argue that an electric bicycle is an overlap between a moped (a
type of motorcycle) and a traditional bicycle: it is both manually- and engine-powered. In
the colour example, we said that azure is a hyponym of blue. But what about cyan, which is
a combination of two distinct hues: green and blue? As an example of a gap, Lehrer (1974,
p. 100) describes a 2-dimensional discrete conceptual field of cooking with one dimension
describing the nature of the cooking heat —by Convection in an oven, by Conduction
in a pan or Radiation from an open flame— and the other dimension describing the cook-
ing medium —Oil, liquid Water or water Vapour—. In her analysis, Lehrer identifies that
for example, frying is a cooking method with the properties +Oil and +Conduction (pan)
whereas boiling is +Water and can be done either by +Convection or +Conduction, and
at least theoretically also by +Radiation. But she also finds that there are no terms for some
cooking heat and cooking medium combinations like cooking in a pan without water, steam
or oil (+Conduction, –Water, –Vapour –Oil). There is also no term for cooking with
oil on a flame (+Oil, +Radiation on an open flame). Some of these combinations might
not be meaningful or desirable from a culinary point of view, but the combinatorial nature
of componential analysis allows their specification. Likewise, the componential analysis of

41

What is a word sense? Linguistic Background

our vehicle conceptual field allows us to conceive nonsensical vehicles like a multi-passenger,
engine-powered unicycle running on a rail track and intended for public transportation. Ad-
ditionally, it is possible to argue that the components chosen in Table 2.2.1 to decompose the
vehicle conceptual field or those selected by Lehrer in the cooking conceptual field are arbitrary
and not necessarily the only ones we can consider. The Private component in Table 2.2.1,
for example, is open to debate. For example, some companies can own buses privately and use
them for transporting their own employees and not members of the general public. Similarly,
many motorcycles will comfortably accommodate a passenger in addition to the one steering
the vehicle, etc.

More importantly however, lexical field theory and componential analysis are rather brittle
at dealing with context-specific senses of words. For example, in the New York subway system
a car is a wagon that forms part of a train in the subway. Similarly, depending on context the
term bike could mean bicycle or motorcycle. We will discuss these context-specific issues in
more detail in Section 2.2.2.
Relational semantics is yet a further refinement on structuralist lexical semantics theory

which considers that the meaning of a lexical unit can be defined as the total set of semantic
relations it enters with other lexical units (Lyons, 1963). A semantic relation could be syn-
onymy, antonymy, hyponymy, etc. However, Lyons explains that a semantic relation, like
synonymy, between any two lexical units is not a consequence of the meanings of those two
lexical items, rather that the meanings of the two lexical units are a result of this relation of
synonymy in addition to other semantic relations each of them have with other lexical units.

2.2.2 Word senses and the role of context

There are two phenomena that can cause the meaning of a word to be ambiguous: homonymy
and polysemy.
Homonymy occurs when two words have the same form (phonetic or orthographic) but

have different meaning. For example, bank1 (meaning ‘financial institution’) is homonym-
ous with bank2 (‘raised edge of a body of water’). Bank1 and bank2 are both homophones

and homographs since both are pronounced and written identically. The fish called bass1

pronounced /bæs/ is a non-homophonic, homographic homonym of the musical instrument
bass2, pronounced /beɪs/. Conversely, the pair read (‘scan/study written material’) and reed
(‘water plant’) both pronounced /riːd/ are homophonic homonyms, but not homographic.
Since the experiments discussed in this thesis handle text exclusively, we shall only be preoc-
cupied with homographic homonyms and assume that no phonetic information or annotation
is available to the algorithms processing the text.
Polysemy occurs when a word acquires a different but usually related meaning depending

on the context of use, as is the case of the word mouth in these two examples:

(2.2.1) Open your mouth.

(2.2.2) The East Link bridge is near the mouth of the River Liffey.

42

Linguistic Background What is a word sense?

Table 2.2.2: Examples of homonymous and polysemous words
Homonymous examples Polysemous examples

left: opposite of right (n) vs. past tense of to
leave (v).

left: opposite of right vs. a
political/ideological affiliation.

pole: one of the extreme points on the axis
along which Earth turns (n) vs. a person
from Poland (n).

pole: the Earth poles vs. its magnetic poles
and also the poles of a magnet, battery, etc.

bass: a type of fish (n) pronounced /bæs/, a
type of musical instrument producing low
spectrum sounds (n) or a singer able to sing
in a low spectrum (n), both pronounced
/beɪs/. A homographic pair.

bass: the musical instrument vs. the singer.

deer: animal (n) vs. dear: loved (a) or a
lovable person (n). A homophonic pair.

wood : material extracted from tree vs. a
forest.

bark: outer layer of a tree (n) vs. the sound
that a dog makes (n) or the act of making
this sound (v).

Table 2.2.2 presents further examples of homonymous and polysemous pairs. The differ-
ence between homonymy and polysemy lies in that in homonymy two or more different and
unrelated words collide through their form, whereas in polysemy the meaning of a word ac-
quires different but related meanings depending on the context in which the word is used.
However, in many cases this difference is not crystal-clear, making it difficult to determine in
practice which of the two phenomena is being manifested in a given case of semantic ambi-
guity. Because of this, the difference between homonymy and polysemy is normally blurred
or even completely ignored in computational linguistics works, despite that there is a clear
conceptual difference between the two phenomena. For the purposes of this thesis, this the-
oretical difference between polysemy and homonymy will also be ignored. However, notice
that some computational linguistics works such as Boleda et al. (2012) are starting to exploit
the regularities of polysemy when processing word senses.

Traditional structuralist lexical semantics ignores or downplays polysemy and homonymy.
Lexical field theory and componential analysis define the meaning of a word as it is demarcated
by other words. But they pay no attention as to how the meaning of a word can be modified
by its context. Some earlier studies in historical linguistics did acknowledge the difference in
meaning of a word that can be realised in function of its context. For example, Paul (1920)
explains polysemy by stating that any given word has a usual meaning (usuelle Bedeutung)
and an occasional meaning (okkasionelle Bedeutung). The usual meaning of a word is the
meaning as understood by most members of a linguistic community, its most established
sense. Whereas the occasional meaning(s) of a word are modulations of the usual meaning
in actual speech. This view is supported by the observation that the different senses of a

43

What is a word sense? Linguistic Background

polysemous word are often related. Paul also accounts for a language change mechanism in
which occasional meanings can become usual meanings: if an occasional meaning of a word is
used very frequently, it can overtime become decontextualised, i.e. it becomes the sense that
first comes to mind when the word is uttered out of context.

The approach in the semantic analysis presented by Paul differs from that used in struc-
turalism. Paul’s analysis consists in observing the word and the contexts it appears in and
from these observations induce the word’s senses. The traditional structuralist approach, by
contrast, first defines a conceptual field and then tries to find the best words —the lexical
field— to fill that conceptual field. It is therefore said that structuralist approaches follow an
onomasiological approach to lexical semantics whereas an analysis like the one postulated by
Paul follows a semasiological approach (Geeraerts, 2010, ch 2).

Onomasiology and semasiology (Baldinger, 1980, p. 278) can be seen as two opposing
and complementary methodological ways of describing lexical semantics in disciplines such
as lexicography and specialised terminology management. Onomasiology assumes that we
have a concept or a definition and that the task at hand is to find a name for that concept
or definition. It is equivalent to asking questions like “what do you call a domestic animal
that meows and purrs?” (a cat) or “what do you call going quickly by moving the legs more
rapidly than when walking in such a manner that for an instant in each step both feet are
off the ground?5” (to run). Semasiology on the other hand starts by looking at a word as it
appears in an actual linguistic expression (usually within a corpus) and the assumed task is to
determine the word’s meaning or sense in that linguistic expression.

By defining lexical fields from pre-defined conceptual fields, traditional structuralist se-
mantics essentially engage in a naming exercise, an onomasiological approach. This is why it
is so easy for structuralism to “forget” about polysemy and context: it is impossible to predict
by mere introspection every single sense that a word will acquire in all domains or areas of
knowledge. Lyons (1977, ch. 8) has made an attempt at correcting this by acknowledging
that the meaning of a word depends in great deal on its network of semantic relations with
other words and expressions. Lyons explains that the senses of the word in question can be
derived or induced from this network of semantic relations with other words or expressions.
The advantage of this approach is that it does not require to define a conceptual field a priori,
but instead lexical fields emerge from observable semantic relations between words and expres-
sions within particular contexts. In other words, the cliques formed by different words within
specific contexts are themselves lexical fields. With this approach, Lyons effectively gives a
semasiological twist to structuralist lexical semantics, which had hitherto been insensitive to
the role of context in modulating word senses.

Computationally, the distinction between an onomasiological versus a semasiological ap-
proach is important as it has direct consequences to the implementation of a system. An
onomasiological approach would require a human annotator to manually encode semantic
information for a large vocabulary. For example, it would require the manual creation and

5Question adapted from first definition of run in http://dictionary.reference.com

44

Linguistic Background What is a word sense?

curation of conceptual fields and their lexical fields or of a vast network of semantic relations
between words, like WordNet (Miller, 1995; Fellbaum, 1998). Whereas a semasiological ap-
proach is more amenable to the unsupervised methods of sense induction and discrimination.

The types of semantic relations between expressions that Lyons considers correspond to
the Saussurean distinction between the syntagmatic and the paradigmatic axes of language.
Two or more linguistic units of the same level enter into a syntagmatic relation when they
are combined in a particular construction (syntagma). At the lexical level, when words are
combined within the same phrase or sentence they all are syntagmatically related to each
other. For example, in the phrase “the big building”, big is syntagmatically related with both
the and building. A linguistic unit in a particular construction holds paradigmatic relations

with other units of the same level when it can be substituted by any of these other units
in that particular construction. For example, in the phrase “the big building”, big could be
substituted by paradigmatically related words such as large, small or even old. Notice that this
substitution is not necessarily meaning-preserving. The substitution however does preserve
the well-formedness of the construction. This implies that the units that are paradigmatically
related can be semantically related in some way. Many of the possible semantic relations that
can hold between any two paradigmatically related words are those studied by Lyon’s relational
semantics, some of which were mentioned in the previous section but are briefly expanded
upon here:

• Synonymy: relationship held by words that have the same or similar meanings. Notice
that true synonymy is rare and many synonymous pairs are only synonymous depending
on context. E.g. buy vs. purchase.

• Antonymy and incompatibility: antonyms are word pairs that mean the exact opposite.
Incompatibility in the context of antonymy means that one member of the antonym
pair entails that it is not the other member of the same pair. E.g. hot vs. cold, big vs.
small, etc.

• Hyponymy and hypernymy: In a taxonomy in which two words have a hierarchical
relationship to is other, i.e. one concept refers to a class and the other concept is a
member of this class are said to have a hyponymy or hypernymy relationship. The class
is said to be the hypernym of the member, and the member the hyponym of the class.
E.g. feline (hypernym) vs. cat (hyponym).

• Meronymy: This is a “part-of” relationship between two words. For example, a house
has windows, therefore the windows are the meronyms of the house.

We are now in a position to rework our definition of a lexical field based on Lyons’ refine-
ment of the concept. First, we postulate that there exists a semantic relation between any two
linguistic units if these two units are paradigmatically and/or syntagmatically related. Fur-
thermore, we assume that the meaning or semantic value of a linguistic unit is determined by

45

What is a word sense? Linguistic Background

the set of semantic relations held by that unit with other linguistic units synchronically within
a particular language. Linguistic units of any level that are semantically related belong to the
same semantic field. A semantic field whose members are exclusively lexemes (or words) is a
lexical field.

To reiterate, if we define a lexical field based on the semantic relations (paradigmatic and
syntagmatic) that a word holds with other words, we are able to discover the meaning or sense
of a word in the lexical field by studying these relations (i.e. in a semasiological manner).
Since syntagmatic relations are directly observable from corpora, there is no need to first define
conceptual fields like Trier and others attempted to do in order to study lexical semantics. It
is indeed obvious that statistical, and as we will see also geometric, computational methods
can be used to exploit these observable syntagmatic relations in order to discover word senses.

This section concludes with an observation making another case for a semasiological ap-
proach over an onomasiological one. There exists a syntagmatic relation between all of the
words occurring in a syntagma or construction. However, some of the words in the construc-
tion hold a direct syntactic relationship. Consider the opening line of Shakespeare’s famous
sonnet 18, which reads:

(2.2.3) Shall I compare thee to a summer’s day?

All of the words in this line have a syntagmatic relation between each other but some words
have direct syntactic relations with each other. For example I, thee and the phrase a summer’s
day are the subject, direct object and indirect object of compare, respectively. However, deeper
semantic insights can be inferred from this example: since thee is a personal pronoun, we can
assume that it is possible to make comparisons between a person and a summer’s day, at least
in a poetic context. The rest of the poem (context) reveals that the poet derives as much
pleasure from the company of a beautiful young person as from a fine summer’s day, reveal-
ing in the process the creative capacity of language through the mechanism of metaphoric
extension (e.g. one line even reads “but thy eternal summer shall not fade”). The point to
highlight here is that there is potentially a richer amount of semantic information that can be
gained from a semasiological analysis of syntagmatic relations than by a traditional onomasi-
ological brainstorm of concepts. In fact, capturing figurative or metaphorical usages or senses
of words cannot be done via an onomasiological process at all since potentially every word in
a language can be used figuratively or metaphorically in practically unlimited ways. It would
be impossible for any lexicographer to predict a priori every possible metaphorical use that
poets in the future will give to any word.

2.2.3 Characterising context

Although not explicitly defined, the notion of context discussed in Section 2.2.2 was what we
can call the syntagmatic context of a target linguistic unit token. That linguistic unit token
can be a word token, a phrase token, etc. More formally, the syntagmatic context of a target

46

Linguistic Background What is a word sense?

linguistic unit token κi occurring within a specific syntagma token δ —δ being a unit of a
higher linguistic level than κi so that it can fully contain it— is the set of syntagmatic relations
R that κi holds with other linguistic unit tokens κj (i ̸= j) within δ, with all κj being of any
unit of a lower linguistic level than δ, but not necessarily of the same linguistic level as κi. For
instance, in Example (2.2.2), we can define δ as the whole sentence and κi as the token mouth.
The set of κj tokens having a relation with κi in R would include individual words like the,
near, River, bridge, etc. but also phrases or multi-word expressions like East Link bridge and
the River Liffey, as well as sublexical units like any non-free standing morphemes such as roots,
inflectional or derivational suffixes or prefixes, etc.

It is well possible to extend the concept of context beyond the confines of the syntagma and
indeed venture into sources of non-linguistic information. In a conversation, for example,
there will be many situational sources of information that complement and give context to
the linguistic utterances being exchanged, like when a buyer says “that one” to a seller in a
cake shop while pointing to a particular cake being displayed. The syntagmatic context of
“that one” is practically void, leaving the seller to rely largely on the situational context to dis-
ambiguate the deictic phrase. Indeed, Firth’s (1957) contextual theory of meaning conceives
context as a multilevel phenomenon, with each higher level serving as context for its imme-
diate lower level. Therefore, in a conversation, the individual phonemes being uttered lie at
the lowest level, the words being formed by the phonemes serve as context for the phonemes,
the emerging syntactic constructions in turn serve as context to the words, and so on until
we reach the pragmatic and extralinguistic levels serving as situational context for the whole
conversation taking place.

Since the experiments described in this thesis exclusively work on textual data, this kind
of situational context is not available. However, there are elements of non-linguistic context
that are relevant to text corpora, the most important perhaps being the one of domain or
genre. The kind of syntagmas we are likely to encounter in a particular corpus largely depend
on the domain or genre of the texts collected in the corpus. For example, the shop situation
described above could likely feature in a corpus of narrative works but it would be unlikely
to be found in a corpus of Physics academic papers. The domain or genre will also determine
many grammatical features of the text (likely tense of the sentences, use of active voice vs.
passive voice, etc.), as well as the likely senses that a polysemous word or term will have (e.g.
a corpus of specialised text will use the more specialised senses of technical terms). This is
the reason why the domain or genre should be kept as constant as possible in a corpus used
to train any algorithm that deals with lexical senses (Kilgarriff, 1997; Buitelaar et al., 2007).
There are other non-linguistic context markers for text, like the position of a target linguistic
unit token within the text: at the beginning, in the middle, at the end, as a footnote, as the
title or part of the title of a section or even of the whole work, etc. But also typographical cues
like bold or italic emphasis, and in the case of word-wide web text, whether a particular term
is a hyperlink or not, can be sources of extralinguistic contextual information.

In the present thesis however only two types of contexts will be taken into account: the

47

What is a word sense? Linguistic Background

domain or genre of a corpus, to be simply called domain, and the syntagmatic context as
currently defined, which will be almost exclusively be referred to simply as context. Narrowing
our conception of context in this way is motivated by two reasons. The most obvious one
is of a practical nature since we will be working with unannotated written corpora available
electronically as simple text. The other, more important reason is that this sense of syntagmatic
context is directly exploited by the distributional hypothesis of lexical semantics, also called
the distributional theory of meaning (Lyons, 1977, sec. 14.4), which is introduced in the
following section.

Syntagmatic context of a target word is the primary type of context the present work deals
with. The scope of this context however can be rather arbitrary. In Example (2.2.2) the syn-
tagmatic context of the target word mouth can be specified to be whole sentence, the noun
phrase within which it occurs (‘the mouth of the River Liffey’) or perhaps just its most imme-
diate neighbouring words the and of, etc. Different works define context differently and so we
would like to introduce a few definitions of context that are more or less precise depending
on a particular situation or application (computational or otherwise):

• syntagma: a syntactic or textual unit, which in the case of the present work, is lar-
ger than the word (phrase, clause, sentence, paragraph, section, chapter, document).
When describing an actual system or methodology employing syntagmas as contexts,
the specific unit the system or methodology employs will be specified (i.e. “system X
uses the sentence a word appears in as context”). When talking at an abstract level or
when this distinction is not necessary, the term syntagma will be used.

• text segment or segment: a sequential portion of running text whose length is an arbit-
rary but fixed number of tokens. I.e. if a document is to be segmented into segments of
length l, the first context in the document is the first l words, the second is the second
set of l words, and so on.

• sliding word window, word window or window around a target word: a sequential
portion of running text of fixed token length, centred at a target word token, not in-
cluding said target as part of the context. If the window length is say l = 8, then the
word window context for the word mouth in Example (2.2.2) would be “bridge is near
the” and “of the River Liffey”. That is, the whole window will be of at most 8 words,
with 4 words to the left of the target and 4 words to its right.

The sliding word window is markedly different from the text segment and the choice of one
over the other has several methodological consequences. For example, a word token can be
counted by more than one sliding window, whereas a word token will only be counted by
a single word segment. Let us clarify this through an example. Consider the sentence in
Example (2.2.4) below and a length l = 2.

(2.2.4) The quick brown fox jumps over the lazy dog

48

Linguistic Background What is a word sense?

This sentence can be divided into 5 segments of (at most) this length: “The quick”, “brown
fox”, “jumps over”, “the lazy” and “dog”. But it can be divided into 9 sliding word windows
(each centred at a token) of at most length 2. The target token at the centre of each window is
underlined in the following window enumeration, however note that the underlined target is
NOT part of the window context itself: “The quick”, “The quick brown”, “quick brown fox”,
“brown fox jumps”, “fox jumps over”, “jumps over the”, “over the lazy”, “the lazy dog”, “lazy
dog”. Notice that the first and the last windows are of length 1 each (again, notice that we
do not count the target token as being part of the context). This is because each window has
to be centred at a token. The first and last tokens will always lack a left and right neighbour,
respectively, so they have to have a size less than the fixed window length. Notice however
that a text segment or any of the syntagma contexts (paragraph, sentence, etc.) and a sliding
word window can interplay while dividing up the corpus into contexts. For example, we can
define a word segment of length 100 and then build sliding word windows of size 10 within
each word segments. More commonly, the larger segment tends to be a sentence, paragraph
or a whole document and is used to avoid building sliding word windows that include words
from different documents or paragraphs. I.e. they are used to prevent sliding word windows
from crossing the natural boundaries of a sentence, a paragraph or a document.

As will be seen in Chapter 3, different approaches use one or the other types of context.
For example, LSA-based approaches tend to use segments or syntagmas whilst methods based
on Word Space tend to use sliding word windows.

2.2.4 The distributional hypothesis of lexical semantics

It was mentioned in Section 1.2 (p. 20) that the intuition that meaning depends on context
can trace its origins to anthropology and philosophy (Malinowski, 1935; Wittgenstein, 1968).
Lexicographers have long been using corpora as evidence for word senses. For example, the
1884 edition of the Oxford English Dictionary started the tradition, which continues to this
day, of including textual quotations to exemplify word senses (Geeraerts, 2010, Sec. 4.2.3),
breaking away from the prescriptivist approach that Samuel Johnson’s pioneering Dictionary
of the English Language of 1755 started. Firth’s (1957) contextual theory of meaning, how-
ever, constitutes a methodological starting point for studying word senses from a linguistics
point of view: by analysing the words collocating with a target word, it is possible to derive
the semantic properties of the target word, or rather its referent. For Firth, the meaning of
a linguistic unit is a function of its syntagmatic and situational contexts. “Meaning ... is
to be regarded as a complex of contextual relations, and components of the complex in its
appropriate context” (Firth, 1957, p. 19).

Harris (1954) described this relationship between meaning and context as a distributional
structure. That is, linguistic units co-occur with each other and the co-occurrence patterns
between classes of linguistic units would form some sort of distributional structure. He men-
tions that the relationship or similarity between two words (or other linguistic units) can be

49

What is a word sense? Linguistic Background

determined by the similarity of the environments shared by the two words. For example, if
the words occur in almost identical environments but do not co-occur together in the same
environment, then we can assume that the words are synonymous (e.g. oculist and eye-doctor).
If the words share some environments but not all, then the words mean different things but
their meaning could still be related (e.g. oculist and lawyer, both being occupations), with
their difference in meaning proportional to their difference in shared environments. There
could also be some regular ways in which the environments of two words vary. For example,
he predicts that ain’t and am not will have a certain regular environmental difference that
corresponds to their dialectal difference. The insight that two words are similar to the extent
that their contexts (or environments) are similar is termed the distributional hypothesis of
lexical semantics.

Miller and Charles (1991) articulated a strong and a weak version of the distributional
hypothesis in what they called the strong contextual hypothesis and the weak contextual hy-
pothesis:

Strong Contextual Hypothesis: “Two words are semantically similar to the
extent that their contextual representations are similar” (p. 8).
Weak Contextual Hypothesis: “The similarity of the contextual representa-

tions of the two words contributes to the semantic similarity of those words” (p.
9).

The main difference between the two hypotheses is that the weak version implicitly recognises
that external information such as a language user’s linguistic and general “world” knowledge
contribute to his/her judgement of semantic similarity between any two words.

The two hypotheses refer to the notion of semantic similarity but do not elaborate on the
type of semantic relation held between the two words deemed to be semantically similar.
Miller and Charles consider that the heavy dependence on context similarity in the strong
version of the hypothesis is unrealistic in some cases. A case they point out is that of some
word pairs that are very similar semantically that will necessarily occur in different syntactic
contexts. For example, department and departmental are very similar but they will not occur
in the same contexts because they have different parts of speech. This is why Miller and
Charles formulate the weak contextual hypothesis. Yet, this explanation does not clarify what
is intended by semantic similarity in these hypotheses.

In the natural language processing literature the concept of semantic semantic similarity
is usually a broad one and works often do not distinguish between syntagmatic or paradig-
matic relations, let alone between the subtypes of paradigmatic relations such as synonymy,
hyponymy, meronymy, etc. Often, the term semantic relatedness is preferred over semantic
similarity (e.g. Budanitsky and Hirst, 2001). Several empirical works have attempted to con-
struct systems based on different operationalisations of the contextual hypothesis and, through
inspection or through their performance in an NLP-based task, determine the type of semantic
relations held between word pairs deemed to be similar by each operationalisation. For ex-

50

Linguistic Background What is a word sense?

ample, Sahlgren (2006) and Utsumi (2010) found that word-context vector space models are
better suited for measuring syntagmatic relations between word pairs whereas word-word vec-
tor space models measure paradigmatic relations better (see Section 3.6 on p. 102 for a more
detailed discussion), but both argue that both models have a degree of overlap. Turney and
Pantel (2010) survey the vector space model literature and link different models with some of
the different types of semantic similarity:

• attributional similarity is the measure to which two words share properties. A word
pair that has high attributional similarity is dog and wolf. The traditional paradigmatic
relations mentioned earlier (synonymy, antonymy, hyponymy, etc.) are all attributional
relations. Turney and Pantel consider that word-context models measure well this type
of similarity (compare this to Sahlgren’s and Utsumi’s findings).

• relational similarity is the measure to which two word pairs share relations. Two word
pairs that have high relational similarity are dog:bark and cat:meow. Turney and Pantel
consider pair-pattern matrix models, like that introduced by Lin and Pantel (2001), to
help in measuring relational similarity.

• taxonomical similarity is a specific type of attributional similarity that co-occurs between
co-hyponyms, like car and bicycle, both hyponyms of vehicle.

• There is a semantic association between two words that tend to co-occur, like bee and
honey. In the terminology adopted in this thesis, we would say that these words are
syntagmatically related.

This thesis uses the terms semantic similarity and semantic relatedness as synonymous, referring
to the broadest sense of semantic relationships between words as commonly done in the NLP
literature. However, when a finer distinction between semantic relations is needed, the terms
paradigmatic relation and syntagmatic relation will be used.

In Section 3.1.1.1 (p. 61) we shall see that knowledge-based, supervised word-sense disam-
biguation could be seen as a way of operationalising the weak distributional (contextual) hy-
pothesis as it exploits knowledge sources foreign to the target word’s own syntagmatic context.
However, some of these external knowledge sources include information that is contextual in
nature, such as selectional preferences, syntactic behaviour, etc. By contrast, unsupervised
word-sense discrimination could be seen as a total commitment to the strong contextual hy-
pothesis (Section 3.1.1.2, p. 64) as it only works with the linguistic information contained
in the contexts of the target word. Whilst this can be seen as a weakness, it can also seen as a
strength as it can be employed in situations where external knowledge sources are not avail-
able. In addition, it has been observed that knowledge sources are often specific to a domain
and when used to disambiguate words in another domain, performance decreases (Kilgarriff,
1997; Agirre and Edmonds, 2007).

51

What is a word sense? Linguistic Background

Perhaps the strongest version of the distributional hypothesis is what Turney and Pantel
(2010) call the bag of words hypothesis, which states that “frequencies of words in a docu-
ment tend to indicate the relevance of the document to a query” (p. 153), an information
retrieval interpretation of the distributional hypothesis that takes into account no information
other than word frequencies and/or statistics derived from such word frequencies. Chapter
3 describes how the operationalisation of this hypothesis in information retrieval in the form
of the vector space model (Salton, 1971; Salton et al., 1975) can be adapted for word senses.
This operationalisation is the backbone holding the rest of this thesis together.

2.2.5 Meaning beyond context

The preceding sections describe lexical semantics from a structuralist and distributionalist
perspective. Section 2.2.2 culminates with Lyons’ (1977) definition of meaning which states
that the semantic value or meaning of a word is determined by the set of semantic relations
it holds with other linguistic units. The same section also classifies these semantic relations
into syntagmatic and paradigmatic relations. Then, Sections 2.2.3 and 2.2.4 focus on the
syntagmatic relations of words to describe the distributional theory of lexical semantics. As
presented, none of these concepts make mention of the referential model presented in the
introduction to this chapter. Geeraerts (2010, Sec. 2.4) attempts to interpret several works
by Lyons at different points of his career and concludes that apart from the syntagmatic-
paradigmatic dimension of semantic relations presented so far, Lyons also recognises another
dimension of semantic relations: sense relations and meaning relations. Sense relations are
relations that words have between each other within the linguistic system and these tend to
be primarily the paradigmatic and syntagmatic relations that we have studied. The meaning

relations between words, on the other hand, have a broader nature than sense relations and
tend to lie at the referential/encyclopaedic level, outside the linguistic system. For example,
the paradigmatic relations of hyponymy (car is a type of vehicle) and synonymy (quickly ≈
speedily) presented in Section 2.2.2 are sense relations and would be considered to be part of
the linguistic structure since they involve concepts such as entailment and word senses. But
encyclopaedic type of relations such as maker-product relations (composer and music, cook and
meal, etc.) would be meaning relations, belonging to the referential realm as they require real-
world knowledge beyond pure linguistic knowledge to recognise and realise these relations.
Geeraerts also explains that this distinction between the linguistic and referential levels (and
as a consequence between sense and meaning relations) is contentious. He cites the case
of meronymy (whole-part) relations (like in hand and finger) which are sense relations that
depend on real-world knowledge. Whilst a discussion on these theoretical issues lies beyond
the scope of this thesis, they show that both the distributional and the referential models play
a part in the way we understand the meaning of words.

The study of collocations (Section 2.1.2 and Chapter 8) is one area touched by this thesis
where the distributional and the referential models interact in interesting ways. Sinclair (1991,

52

Linguistic Background What is a word sense?

ch. 8) considers that there are two competing principles in which one can explain how people
construct linguistic expressions: the open-choice principle and the idiom principle. In the
open-choice principle, language users construct expressions from words freely guided only by
the syntactic and semantic rules of the language whereas in the idiom principle, language users
build their sentences from pre-fabricated chunks, i.e. idiomatic expressions or fixed phrases.
Sinclair considers that in reality speakers must use a mixture of the two principles in their
daily language use with a bias towards one or the other, based on necessity, context, intent,
etc. For example, a poet will perhaps be more inclined towards the open-choice principle in
order to craft an original poem whereas a writer in a gossip magazine will perhaps tend to use
more idioms and clichés as well as puns based on these for some comedic effect.

In later work, Sinclair (2004, p. 29) links the open choice principle with the referential
model (“the terminological tendency”) and the idiom principle with the distributional model
(“the phraseological tendency”). The rationale here is that the more we move towards the open
choice model, the more we need to refer to the encyclopaedic or referential meaning of each
word to select the precise meaning of the actual message we want to convey. Whilst, as we
move more towards the idiom principle, the more the meaning of each word can be explained
by the way in which it is combined with other words. This reasoning is motivated by Firth’s
(1957) observation that the context of a word gives an indication to the meaning of the word,
as in the meaning of cows in clauses like they are milking the cows and cows give milk. This is
in fact the motivation used in the disambiguation of senses in words like hard ‘difficult’ vs.
hard ‘solid/firm’ in many of the experiments in this thesis, as it is assumed that a change in
sense reflects a change in co-occurrence distribution. For example, we can expect words such
as exam, test, job to co-occur with hard in its ‘difficult’ sense, whereas words like ice, surface,
wood, etc. in the neighbourhood of hard in its ‘solid/firm’ sense.

There is an observation to be made here regarding the concept of MWE compositionality.
Recall that it is possible to grade a collocation or MWE from completely non-compositional
(or non-literal) to fully compositional (or fully literal). It seems natural to correlate this
non-compositional-compositional continuum with the trade-off between the open choice and
idiom principles. After all, fully non-compositional expressions are often idiomatic expres-
sions. It thus seems appropriate to remark that this theory considers idiomatic and other
non-compositional expressions to be fully distributional/syntagmatic and that no recourse to
the referential model is warranted. In one sense, this is the case since we can expect the contex-
tual distribution of say red tape in its idiomatic (non-compositional) sense to be very different
from that of the same collocation when used in its literal (compositional) sense (i.e. an actual
piece of tape that is red in colour). The selection of words surrounding an occurrence of red
tape will be indicative of its meaning and its degree of compositionality.

However, one cannot completely disregard the referential model in this situation. Consider
a reader unfamiliar with the idiomatic sense of red tape (e.g. an L2 speaker of English). Upon
encountering it in a newspaper article about tax declarations, the reader will perhaps find
anomalous the occurrence of the bigram in that context. This apparent anomaly will signal

53

What is a word sense? Linguistic Background

the reader that it is being used in another sense. Depending on the size of the context, the
number of times the collocation has been encountered and other factors, the reader may or
may not be able to induce the meaning of the expression. If the reader is not able to induce
the meaning from the context, he/she might recourse to a dictionary or ask another speaker.
That is, the reader might fall back on the referential model if context is deemed insufficient
to determine the meaning of an expression6.

These observations show that despite structuralist and distributional semantics to downplay
or ignore the referential or mental representations, they need to be considered in the study of
lexical semantics. Recall that one of structuralism’s original reasons to downplay or completely
ignore such mental representations is that they cannot be observed directly, especially at a time
when MRI scanners and other tools available to psycholinguists and neurolinguists today
had not yet been invented. Since language can, on the other hand, be directly observed
through linguistic elicitations and corpora, there exists a motivation to develop methods that
can derive as much semantic information as possible from actual linguistic samples. This thesis
focuses on a small family of such methods, namely those that take text as input and attempt
to derive semantic information from the distributional behaviour of words in such textual
data. By their nature, these methods have limited or no access to mental processes. Structural
and distributional semantic theories are thus attractive models for the development of these
methods for they shed a theoretical light on what can potentially be achieved with what can
be observed. This is why they are presented prominently in this chapter.

As mentioned in the introduction to this chapter, the specific lexical semantics theories
presented here were selected because they feed into the distributional/contextual hypothesis,
which is operationalised computationally in Chapter 3, but this selection is far from being
exhaustive. There are many more semantic theories, some of which have been operational-
ised in natural language processing systems as well. One example is the generativist semantics
theory introduced by Katz and Fodor (1963) which transformed structuralism’s componen-
tial analysis by adding an explicit system of formal description based on generative grammar
principles and by using a referential mechanism to describe meaning based on the properties
and attributes of the objects being described. This theory has evolved in many ways and has
given rise to frameworks like the formal semantics theories introduced by Davidson (1967)
and Montague (1974), as well as theories such as frame semantics (Fillmore, 1982), which
paved the way for many computational linguistic approaches such as the semantic role la-

6It is worth mentioning that full encyclopaedic knowledge is not needed to satisfactorily understand and cor-
rectly use idiomatic expressions. For example, many people do not know that the origin of the bureaucratic
sense of red tape is the red ribbons (or tapes) used to bind official and other State documents in government
offices, and yet use and understand the expression successfully. For many other idiomatic expressions, their
origins are obscure or not known and this does not preclude their correct interpretation. Besides, when
we ask another speaker for the meaning of a word we do not know, usually the reply we get consists of a
synonym or near synonym, sometimes with a example sentence illustrating its use or explanations as to its
appropriate use, etc. Rarely, if ever, will we get a dictionary definition or encyclopaedic note as a reply to our
question from another speaker. This could be seen as giving support to the intuition that people learn a great
deal of new words from examples of word use in context (syntagmatic relations) and from the paradigmatic
relationships (like synonymy) these new words hold with other words.

54

Linguistic Background What is a word sense?

belling research programme (Carreras and Màrquez, 2004; Erk, 2007). This latter approach
is interesting as it also combines elements of the distributional hypothesis. However, it falls
beyond the scope of this thesis and is thus not described.

There are yet other alternative lexical semantics theories that are not fully amenable to com-
putational operationalisation and thus fall outside the scope of this thesis naturally. A clear ex-
ample is Wierzbicka’s natural semantic metalanguage which, like Katzian semantics, attempts
to incorporate referential and world knowledge in componential semantic descriptions but us-
ing an inventory of universal primitives written in simple, everyday natural language instead
of logic primitives (Goddard and Wierzbicka, 2002).

55

What is a word sense? Linguistic Background

56

3 Computational Background

Chapter 2 presented a survey of lexical semantics theory and concepts that culminated with the
distributional or contextual hypothesis. These theoretical constructs can serve as a guideline to
construct natural language processing systems. For instance, Weaver (1955) pointed out that
for a machine translation system to properly resolve lexical ambiguity, it should exploit co-
occurrence patterns of the words serving as context for a given ambiguous word. Whilst this is
an important invocation of the distributional hypothesis (and thus of lexical semantics theory)
in a computational setting, the application of lexical semantics theory to natural language
processing tasks does not end there. It has indeed been applied in many other computational
tasks such as natural language understanding, computational lexicography, lexical acquisition,
information retrieval, etc.

However, for this application of lexical semantics theory to NLP to actually take place, it is
necessary to first define exactly how it can be operationalised computationally. This chapter
seeks to describe computational models that operationalise the distributional hypothesis and
some of the other linguistic concepts presented in the previous chapter. In particular, this
chapter (Sec. 3.3) is concerned with descriptions of two models of distributional lexical se-
mantics that derive from Salton’s vector space model (VSM) (Salton, 1971; Salton et al.,
1975): Word Space (Schütze, 1992, 1998) and Latent Semantic Analysis (LSA) (Deerwester
et al., 1990; Landauer and Dumais, 1997). The common theme in all three models is that
they represent words in context mathematically via high-dimensional vectors. This vector rep-
resentation can be interpreted as an operationalisation of the distributional hypothesis, and
more specifically, as an operationalisation of what Turney and Pantel (2010) call the bag of
words hypothesis.

This chapter does not attempt a direct comparison between LSA and Word Space. That
is left for Chapters 4 and 6. Rather, it describes the mathematical and semantic properties
of each vector space. For example, Section 3.4 presents details of LSA’s SVD projections
as well as a brief numerical review exploring the often-claimed capabilities of the model to
capture semantic relations between words whilst being sensitive to polysemy. And Section 3.6
attempts to perform a linguistic interpretation of the vector spaces defined by Salton’s VSM,
LSA and Word Space. This analysis concludes that Salton’s VSM is an implementation of an
approximation of De Saussure’s syntagmatic relations whereas non-SVD reduced Word Space
in turn can be seen as capturing somewhat De Saussure’s paradigmatic relations (Sahlgren,
2006). LSA seems to mix syntagmatic and paradigmatic characteristics in the same vector
space.

57

Natural language processing tasks Computational Background

The chapter starts by documenting how LSA and Word Space have been successfully ap-
plied to several natural language processing tasks in Section 3.1. It focuses on word-sense
disambiguation, word-sense discrimination/induction and multi-word expression composi-
tionality grading. Then, Section 3.2 introduces Salton’s VSM in its native information re-
trieval context while highlighting the properties that will be exploited once it is adapted for
lexical semantics. Section 3.3 presents actual adaptations of the VSM to lexical semantics,
whilst Sections 3.4 and 3.5 introduce LSA and Word Space, respectively. Finally, Section 3.6
presents the discussion on syntagmatic and paradigmatic spaces mentioned before and makes
the case to consider Salton’s VSM as a syntagmatic space, Word Space as a paradigmatic space
and LSA as a combination of syntagmatic and paradigmatic spaces.

Some of the definitions presented in this and subsequent chapters introduce token repres-
entations. In order to avoid confusing the different token representations, each definition
is marked with a three-part label of the form X-X-XX, which summarises the properties of
a token representation. For instance, D-A-UR describes a direct “D” token representation
based on Salton’s “A” matrix, unreduced “UR”, whilst I-W-R2 describes an indirect “I” token
representation based on Schütze’s word matrix “W” and reduced by SVD’s “R2” projection.
The specific meaning of these descriptions will be explained in this and the following chapter.
The label for a token representation is presented as part of its definition. Also, Table 4.2.1 (p.
111) is a catalogue of each of these token representations pointing to the exact places in the
thesis where they are defined.

3.1 Natural language processing tasks

Lexical semantics theory in general, and the distributional hypothesis in particular, provides
insights as to what aspects of text are more informative to capture and exploit the semantic
properties of words for a particular purpose. Academic and applied fields that make use of the
insights provided by lexical semantics are as diverse as philosophy, lexicology, lexicography,
corpus linguistics, syntax, pragmatics, child language acquisition, psychology, etc. Compu-
tationally, lexical semantics inform and/or enable natural language processing tasks such as
natural language understanding, lexical acquisition, knowledge representation, computational
lexicography, machine translation, information retrieval, etc. Within these tasks, there are sev-
eral subtasks that aim to directly exploit these lexical semantic insights and are often designed
as (explicit or implicit) components within larger NLP systems. These subtasks include word-
sense disambiguation and discrimination, multi-word expression compositionality grading,
ontology construction, semantic role labelling, etc.

As already mentioned, machine translation’s dependence on resolving the ambiguity of
words in context was recognised early on (Weaver, 1955) and whilst many systems (rule-
based or statistical) do not include an explicit word-sense disambiguation module (Och, 2002;
Resnik, 2007) there are studies indicating that a form of word-sense disambiguation/discrim-
ination based on assigning target translations to ambiguous source words, instead of assigning

58

Computational Background Natural language processing tasks

senses, can indeed help phrase-based statistical machine translation systems (Carpuat and Wu,
2007).

Besides machine translation, the supervised WSD subtask can be applied to other NLP tasks
like information extraction, named-entity classification, co-reference determination, acronym
expansion, among others (Agirre and Edmonds, 2005, p. 11). Its unsupervised counter-
part, WSDisc has also been applied to NLP tasks such as information retrieval. For instance,
Véronis (2004) developed a system that produced graphs of word co-occurrences from text
corpora that was able to discriminate the linguistic usages (senses) of highly ambiguous search
queries, whilst Navigli and Crisafulli (2010) performed clustering of the results returned by
the Yahoo! web search engine based on the induced senses of the words contained in the
search result snippets.

WSDisc and compositionality measurement of MWEs can be used in lexicography and
terminography (terminology management). For example, WSDisc can be used in a concord-
ancing system that attempts to induce the senses of the word being searched and clusters
the concordances based on these word senses and presents them as distinct groups to the
lexicographer or terminologist. A MWE compositionality measuring tool could help a ter-
minologist determine whether a multi-word term can be split into smaller sub terms or not
(presumably a low compositional multi-word term will be more atomic and will not tend
to have sub terms). A low compositionality grade on a multi-word term can also indicate
translators not to translate such a term literally and to instead look for a suitable equivalent
idiomatic expression in their target language. In any case, MWEs in general constitute an
important problem that NLP systems need to solve to fully succeed in many tasks (Sag et al.,
2002).

Beyond word senses and MWEs, lexical semantic theories can be applied to many other
natural language tasks. One is the interface between syntax and semantics. For instance, the
semantic attributes of a word can be used as predictors of its correct inflection (Bond, 2005),
useful e.g. in natural language generation. But also, the syntactic environment of a word
can give many clues to its semantic properties (Levin, 1993), an insight that is exploited in
semantic role labelling (Fillmore, 1982; Carreras and Màrquez, 2004; Erk, 2007).

As discussed in Chapter 2, lexical semantics also studies the semantic relations between
words. Learning and/or correctly handling these semantic relations are of great importance to
ontology construction, lexical acquisition, computational lexicography and terminography,
etc. Sahlgren (2006), Utsumi and Suzuki (2006) and Utsumi (2010) compare several com-
putational representational mechanisms derived from the VSM in their efficacy to represent
syntagmatic or paradigmatic relations between words (Sec. 2.2.2, p. 42). Works that study
paradigmatic relations from a computational point of view include Widdows (2004), who
gives an introduction to distributional methods in general and covers these types of semantic
relations, as well as Miller and Charles (1991), Miller (1995) and Fellbaum (1998) who study
these semantic relations against the backdrop of the distributional hypothesis with the view
of developing the WordNet lexical database.

59

Natural language processing tasks Computational Background

There have been many ways in which the distributional hypothesis and other lexical se-
mantic theories have been operationalised. An early example for WSD is Lesk’s (1986) al-
gorithm (see Section 3.1.1.1) which disambiguates polysemous words based on their sense
definitions in machine-readable dictionaries. An alternative example of an operationalisation
of the distributional hypothesis can be seen in the statistical association measures for colloc-
ations (Dunning, 1993; Banerjee and Pedersen, 2003; Pecina, 2005). These measures can
determine the degree to which two words found in the vicinity of each other in text form a
collocation by performing certain statistical tests based on the relative frequency of one word
on its own against its frequency when it is accompanied by the other word. This thesis however
is concerned with a different family of such operationalisations: the group of vector spaces
derived from Salton’s vector space model (VSM) (Salton, 1971; Salton et al., 1975). The
VSM family of methods have the advantage over other methods of being cemented on a clear
mathematical footing: that of vectors and geometry. If words can be represented in vector
space, it is possible to take advantage of the numerous linear algebra tools and methods de-
veloped for vectors in many fields of engineering and science (Widdows, 2004). In addition,
VSMs allow the incorporation of non-VSM methods. For example, the collocation statistical
association measures mentioned before can be used as vector features that represent a word
type or a token (Purandare and Pedersen, 2004) and even matrices computed from raw word
counts can be transformed to such statistical features with relative ease (Section 7.1, p. 154).

In addition to information retrieval, and cross-lingual information retrieval (Dumais et al.,
1997), the VSM and some of its derivatives, such as LSA, have been applied to areas such as
document clustering and classification (Sebastiani, 2001; Manning et al., 2008), essay grading
(Wolfe et al., 1998; Foltz et al., 1999), answering TOEFL synonym questions (Landauer and
Dumais, 1997; Turney, 2001; Rapp, 2003), answering analogy SAT questions (Turney, 2006),
semantic role labelling (Erk, 2007), just to mention a few.

Of course, VSMs have also been applied to word-sense disambiguation and discrimina-
tion/induction (Schütze, 1998; Purandare and Pedersen, 2004; de Marneffe and Dupont,
2004; Agirre and Stevenson, 2007; Navigli, 2009; Navigli and Crisafulli, 2010). The rest of
this section describes in more detail these tasks, as well as the task of multi-word expression
compositionality measurement. As part of this description, a brief survey of ways in which
VSMs have been applied to these tasks is provided.

3.1.1 WSX: Word-sense disambiguation, discrimination and

induction

Vector space models have been widely applied to the problem of resolving lexical semantic
ambiguities. Leacock et al. (1993) was perhaps the first such application in a classic word-sense
disambiguation experiment. Schütze (1998) introduced the whole concept of unsupervised
word-sense discrimination and adapted his type-based Word Space model (Schütze, 1992)
to represent tokens via indirect (second-order) context vectors. He also showed the usage of

60

Computational Background Natural language processing tasks

SVD to reduce the dimensionality of Word Space vectors. Levin et al. (2006) adapted LSA
for word-sense disambiguation by using its direct context vectors (D-A-*) as proxies for token
representations of the words to be disambiguated. Direct (first-order) context vectors (D-C-*)
were used by Pedersen and Bruce (1997) in a word-sense discrimination setting. The following
subsections discuss the tasks of word-sense disambiguation and discrimination/induction and
describes the application of vector space models to these tasks.

3.1.1.1 Word-sense disambiguation

Word-sense disambiguation (WSD) is the task of determining the sense of an ambiguous
word in context. The task was first conceived as a computational task by Weaver (1955) as a
component for a machine translation system. It can be summarised as follows: given a token
of a word occurring in some syntagma and given a list of possible senses for such a word,
determine the token’s correct sense from the list. The task is therefore seen as a classification
task, in which each sense of the ambiguous word is seen as a class into which each instance
(token) of the word has to be assigned. It is assumed that every possible sense of the word has
been defined and that that list is finite and relatively short.

This assumed list of senses is WSD’s connection to lexicography as many historical and cur-
rent systems employ machine-readable dictionaries as sense inventories for large vocabularies.
For example, Lesk (1986) used the sense definitions in the Oxford Advanced Learner’s Dic-
tionary of Current English (OLAD). Lesk’s algorithm works by computing the overlap (see eq.
3.2.1 on p. 68) between the context of an ambiguous word token and each OLAD sense defin-
ition for that ambiguous word, and selecting the sense for which the overlap is maximised.
This basic algorithm was expanded by subsequent works. For example, Guthrie et al. (1991)
and Yarowsky (1992) adapted Lesk’s algorithm to use the Longman Dictionary of Contem-
porary English and Roget’s thesaurus, respectively. However, most modern dictionary-based
methods exploit the WordNet lexical resource (Miller, 1995; Fellbaum, 1998), which or-
ganises a set of words hierarchically into sets of cognitive synonyms called “synsets”. These
WordNet synsets, which can be used as sense labels for ambiguous words, are the most widely
used sense inventory in WSD (Agirre and Edmonds, 2007, p. 7).

WSD methods based on a vector space model often do not employ such lexical resources
directly. Instead, they rely on a sense-tagged corpus. That is, a corpus on which the occur-
rences of a target word of interest have been annotated. Often, the senses employed in the
annotation come from a lexical resource. For example, Leacock et al. (1993) directly em-
ployed Salton’s VSM segment vectors representing sentences containing occurrences of the
polysemous word line (see Section 5.1, p. 136). Each of the instances of line was manu-
ally sense-tagged according to WordNet synsets. Then, a classifier was trained on a randomly
selected subset of the segment vectors by computing sense vectors based on a weighted aggreg-
ation of the individual segment vectors belonging to each sense. Performance was computed
via the accuracy in classifying the remaining segment vectors not used in the training phase

61

Natural language processing tasks Computational Background

(i.e. the test vectors) to their correct sense via the dot product (3.2.6). Similarly, Levin et al.
(2006) adapted LSA’s segment vectors to train a means-based Rocchio classifier on the hard-
interest-line-serve (HILS) dataset (Sec. 5.1, p. 136). They also randomly partitioned each
sense-tagged corpus into mutually exclusive training and test portions. Performance was meas-
ured by computing the classifier’s accuracy in assigning each test segment vector to the correct
sense class. We conducted a very similar experiment in Maldonado-Guerra and Emms (2012)
(see Sec. 5.3, p. 140) but using Word Space direct (first-order) and indirect (second-order)
context vectors. Chapter 6 repeats the experiment more systematically with unreduced and
SVD-reduced versions of direct LSA segment vectors, Word Space direct (first-order) context
vectors, indirect LSA segment vectors, Word Space indirect (second-order) context vectors
computed from a word matrix and from a matrix of direct context vectors. Finally, Section
7.3 (p. 157) repeats the experiment using our proposed method of dimensionality reduction
for Word Space based on word matrix consolidation.

Modern supervised WSD can be seen as a machine learning approach that exploits two
knowledge sources: lexical semantic information coming from a dictionary or lexical resource
and contextual information coming from sense-annotated occurrences of ambiguous words
in actual corpora. WSD can thus be thought of being an interpretation of the weak distribu-
tional hypothesis, relying on two sources of information rather than on context alone. There
are however a few inherent weaknesses in the dependence of external lexical resources. One
is that different dictionaries organise and group the senses of a word in different ways. Also,
dictionaries need to balance trade-offs between concept demarcation precision, space, brev-
ity, and ease of use. So, dictionaries cannot be extremely detailed with every single shade of
meaning that a word can acquire. Because of this, it is unlikely that a general purpose diction-
ary or lexical resource such as WordNet will be informative of important sense distinctions
for terminology in every single technical or specialised domain. We could however make the
executive decision of defining word or term senses for a specific domain and develop a sys-
tem based on a generic algorithm that will work well provided that sense lists are available
for that domain. Applying the system to a new domain would only be a matter of compiling
the relevant word or term sense list. This however, brings us to the other issue of supervised
WSD: the expense in terms of both time and money in creating and maintaining in the long
run such a sense list as well as the effort in maintaining the sense annotation in training text
corpora. This has been dubbed the information bottleneck that plagues supervised WSD.

Kilgarriff (1997) argued that what we understand as a word sense depends on the purpose
of the task that requires word senses and that word senses themselves do not exist independent
of this purpose. For example, a task could be analysing the senses of the word bank in a par-
ticular newspaper corpus. The sense distinctions we are likely to obtain from such a task will
be those that are important for that particular corpus in that particular task. This echoes the
onomasiological/semasiological dichotomy discussed in Chapter 2, in that supervised WSD
takes an onomasiological standpoint and assumes that an exhaustive list of senses for every
ambiguous word will be available, whereas in reality the senses a word can take are modulated

62

Computational Background Natural language processing tasks

according to each particular domain in which it occurs, and a semasiological/unsupervised ap-
proach has better chances of learning these senses as they manifest in each domain in question.
These observations have motivated the research on unsupervised approaches to word senses
such as word-sense discrimination and induction (Sec. 3.1.1.2), which decrease or eliminate
their dependence on manually crafted sense lists and rely more on the information that can
be directly derived from the context of ambiguous words themselves, effectively embracing a
stronger version of the distributional hypothesis.

An interesting recent trend might help overcome (at least partially) the information bottle-
neck problem. This trend is the exploitation of user-generated collaborative semi-structured
content (Hovy et al., 2013). Wikipedia is a prime example of such content. It is user-generated
and collaborative in nature but is also semi-structured, in the sense that articles are inter-linked
and are organised in hierarchies or taxonomies. Projects such as BabelNet (Navigli and Ponz-
etto, 2012) aim to take advantage of these connections in order to build a fully-structured
lexical and semantic database. BabelNet in particular combines lexicographic and encyclo-
paedic knowledge from WordNet and Wikipedia, respectively, in a structured manner in the
form of a graph termed a semantic network. Moro et al. (2014) introduce a graph-based
approach to WSD and named-entity disambiguation that takes advantage of BabelNet. This
approach, called Babelfy, attempts to disambiguate all the words and terms in a document
that are also captured in BabelNet by traversing the sense graphs of each of these words and
terms and selecting the most dense sense subgraphs formed. Since there are no sense labels
per se in this approach and because disambiguation is performed by processing the semantic
networks formed by word types, it could perhaps be regarded as a type-based (Pedersen, 2007)
word-sense discrimination approach.

An important point of discussion in WSD research is the issue of evaluation. There are two
general ways in which an NLP module can be evaluated: intrinsically and extrinsically. In-
trinsic evaluation is a direct and isolated type of evaluation in which the NLP module is tested
in a lab setting, without regard to a particular application. An extrinsic evaluation is a task-
based evaluation that tests the NLP module in question as part of a bigger system and, all other
settings being equal, evaluates the difference in performance of the bigger system brought in
by the addition of the NLP module that is being tested. The early Senseval WSD evaluation
competitions focused on intrinsic evaluation (Palmer et al., 2007) whilst new Semeval com-
petitions have tended to also incorporate extrinsic evaluations1, in addition to traditional and
improved intrinsic evaluations. Both intrinsic and extrinsic evaluations have advantages and
disadvantages. On the one hand, intrinsic evaluations are easy to perform, can be automated
and allow researchers and practitioners to compare two or more competing modules against
the exact same criteria. However, they do not necessarily predict accurately the performance of
the module in a real production system. On the other hand, extrinsic evaluations do compare

1For example, the latest iteration of the competition, Semeval-2014, included extrinsic evaluations based on
systems that required word-sense disambiguation, such as computer-assisted writing and composition for
L2 users/second-language learners (Van Gompel et al., 2014), as well as many other semantics-related eval-
uations that did not centre on word senses.

63

Natural language processing tasks Computational Background

the performance of modules in more realistic settings. However, sometimes the difference in
performance of a larger system could be due to factors external to the modules being tested, so
extra care should be taken in performing these evaluations. Another disadvantage of extrinsic
evaluations is that they require more time and effort to put together and also, the performance
of a module can be system- and task-dependent. That is, the performance of a module in a
particular system for a particular task is not necessarily predictive of that same module’s per-
formance in another task or even in the same task but in a different system. For robustness,
it is recommended that both intrinsic and extrinsic evaluations be performed, where possible.
Since these evaluation issues are present in NLP systems in general, the discussion presented
here is also applicable to unsupervised WSDisc as well as automatic compositionality grading.

3.1.1.2 Word-sense discrimination

As mentioned in the previous section, relying on manually curated lists of word senses brings
limitations and philosophical challenges to the supervised word-sense disambiguation ap-
proach. Schütze (1998) introduced an alternative approach: word-sense discrimination (WS-
Disc) or induction (WSI). Word-sense discrimination differs from word-sense disambiguation
in that it does not require manually created sense lists and instead automatically induces the
senses of an ambiguous word from its occurrences in an unannotated corpus. WSDisc how-
ever has a theoretical limitation over WSD. Since the word senses in a WSD setting are defined
and known a priori, a WSD system is able to tell which sense each target word token has. By
contrast, in a WSDisc setting, word senses are not known a priori and so a WSDisc system
cannot assign a sense to a particular token of a target word. It could assign a symbolic ID or
label to each of the induced senses, but this ID or label cannot be directly interpreted by a
language user. In practice this might not be problematic, as there are applications that are not
concerned with human-interpretable sense labels but with determining whether two or more
instances of some target word have the same sense or not, i.e. with discriminating instances
of a word semantically.

Let us define the task of word-sense discrimination as follows. Given an untagged corpus
C, an ambiguous word τ , and a set of tokens of τ , Tokens = {κi : τ = type(κi)} (where
type(κ) returns the word type of word token κ), cluster the vector representations r(κi) of
instances (tokens) κi of τ in C. Each cluster Kj induced represents a sense σj of τ , for which
there exists some vector representation s(σj). Given a new instance κ′ of τ , produce a context
representation r(κ′) and assign it to the sense representation s(σj) most similar to r(κ′). I.e.
the sense for κ′ is argσj

max(sim(r(κ′), s(σj))), where sim(u, v) is some similarity measure
between u and v. All of this is done without recurring to a previously sense inventory such as
a machine-readable dictionary or a thesaurus.

Word Space was very much born inside WSDisc. Indirect (second-order) context vectors
were introduced by Schütze (1998), the same paper that introduced WSDisc. These context
vectors are computed from a word co-occurrence matrix, introduced in Schütze’s earlier work

64

Computational Background Natural language processing tasks

(1992). Direct (first-order) context vectors were also applied in WSDisc around the same
time by Pedersen and Bruce (1997). Word Space context vectors have been used for WSDisc
in many works such as Purandare (2004), de Marneffe and Dupont (2004), Charoenporn
et al. (2007) and Maldonado-Guerra and Emms (2012).

There have not been many works applying LSA to WSDisc. Despite the title of the Levin
et al. (2006) paper, the work does not use LSA’s segment vectors for WSDisc but for WSD,
although the WSD experiment is admittedly assumed to predict a ceiling for a hypothetical
WSDisc experiment. Pino and Eskenazi (2009) by contrast used LSA segment vectors in a
WSDisc component used in an interactive reading comprehension/vocabulary learning edu-
cational system. This system presents students with a reading passage containing a number of
words they need to learn. After the reading time is up, the system presents the students with
automatically generated fill-in-the-blank questions in which they have to select the word from
a list that best fills the blank. The questions are sentences automatically extracted from the
web containing the word(s) the student is to learn. The WSDisc component is used to select
sentences that use the word in the same sense as they were used in the passage presented to the
student in the first part of the exercise. Pedersen (2010) attempts a comparison between LSA
and Word Space in a WSDisc setting. However, as will be discussed in Section 4.3 (p. 122),
this work does not capture a subtle difference in counting between each model’s direct token
representations, and as a result he ends up comparing several Word Space variants instead.

This thesis also presents adaptations of Word Space and LSA to the WSDisc problem. Sec-
tion 5.4 (p. 141) compares the performance of direct (first-order) and indirect (second-order)
Word Space context vectors in word-sense discrimination experiments. Then, Chapter 6 re-
peats the experiment more systematically with unreduced and SVD-reduced versions of direct
LSA segment vectors, Word Space direct (first-order) context vectors, indirect LSA segment
vectors, Word Space indirect (second-order) context vectors computed from a word matrix
and from a matrix of direct context vectors. Finally, Section 7.3 (p. 157) repeats the experi-
ment using our proposed method of dimensionality reduction for Word Space based on word
matrix consolidation.

3.1.2 Measuring the compositionality of multi-word expressions

Lexicalised multi-word expressions (also termed collocations) are often opaque or non-literal
in that their overall meaning cannot be readily determined by the way in which the meaning
of their elements are combined according to the rules of grammar. For example, if we directly
parse syntactically and semantically the MWE heavy metal, we would arrive at the conclusion
that it refers to a metal that is heavy in weight (like mercury, lead, etc.) If however we see this
MWE in the context of the topic of music (e.g. in a newspaper review of a recently released
album), we as human beings would not literally analyse the expression word by word, rule
by rule but instead interpret the whole expression as a music genre, unless, of course, we did
not know of the existence of a music genre called heavy metal. It is said that such opaque,

65

Natural language processing tasks Computational Background

non-literal MWEs are non-compositional as they do not necessarily follow the standard rules
of meaning composition. By contrast, the expression orange juice, despite being lexicalised, is
indeed compositional. That is because if we know what orange (the fruit) and what juice both
refer to, we can easily understand, by applying syntactic and semantic rules, the expression
orange juice, even in the (unlikely) case that we had never seen a glass of orange juice. There
are also some contentious cases that could lie somewhere in between a non-compositional–
compositional continuum. An example is soft drink. The literal interpretation alluding to
the idea that a drink, which has to be in liquid form to be drinkable, can be soft is simply
semantically anomalous as softness/hardness are characteristics normally associated with solid
objects. It has a non-literal interpretation (that of a non-alcoholic drink) and because of that
we could decide to classify soft drink as a non-compositional MWE. However, as just men-
tioned, a soft drink is still a drink, a liquid intended for human consumption, and even if
we were not familiar with the metaphorical/non-literal use of soft, we would still be able to
understand that soft drink must refer to a liquid of some unknown and/or strange description
which is nevertheless intended for human consumption. Because soft drink has characterist-
ics of both compositional and non-compositional MWEs, it is considered to be of medium
compositionality.

An intuition that enters into play in this discussion is that the semantics of the individual
constituent words forming an MWE behave very differently in the fully compositional case
from the non-compositional case. In orange juice for example, orange refers to a fruit (or a
flavour) whereas juice refers to a liquid extracted from a fruit. Whether juice or orange occur
alone or forming collocations with other words (e.g. apple juice, grape juice, orange pulp, orange
pips), they will more or less remain semantically related to orange juice. In heavy metal on the
other hand, the usual meanings of heavy and metal are not semantically related to heavy metal
in the music genre sense2. Since the notions of semantic relatedness and contexts enter into
play in this intuition, it is interesting to consider whether the vector space model of lexical
semantics can be used to try to measure the compositionality of multi-word expressions.

McCarthy et al. (2003) first exploited this intuition by measuring the similarity between a
phrasal verb (a main verb and a preposition like blow up) and its main verb (blow) by com-
paring the words that are closely semantically related to each, and use this similarity as an
indicator of compositionality. Katz and Giesbrecht (2006) also exploited the same intuition
but they used an SVD-reduced word matrix. They first produced word vectors for the 20,000
most frequent words in a corpus as well as for the candidate MWEs. They used the 1,000
most frequent words in the corpus as features for those word vectors. Then, the word vec-
tors were arranged as the rows for a word matrix which was then reduced to 100 columns by
SVD. They then used the cosine measure between the SVD-reduced word vector for a given
MWE and the sum of the individual MWE members’ word vectors as a proxy to grade the
compositionality of the MWE. If the cosine measure between the MWE vector and summed

2Notice however that metal can form other collocations related to the music genre sense such as metal concert,
metal fan, etc.

66

Computational Background The vector space model of information retrieval

word vectors of each of its members is close to zero, then it is assumed that the MWE is either
non-compositional or has very low compositionality. Conversely, if the cosine measure is
high, the MWE is deemed to be highly compositional.

In our method, we assume that each bigram in the dataset is made up of a node (or head-
word) and a collocate (or modifier) (see Sec. 8.3, p. 167). Our method compares the se-
mantic similarity between the node and the bigram and between the collocate and the bigram
by computing a cosine similarity score (see Eq. 3.2.9 on page 72) between word vectors that
represent the node, the collocate and the bigram. Three variations (configurations) of this
basic method are explored, all defined in Section 8.3. A system based on this method was
submitted to the Distributional Semantics and Compositionality (DISCO 2011) shared task
(Biemann and Giesbrecht, 2011). Systems were given a set of bigrams that had different de-
grees of compositionality. Their compositionality or non-compositionality was assessed by
native speakers based on “how literal” each bigram sounded to them. These judgements were
then averaged and converted to a scale between 0 and 100, where 0 means non-compositional
and 100 is fully compositional. Systems were evaluated on their ability to predict this average
numeric score and to classify bigrams as either low compositional, medium compositional or
highly compositional. The shared task organisers refer to this categorisation as the “coarse”
prediction task. One of the variations of the system reported in this thesis achieved a fifth
place (out of 15) in the overall numerical prediction task, whereas another of the variations
also achieved fifth place in the overall coarse prediction task. However, it achieved first place
in the coarse verb-object subset of bigrams.

3.2 The vector space model of information retrieval

As previously mentioned, the VSM has been applied to NLP tasks that fall well beyond its
native information retrieval environment. As a lexical semantics tool it has been used to find
word synonyms (Landauer and Dumais, 1997; Turney, 2001; Rapp, 2003) and other types
of semantic and ontological relations between words (Sahlgren, 2006; Utsumi and Suzuki,
2006; Utsumi, 2010), as well as to solve analogy questions (Turney, 2006), to label semantic
roles (Erk, 2007) and of course to disambiguate and discriminate word senses (Schütze, 1998;
Purandare and Pedersen, 2004; de Marneffe and Dupont, 2004; Agirre and Stevenson, 2007;
Navigli, 2009; Navigli and Crisafulli, 2010). In fact, the link between the VSM and lex-
ical semantics is so strong that it is often seen as a plausible model of a major component of
human lexical semantic learning (Bullinaria and Levy, 2007; Landauer, 2007). Other NLP
tasks that have incorporated VSMs successfully include essay grading (Wolfe et al., 1998;
Foltz et al., 1999), document segmentation by subtopics, question answering and call routing
(Turney and Pantel, 2010), as well tasks more related to information retrieval such as docu-
ment clustering and classification (Sebastiani, 2001; Manning et al., 2008) and cross-lingual
information retrieval (Dumais et al., 1997).

This section introduces the vector space model within its own native context of information

67

The vector space model of information retrieval Computational Background

retrieval, paying attention to the properties and operations that will be used later when it is
extended and adapted for lexical semantics (Section 3.3).

Information retrieval seeks to address the problem of accessing relevant information from
digital but unstructured document collections (like the Web) via two computational tasks:
document search and document classification. Document search (or Web search) identifies a
set of documents (a subset from the document collection) that are relevant to a user query,
whilst document classification consists in classifying the documents in the collection accord-
ing to a set of predefined topics or themes. A variant of the document classification task is
document clustering, which organises the documents in the collections into topical subgroups
automatically without the need of supplying a list of predefined topics.

These tasks all involve comparing the contents of each document with something. In docu-
ment search, the contents of each document in the collection are compared with a user query.
In document classification, the contents of the documents are compared with the contents of
documents that have already been classified manually and thus assigned to their most appro-
priate class. In document clustering, the contents of each document is directly compared with
the contents of every other document in the collection in order to induce common topics and
organise the documents according to these induced topics. Both document classification and
document clustering involve comparing the contents of one document with another docu-
ment. In document search, a user query is regarded to be an approximation to a document,
albeit a very short one, and so it is usually called a pseudodocument. This makes the task of
comparing one document with a user query essentially identical to comparing one document
with another document, just as it is done in document classification and clustering. We can
therefore state that a fundamental task in information retrieval is to compare the contents of
one document against the contents of one or more other documents.

The “contents” of a document can be defined in terms of any of the units making up the
documents in the collection. A common unit used in information retrieval is the word. And
so the comparison of two documents often involves comparing whether the two documents
share the same words or share words with similar meaning. Documents that significantly
overlap lexically are deemed to be similar or relevant to each other. One way to compute this
lexical overlap is by modelling documents as sets. If two documents δi and δj are respectively
modelled as the sets Di and Dj, whose members are the word types τ that occur in each δi

and δj respectively, we could estimate the degree to which the two documents are related by
counting the number of terms in common, i.e. by counting the number elements in the
intersection between Di and Dj:

relevance(δi, δj) = |Di ∩ Dj| (3.2.1)

This set representation of a document is effectively a formalisation of the the bag of words
concept or hypothesis, which models a whole document solely in terms of its word types and
ignoring any other linguistic feature such as word order. This is also the formalisation of the

68

Computational Background The vector space model of information retrieval

S

W E

N
95km/h 60°NW

60°
120°

Figure 3.2.1: A graphic representation of a velocity vector

word overlap function used in Lesk’s (1986) algorithm for word-sense disambiguation. In
an information retrieval system, the super set A whose members are these set representations
of documents would form the system’s index, i.e. the record of what words occur in which
documents.

A limitation of this simple set-based representation is that it does not take into account
the frequency of the words occurring in each document. Intuitively, we can expect words
related to the main topic of the document to occur more often than words unrelated to this
main topic. For example, a document about linguistics would feature words such as language,
syntax, speaker, morpheme relatively more frequently that medical terms such as cancer, virus,
infection, morphine. Effectively, (3.2.1) gives the same weight to all words occurring in both
documents, regardless of their frequency in each document. It is therefore common to weight
the occurrence of a word by its frequency (i.e. term frequency). But since a set representation
does not normally allow to represent members more than once, an alternative representation
is usually employed: the Euclidean vector.

A Euclidean vector (or simply a vector) is a geometric quantity that has a length (also
called norm or magnitude) that points towards a direction. Vectors find application in nu-
merous scientific endeavours. For example, in Physics it is common to express velocities as
vectors, where one could say that a projectile moves on a plane at a velocity of 95 km/h
60° north west. This vector is graphically represented in Figure 3.2.1. The speed quant-
ity 95 km/h is the magnitude of that velocity, and 60° north west is its direction. A vec-
tor v can be expressed in terms of its dimensions as a tuple [v1, . . . , vn], i.e. an ordered
list of elements. The tuple representation of our velocity example can be given in terms of
its x and y components on the plane along which the projectile is travelling and would be

69

The vector space model of information retrieval Computational Background

[x, y] = [95 cos 120◦, 95 sin 120◦] = [−47.5, 82.272], with the first element being inter-
preted as the west-east speed component of the projectile (in this case a negative quantity
because of its westward direction) and the second element being interpreted as the south-
north speed component of the projectile (a positive quantity since the projectile is moving
northwards). The units of the components still are kilometres per hour. More formally, it is
said that the vector is decomposed with respect to the mutually perpendicular (orthogonal)
reference axes (also called basis vectors)

−→
SN and

−→
WE in Figure 3.2.1.

It is this tuple expression that lends itself particularly well as a document representation in
terms of the words it contains (Salton et al., 1975): if each of the vector’s dimensions represents
a word type that exists in the language, each element in the tuple can hold the frequency of its
corresponding word type in the document. More formally and more generally, we can define
a document vector d as follows:

Definition 3.2.1 (Document vector D-A-UR). Given a set of documents (i.e. a corpus) C
and a vocabulary set V containing all of the word types occurring in C, a document δ ∈ C is
represented by a vector d ∈ Rm (where m = |V|) with each dimension di relating to either
the absence or occurrence of a word type τi ∈ V in δ:

d =

τ1 d1
...

...
τm dm

 (3.2.2)

where each di in d holds a real value that records whether τi occurs in δ and, if it does occur,
also measures the importance of this occurrence through:

di = fδ(τi) (3.2.3)

where fδ(τi) is a feature function that maps word types τi occurring in a document δ to real
values.

As it will be explained in Section 3.3, a document vector can be used to represent shorter
text segments, such as paragraphs, sentences, etc. A document vector thus applied receives the
name of segment vector. Those segment vectors are often used in WSX as proxies to represent
word tokens (as in Levin et al., 2006), a usage that will be studied more carefully especially
with regard to LSA where they are normally reduced by SVD. Over the course of this and
the following chapter, we shall be discussing several competing kinds or configurations of
token vectors. In order to avoid confusion, they can all be quickly referred to in Table 4.2.1
(p. 111). The vector configuration corresponding to the document or segment vector of
Definition 3.2.1 is D-A-UR. “D” stands for direct as it is a direct or first-order representation.

70

Computational Background The vector space model of information retrieval

“A” stands for the matrix from which this vector is derived, in this case the word-document
or word-segment matrix A from Definition 3.2.2 below. “UR” stands for “unreduced”, that
is a vector representation that has not been reduced by SVD or any other dimensionality
reduction method.

In its most basic form, the feature function fδ(τi) is the frequency of the word type τi in
the document δ, i.e. the count of occurrences of τi in δ:

fδ(τ) = nδ(τ) =
∑
∀κϵδ

1 if τ = type(κ)

0 otherwise
(3.2.4)

where κ is each word token contained in document δ and type(κ) is a function or hash map
that returns the word type τ of word token κ.

A value of 0 would indicate that τi does not occur in δ and therefore τi is considered to be
not relevant for retrieving δ. If on the other hand, τi does occur in this document, then this
value counts the number of times this word occurs in the document. The frequency feature
function thus ascribes more relevance to words that appear more frequently.

Notice that vectors are flexible enough in that they allow us to formulate a representation
equivalent to the set-based representation D we had originally by using a binary feature func-
tion such as:

fδ(τ) =

1 if nδ(τ) > 0

0 otherwise
(3.2.5)

In our original set representation we compared two sets Di and Dj through the cardinality
of their intersection (3.2.1). The corresponding vector comparison of two vectors di and dj is
the sum of each element of one vector times the same element of the other vector, that is, the
dot product or inner product of the two vectors:

di · dj =
m∑

k=1

dikdjk (3.2.6)

Observe that when dealing with binary features (3.2.5) the dot product is equivalent to
the intersection cardinality (3.2.1). The dot product is considered to be a vector similarity

function in information retrieval as well as in distributional lexical semantics as it measures
the degree to which two vectors are similar to each other. A value of 0 indicates that the two
vectors have no features (words) in common whereas a large positive value indicates a high
degree of words shared.

Notice, however, that it is well possible to have two documents that are closely related but
that vary in word count considerably, as for example in the case of a user query and a 100-
page long document. In this situation, the smaller (pseudo)document will not feature relevant
terms in high numbers. To alleviate this situation it is common to normalise vectors, that is,
to have all of its dimensions divided by its norm (length):

71

The vector space model of information retrieval Computational Background

d =
d

∥d∥l
(3.2.7)

In general, the norm of a vector is calculated by:

∥d∥l =

(
m∑

i=1

|di|l
)1/l

(3.2.8)

In the specific case when l = 2, this norm is the Euclidean norm3 or L2-norm. An im-
portant result is that when a vector is normalised by the Euclidean norm (when it is L2-
normalised), its length will always be 1, unless it is a zero-vector, in which case its length will
be 0. Another popular norm is the L1-norm, i.e. where l = 1. A vector of frequencies that is
L1-normalised can be interpreted as a probability distribution of the words in the document.

The dot product of L2-normalised vectors has an important geometric interpretation. If
θij is the angle formed between vectors di and dj, then the dot product of the L2-normalised
versions of these vectors is the cosine of θij:

cos θij = cos
(
di, dj

)
=

di · dj
∥di∥

∥∥dj∥∥ (3.2.9)

Intuitively, the cosine measures the degree of dimension overlap between the two vectors
whilst, via the normalisation involved, reducing the importance of the actual raw, absolute fre-
quencies. Geometrically, the cosine compares the direction of the two vectors whilst ignoring
their individual lengths (norms) through the same normalisation. If the vectors point roughly
in the same direction, the cosine value will be high, otherwise it will be low. The image of
the cosine is −1 ≤ cos θ ≤ 1 for −∞ < θ < ∞. Notice however that since we are dealing
with non-negative values (word counts), the effective range of values will be 0 ≤ cos θ ≤ 1
as the angle range will be 0 ≤ θ ≤ π/2. A value of 1 indicates complete similarity (even if
the individual vector lengths are different) since θ = 0, whilst a value of 0 indicates complete
dissimilarity as the two vectors are orthogonal, i.e. the two vectors have no dimensions in
common and so θ = π/2 = 90◦. Because of this intuitive interpretation and due to its closed
range of values (unlike the dot product which is only bound for complete dissimilarity at 0),
the cosine is a very important similarity function in information retrieval and distributional
lexical semantics, where it is known as the cosine similarity function or score (often simply
called cosine measure) and is normally denoted as cos (u, v).

It has become such an established convention to work directly with cosine values that the
actual angle value is rarely if ever computed. This established convention seems to stem from
the intuitiveness associated with the interpretation of a similarity measure in a scale from 0 to
1, especially when contrasted with the perceived awkwardness in interpreting similarity as an
inverse scale of π/2 to 0. Besides, one could argue that expressing an angle in terms of cosine

3In this thesis, the Euclidean norm of a vector, ∥v∥2, will always be written simply as ∥v∥.

72

Computational Background The vector space model of information retrieval

values, degrees or radians is a mere matter of choosing one’s preferred measurement unit4,
and converting from cosine to degrees or radians engages us in a unit conversion exercise
that sheds no additional information and in fact only negatively impacts the running time
of an actual system and even risks loosing some precision by making additional unnecessary
computations.

Just as there are vector similarity functions, there are also vector distance functions, the
most common of which is the Euclidean distance. The Euclidean distance or L2-distance of
two vectors di and dj is defined as

dist
(
di, dj

)
=
∥∥di − dj

∥∥ =

√(
di1 − dj1

)2
+ · · ·+

(
diN − djN

)2 (3.2.10)

The Euclidean distance can be seen as a dissimilarity function because the larger this
amount is the more distant the two vectors are from each other. As the distance between
the two vectors increases, the similarity of their corresponding documents decreases. There-
fore, it is common to convert the Euclidean distance into a similarity function. One way is
by using its inverse:

simdist
(
di, dj

)
=

λ∥∥di − dj
∥∥+ λ

(3.2.11)

where λ is a manually chosen constant 0 < λ ≤ 1 used to avoid a division by zero when
di = dj.

If the two vectors are L2-normalised (d = d/∥d∥), then it is also possible to use the comple-
ment of the Euclidean distance as a similarity function:

simdist
(
di, dj

)
= 1 −

∥∥di − dj
∥∥ (3.2.12)

In the cases of both (3.2.11) and (3.2.12) a value of 1 will indicate identity (complete
similarity) whereas a value of 0 (or near zero for the inverse version) will indicate complete
dissimilarity.

The raw frequency values that we have been using as features thus far are somewhat flawed
as indicators of relevance, however. On the one hand, a word appearing three times in a
document is not necessarily three times more relevant than a word appearing only once in
the same document. And on the other hand, there are many common words in the language
that will tend to have high frequencies across all documents, something that will make cosine
values for unrelated documents be artificially high. The former issue is often mitigated by
dampening raw frequencies (3.2.4) through square roots or logs (Manning and Schütze, 1999,
p. 542-4):

4Notice though that conceptually the radian is not considered a measurements unit but a “pure number”
computed from the ratio of two lengths. Similarly, we cannot argue that a cosine value is expressed in terms
of some measurement unit. However, from a computational point of view, calculating the inverse of the
cosine to obtain a degree or radian value is equivalent to converting quantities expressed in one traditional
measurement unit to another in the sense that both cases involve an arithmetic manipulation of some sort.

73

The vector space model of information retrieval Computational Background

fδ(τi) =
√

nδ(τi) (3.2.13)

fδ(τi) =

1 + log nδ(τi) nδ(τi) ̸= 0

0 otherwise
(3.2.14)

Whilst the latter issue is addressed by employing some weighting function like the well-known
inverse-document frequency (IDF) function (Spärck Jones, 1972):

idf(τ) = log
|C|

nτ (C)
(3.2.15)

where |C| is the total number of documents in the corpus C and nτ (C) is the number of
documents in C that contain τ . That is:

nτ (C) =
∑
∀δ∈C

1 nδ(τ) > 0

0 otherwise
(3.2.16)

IDF has been shown (Salton et al., 1975) to give more weight to words that only occur in a
relatively small document subset and less weight to words uniformly distributed across docu-
ments. The intuition behind this is that words that only occur in a few documents discriminate
topics better than words that appear in nearly every single document. Thus by giving more
weight to words that concentrate in a few documents that focus around the same or related
topics, it is possible to better rank documents by relevance and/or more accurately categorise
them by topic.

A word frequency weighted by the word’s IDF is normally called TF-IDF5 and is a very
popular feature function used in vectors representing documents:

fδ(τi) = nδ(τi)× idf(τi) (3.2.17)

A common practice to reduce even further the effects of words such as articles and prepos-
itions that are extremely common and extremely unlikely to be clues for topical relevance, is
to omit them altogether from the vocabulary V . This is equivalent to give them a weight of 0,
making their feature function value to always be 0. This practice is called stop word filtering

(see p. 32 for more details on function/stop words).
Recall that we previously defined the index of an information retrieval system as the super

set A whose members are the Di set representations corresponding to each document δi in
the corpus C. We can redefine such an index in terms of the di vectors corresponding to the
same documents as follows:

5TF stands for “term frequency”. In information retrieval terminology, singleton words (unigrams) are called
terms. This thesis does not adopt this usage and understands term more traditionally as a lexical unit desig-
nating a specific specialised or technical concept. In this sense, a term could end up being an ngram of any
length.

74

Computational Background The VSM as a distributional lexical semantics model

Definition 3.2.2 (Document matrix or index). Given a corpus C of n documents (i.e. n = |C|)
and given n vectors di ∈ Rm each representing each document δi ∈ C, it is possible to arrange
these vectors as the columns of the matrix A ∈ Rm×n:

A =

d1 ··· dn

t1 a11 · · · a1n
...

...
tm am1 · · · amn

 (3.2.18)

Each row of this matrix is thus a word type vector ti corresponding to a word type τi in
the vocabulary V in C whilst its n columns correspond to the documents in C. This matrix is
often called a word-document matrix or a term-document matrix in information retrieval. If
using basic raw counts as features (3.2.4), each cell aij in A counts the number of times word
type τi occurs in document δj.

As previously mentioned, the VSM effectively reduces the representation of a document
to a bag of words that makes no consideration to the finer linguistic rules governing the
syntax and the grammatical relationships between the words in the document, or to its overall
structure and organisation. Whilst this approach seems to be rather crude at the outset, it
has achieved very good results in information retrieval and other natural language processing
tasks. Intuitively, we can explain its success in expecting that the words chosen by an author
writing a document are largely determined by the document’s topic. The VSM’s capability of
determining the similarity of any two documents has been adapted to determine the similarity
of any two words. This adaptation is the concern of the following section.

3.3 The VSM as a distributional lexical semantics model

The previous section described Salton’s VSM in its most basic original form intended for
information retrieval tasks such as document search, document classification and document
clustering. We saw that the VSM is very well suited to measure similarities and dissimilarities
between documents via their abstraction and representation as vectors in high-dimensional
space. This section describes an adaptation of the VSM to lexical semantics. In particular, we
shall see how we can also measure similarities and dissimilarities between words also repres-
ented in high-dimensional space.

The document matrix (index) A from Definition 3.2.2 describes two types of vectors, i.e.
two vector spaces. In its columns, A defines a document vector space in which each vector di
corresponds to each document δi ∈ C (Definition 3.2.1). Each dimension in di corresponds
to a word type τj ∈ V . The other vector space in A is formed in its rows. We shall call each
row vector of A a word type vector or a word vector (also called a term vector in information

75

The VSM as a distributional lexical semantics model Computational Background

retrieval) tj corresponding to each word type τj ∈ V . Each dimension in tj corresponds to a
document δi ∈ C. We can formally define a word vector as follows:

Definition 3.3.1 (Word vector (document features)). Given a set of documents (i.e. a corpus)
C and a vocabulary set V containing all of the word types occurring in C, a word type τ ∈ V
is represented by a vector t ∈ R1×n (where n = |C|) with each dimension ti relating to either
the absence or occurrence of τ in the document δi ∈ C:

t =
[δ1 ··· δn

t1 · · · tn
]

(3.3.1)

where each ti in t holds a real value that records whether τ occurs in δi and, if it does occur,
also measures the importance of this occurrence through a feature function ti = fδi(τ) (See
(3.2.3)).

Section 3.2 showed how it is possible to estimate the similarity of two documents via a
similarity measure, such as the cosine similarity score (3.2.9), that computes a similarity score
on vectors that represent those two documents. Since we also have a vector representation of
any word type in the corpus via Definition 3.3.1 there is no reason to expect that a vector
similarity function on any two of these word vectors cannot be interpreted as a proxy of the
actual semantic similarity of their two corresponding word types. And in fact, this is exactly
what researchers in distributional semantics do when they apply the VSM to words (Turney
and Pantel, 2010). By looking into the rows of A instead of its columns, we essentially shift
the focus of the VSM from documents to word types.

Let us however examine more closely the intuitiveness and the linguistic interpretation of
comparing two word type vectors. As previously discussed, a similarity function such as the
cosine will measure the degree of overlap in dimensions between two vectors. Any given di-
mension in this vector space represents a document, so effectively the cosine score measures
the degree to which two words tend to co-occur in the same documents. More generally,
since documents can be simply seen as (large) units of text (see Sec. 2.2.4), i.e. syntagmas, we
can state that the cosine score on two word vectors effectively measures the degree to which
two words co-occur the same syntagmatic contexts. The document can be a rather large unit
of text and while in a sense all of the words in a document are related because they are all
contribute to the document’s main topic(s), it can be difficult to affirm intuitively that any
two isolated words in a document that occur at a considerable distance from each other, as in
different paragraphs or perhaps different chapters, are clearly related. For this reason, distri-
butional lexical semantics uses a modified version of the vector space model that works with
alternative text units smaller than the document. This smaller alternative text unit can be a
paragraph, a sentence or even a text segment of fixed length. In the distributional lexical se-

76

Computational Background The VSM as a distributional lexical semantics model

mantics literature this unit is usually called a context. From the point of view of the linguistic
analysis we discussed in the previous chapter, we could say that these contexts either match
the notion of a syntagma (as when we work in terms of paragraphs, sentences or phrases) or
approximate it (when we deal with text segments of fixed length). The experiments in this
thesis work primarily with text segments of fixed length and so the terms contexts, syntagmas,
and segments are technically interchangeable. However, as a convention the term segment vec-
tor will be used for vectors representing segments/contexts in Salton’s VSM as well as in LSA
whereas context vector will be used to designate vectors used representing segments/contexts
in Word Space. There is two reasons for this. One reason being that Salton’s VSM and LSA
segment vectors represent discrete, non-overlapping text segments, whereas in Word Space
context vectors represent word windows centred at a target word that may or may not overlap
with other word windows (see p. 48). The other reason is that both types of vectors can be
used to represent word tokens, but their representations are different. Word Space context
vectors are specifically designed to represent tokens in context, but VSM/LSA segment vec-
tors are designed to represent full contexts and not tokens directly. VSM/LSA segment vectors
however have been used successfully to represent tokens in word-sense disambiguation exper-
iments (e.g. Levin et al., 2006) by using a segment vector containing an instance (token) of
a word as a proxy to represent that instance. In Section 4.3.1 (p. 123) we shall see that this
subtlety makes a small but important difference between a VSM segment vector and a direct
(first-order) Word Space context vector.

Given this modified VSM, we can view the cosine as a measure of the tendency between
any two word types to co-occur within the same syntagma, i.e. a measure of their tendency
to collocate (see Sec. 2.1.2). Recall that if two words co-occur within the same syntagma,
they engage in a syntagmatic relationship (Sec. 2.2.2, p. 42). We can therefore state that
the cosine similarity score (as well as other similarity scores like the dot product, the inverse
and complement of the Euclidean distance, etc.) of the row vectors of A is a measure of
syntagmatic similarity (Sahlgren, 2006). More generally, we can state that the vector space
formed by the word type vectors (row vectors) in A can be interpreted, through a Saussurean
lens, as a syntagmatic vector space (or simply a syntagmatic space). It is important to stress
that being a syntagmatic space is not an inherent property of the word vectors of A per se,
but rather a characteristic that only arises when any two such vectors are compared with each
other (see Sec. 3.6).

There are however two major shortcoming with the vector-space representations of docu-
ments and word types given by A. One of them has to do with synonymy. If two documents
(or two smaller contexts) express the same meaning or content but happen to use different
words (e.g. by using synonyms or paraphrases), the cosine similarity between them will be
very low. Likewise, synonymous words are often alternated in written works in order to
avoid repetition and so if a model uses relatively short contexts like sentences, not many syn-
onymous pairs will be captured within the same context. The other shortcoming is related to
polysemy/homonymy. If two documents employ the same words but in different senses, then

77

Latent Semantic Analysis Computational Background

cosine similarities would be higher than they should. There are two main strategies that aim
to mitigate this shortcoming: Latent Semantic Indexing/Analysis and Word Space.
Latent Semantic Indexing, LSI, (Deerwester et al., 1990) is a technique that aims to exploit

the higher-order co-occurrence of words in order to implicitly detect synonymous pairs and
thus find similarities of documents (or contexts) that represent similar contents even if they
use different words. Latent Semantic Analysis, LSA, is basically the same process but usually
applied to finding similarities of words rather than documents (or contexts) or when applied
outside information retrieval. LSI/A works by projecting word or document vectors into an
alternative vector space that represents latent semantic dimensions. Roughly speaking, co-
occurring words end up being merged into the same dimensions whilst non co-occurring
words remain separate. This alternative vector space is also usually of lower dimensionality
than the original vector space. This alternative vector space is obtained by using Singular Value
Decomposition (SVD). Apart from finding these latent semantic dimensions, SVD also has
the effect of reducing noise by smoothing the term-document matrix since it contains many
unreliable small counts. More details on LSA and SVD will be given in Section 3.4.
Word Space (Schütze, 1992) is an alternative way of representing words in vector space

altogether. Instead of employing a word-document (or word-context) matrix as in Salton’s
original vector space model or as the input to LSA, word space instead directly constructs
a square, symmetric word-word co-occurrence matrix in which each entry wij counts how
many times wi co-occurs with wj within the same context. Context here is usually a sentence,
a paragraph or a word-window of a predefined word length, usually centred at the word wi.
This word-word co-occurrence matrix is termed a word matrix in this thesis. Each row vector
in the matrix (or column vector since the matrix is symmetric) wi is a word vector. Whilst the
word matrix can be exploited as is, it can be optionally transformed using SVD. Word Space
is discussed in detail in Section 3.5.

3.4 Latent Semantic Analysis

Introduced by Furnas et al. (1988) and Deerwester et al. (1990), Latent Semantic Analysis
(LSA) started life as Latent Semantic Indexing (LSI), an information retrieval method that
sought to address the shortcomings caused by synonymy and polysemy/homonymy that we
mentioned towards the end of the previous section. Synonymy (and other semantic relations
such as hypernymy, hyponymy, co-hyponymy, etc.) can reduce the recall of information
retrieval systems when users use words in their queries that are different to those used in
the relevant documents themselves, even if the words in the queries are relevant to the topic
of documents users wish to retrieve. Polysemy and homonymy on the other hand cause a
reduction in precision of information retrieval systems by making them retrieve documents
that use one or more of the words in the user query, but in a different and potentially unrelated
sense to that intended by the user.

Latent Semantic Indexing works by reducing the dimensionality of the index, that is, the

78

Computational Background Latent Semantic Analysis

word-document matrix A introduced in Definition 3.2.2, via truncated Singular Value De-
composition (SVD). The application of truncated SVD to the index “uncovers” hidden se-
mantic relationships between documents via the words they contain, as well as simultaneously
“uncovering” hidden semantic relationships between words based on the documents they oc-
cur in. The nature of these “uncovered hidden semantic relationships” will become more evid-
ent and transparent after explaining the mathematical framework behind LSA (Section 3.4.1).
And as we shall see in Section 3.4.4, they have the effect of inducing semantic similarities
between words that do not necessarily co-occur directly but have higher-order co-occurrence.
These semantic relationships also have the effect of “modulating the correct sense” of a word
in terms of the words it directly co-occurs with in a given syntagma or context, becoming
a form of “polysemy detection”. In addition, it is expected that the dimensionality reduc-
tion involved in SVD acts as a noise reduction technique that eliminates chance or spurious
co-occurrences of words.

Whilst LSI is primarily an information retrieval tool, it has been applied to many other
computational tasks that benefit from its lexical semantic properties. In the literature, when
LSI is applied outside information retrieval, it receives the moniker Latent Semantic Analysis

(LSA). Just like Salton’s VSM can be used for information retrieval or general lexical semantics
problems depending on whether we decide to look at the columns of the VSM matrix (doc-
uments, information retrieval) or the rows of the same matrix (words, lexical semantics), we
shall see that the difference between LSI and LSA also boils down very much to whether we
decide to look at the columns (documents, information retrieval, LSI) or the rows (words, lex-
ical semantics, LSA) of versions of the SVD-reduced matrix. This is a very subtle distinction
and since the focus of this thesis is on lexical semantic tasks such as word-sense disambigu-
ation and discrimination, we shall use the term LSA more extensively and only refer to LSI in
the context of information retrieval.

3.4.1 SVD: the mathematical foundation of LSA

At the heart of Latent Semantic Analysis (LSA) lies Singular Value Decomposition (SVD)
(Golub and Van Loan, 1989; Berry, 1992), a mathematical technique used to decompose
an arbitrary matrix of real values into the product of three matrices. SVD is based on the
eigendecomposition of diagonalisable matrices (Anton and Rorres, 2000, Sec. 7.3).

Theorem 3.4.1 (Eigendecomposition or spectral decomposition of a diagonalisable matrix).
If M ∈ Rm×m is a diagonalisable matrix (i.e. if there exists a matrix R such that R−1MR is a
diagonal matrix), then M can be factorised in terms of its eigenvalues and eigenvectors as

M = QΛQ−1 (3.4.1)

where the columns of Q ∈ Rm×m are the eigenvectors of M and Λ is a diagonal matrix whose

79

Latent Semantic Analysis Computational Background

diagonal elements are the corresponding eigenvalues of M. In addition, if M is symmetric, then
Q is an orthogonal matrix.

This eigendecomposition can only be applied to square and diagonalisable matrices. The
word-document or word-context matrix A is unlikely to be square and even more unlikely
to be diagonalisable. SVD can be applied to such arbitrary rectangular matrices because it
internally converts the matrix into a symmetric matrix (i.e. a matrix M such that M = MT)
by squaring it (i.e. by computing AAT and ATA) and because all symmetric matrices are
diagonalisable.

Theorem 3.4.2 (Singular Value Decomposition). An arbitrary rectangular matrix M ∈ Rm×n,
with m ≥ n and rank(M) = r, can be factorised as

M = UΣVT (3.4.2)

where:
U ∈ Rm×r is an orthogonal matrix whose column vectors are the left-singular vectors of M, i.e.

these vectors are the eigenvectors of MMT. U is orthogonal because MMT is symmetric.
Σ ∈ Rr×r is a diagonal matrix whose values along the diagonal (σ11, σ22 . . . , σrr) are the

singular values of M. These non-negative values are the square roots of the non-zero eigenvalues of
both MMT and MTM. Also, these values are sorted in descending order, i.e. σ11 ≥ σ22 ≥ . . . ≥
σrr ≥ 0.
V ∈ Rn×r is an orthogonal matrix whose columns are the right-singular vectors of M, i.e. these

vectors are the eigenvectors of MTM. V is orthogonal because MTM is symmetric.
The rank r of M is the number of linearly independent rows and columns in M, which is the

same as the number of eigenvalues in the diagonal in Σ. Notice that r ≤ min(m, n).

In LSA though the full SVD from above is not employed and instead a truncated, low-rank
approximation is used:

Theorem 3.4.3 (Low rank approximation). If UΣVT is the SVD of M whose rank is r, then

M̂ = Mk = UkΣkVk
T (3.4.3)

is an optimal approximation of rank k (with k ≪ r) of M where
Uk is the first k columns of U.
Σk is a diagonal matrix with the top k highest values from Σ along its diagonal.
Vk is the first k columns of V.

80

Computational Background Latent Semantic Analysis

M̂ (i.e. Mk) is the best approximation of rank k of M with minimum distance to the
originalM. This minimum distance is taken to be the sum of squares of corresponding matrix
positions, i.e. the Frobenius norm of the matrix difference M −Mk (Manning et al., 2008,
pp. 376-8). That is:

min
Z|rank(Z)=k

∥M− Z∥F = ∥M−Mk∥F =

(
r∑

i=k+1

σ2
i

)1/2

(3.4.4)

Actual software implementations of SVD tend to compute this decomposition increment-
ally from 1 dimension till k. This allows these implementations to decompose very large
matrices into a relatively small number of dimensions k (usually 50 ≤ k ≤ 500 approx)
efficiently. So rarely the full decomposition from (3.4.2) is ever computed.

In LSA, the truncated matrices Uk, Σk and Vk are used to transform document/segment
vectors or word type vectors of dimensionality m or n, respectively into new co-ordinates of
dimensionality k. Once vector objects have been transformed into the new reduced dimen-
sionality, comparisons between them can be performed. Just like in the original vector space
model described in Sections 3.2 and 3.3, comparisons between any two reduced vectors can
done by using cosine similarity, Euclidean distance or other measure. Here we shall consider
cosine similarity. LSA permits comparing any two word type vectors, any two segment vectors
and even a word type vector and a segment vector.

Objects in this new, lower dimensionality are expected to have been reduced in “noise”
since variability generated by chance or spurious word co-occurrences gets eliminated. In
addition, this truncation seems to capture an underlying semantic structure between word
types and segments. Basically, word type vectors of semantically similar words come nearer
each other in the reduced vector space even when they do not co-occur in the same documents.
As well, vectors representing topically related segments (or documents) become closer in this
reduced space, even if they do not share words in common (Berry et al., 1995; Martin and
Berry, 2007). These semantic properties are explored in Section 3.4.4 whilst details on the
projections themselves are given in the next section.

Before moving on, notice that LSA relies on one parameter, k, which specifies the number
of dimensions to keep. Unfortunately, finding the optimal value for k has to be determined
empirically as it depends on the corpus used and the application. However, most applications
seem to use values in the low hundreds (i.e. 100 ≤ k ≤ 500).

3.4.2 Projecting word and segment vectors into the reduced space

Before we can perform cosine similarity comparisons, we need to give details on how segment
vectors and word type vectors are to be transformed or projected into their reduced dimen-
sionality versions using the matrices produced by SVD. In Emms and Maldonado-Guerra

81

Latent Semantic Analysis Computational Background

(2013) we found that there are two contending transformations used in the literature, which
we called R1(v) and R2(v), respectively. They will both be covered here and a brief survey of
their use in the literature is given in Section 3.4.3.

Definition 3.4.1 (Segment vector projections D-A-R1 and D-A-R2). Given a segment δ rep-
resented by column vector d ∈ Rm, we can obtain its SVD-reduced version d̂ through one of
the two following projections:

d̂ = R1(d) = Uk
Td (3.4.5)

d̂ = R2(d) = Σ−1
k Uk

Td = Σ−1
k R1(d) (3.4.6)

If d is actually a column vector inA and therefore is also represented by row vector v ∈ R1×k

in Vk, then these projections become:

d̂ = R1(d) = ΣkvT (3.4.7)

d̂ = R2(d) = vT (3.4.8)

Notice that with any of these projections d̂ ∈ Rk, i.e. we obtain column vectors of dimen-
sionality k.

These are the D-A-R1 and D-A-R2 token vector representation configurations presented
in Table 4.2.1 (p. 111).

The equivalence between the two R1 projections (3.4.5) and (3.4.7) can be shown by an
algebraic re-arrangement of the original SVD definition in Theorem 3.4.2:

A = UΣVT

UTA = UTUΣVT

Since U is orthogonal, UTU = I:

UTA = ΣVT

Uk
Td = ΣkvT

A similar algebraic re-arrangement of the same SVD definition can be performed to show
the equivalence between the R2 projections:

82

Computational Background Latent Semantic Analysis

Σ−1UTA = Σ−1UTUΣVT

Σ−1UTA = Σ−1ΣVT

Since Σ is a diagonal matrix, Σ−1Σ = I:

Σ−1UTA = VT

Σ−1
k Uk

Td = vT

Definition 3.4.2 (Word type vector projections). Given a word type τ represented by row
vector t ∈ R1×n, we can obtain its SVD-reduced version t̂ via one of the following two
projections:

t̂ = R1(t) = tVk (3.4.9)

t̂ = R2(t) = tVkΣ
−1
k = R1(t)Σ−1

k (3.4.10)

If t is actually a row vector in A and therefore is also represented in Uk by row vector u,
then these projections become:

t̂ = R1(t) = uΣk (3.4.11)

t̂ = R2(t) = u (3.4.12)

Notice that with any of these projections t̂ ∈ R1×k, i.e. we obtain row vectors of dimen-
sionality k.

Again, we can use algebraic re-arrangements of the original SVD definition to show the
equivalence of the two versions of each projection in Definition 3.4.2. For R1 projections:
AV = UΣVTV = UΣ. Therefore, tVk = uΣk. For R2 projections: AVΣ−1 = UΣVTVΣ−1 =

AVΣ−1 = UΣΣ−1 = U. Therefore, tVkΣ
−1
k = u.

We can also show intuitively that the R1 projections are the more appropriate ones for the
type of comparisons that we want to perform, i.e. between any two (reduced) word type
vectors or between any two (reduced) document/segment vectors. The cosine similarity can
be seen as a dot product between two vectors that have been L2-normalised. If we ignore the
normalisation carried out by the cosine, we can consider the dot product to also be a similarity
measure. If we wanted to compare every word type vector with each other in A using the dot

83

Latent Semantic Analysis Computational Background

product we could simply compute AAT, which would produce an m × m matrix in which
every cell xij will contain the dot product value of word type vector ti and word type vector
tj. If instead we wanted to obtain the dot products between all word type vectors but in the
reduced space, we would compute AkAk

T. By looking at the original SVD definition again,
this matrix multiplication yields (see Martin and Berry, 2007):

AkAk
T = UkΣkVk

T (UkΣkVk
T)T

= UkΣkVk
T VkΣkUk

T = UkΣkΣkUk
T (3.4.13)

This result tells us that the dot products between every two row vectors from Ak is the same
as the dot products between every two row vectors from UkΣk, which is the matrix version of
the R1 formulation in (3.4.11).

The same analysis can be performed to show that the R1 projections of document/segment
vectors are more intuitively motivated than the R2 projections. We can compute all pair-
wise comparisons between each pair of document/segment vectors in the reduced space by
computing Ak

TAk, which following the original SVD definition, is equivalent to:

Ak
TAk =

(
UkΣkVk

T)T
UkΣkVk

T = VkΣkUk
TUkΣkVk

T = VkΣkΣkVk
T (3.4.14)

Similar to what we had before,ΣkVk
T is very much the matrix version of the R1 formulation

in (3.4.7).
A further insight into the better suitability of R1 over R2 can be given. If k = r = rank(A),

i.e. if we perform SVD without removing any dimensions, then AAT = AkAk
T and ATA =

Ak
TAk; that is, the dot product of any two word type vector pair or segment pair in the non-

decomposed space will be identical to that of the decomposed space. All distances and angles
are preserved after SVD has been applied to A. And as it was shown in (3.4.13) and (3.4.14),
these operations correspond to computing dot products of any two R1-projected vectors. R2

on the other hand, can be seen as a scaling of R1 by Σ−1
k . Because of this, there is no reason to

expect that R2 will preserve distances and angles of vectors present in A after decomposition.
There is an intuitive relationship between the R1 and R2 projections however that is worth

mentioning. R2(t) in particular can be seen as the projection of an isolated token of type τ
in the lower dimensionality space. That is, R2(t) represents an occurrence of τ in isolation,
i.e. out of context. An isolated token of τi can be represented as a segment vector d in which
there is a 1 in the dimension ti corresponding to τi and zeroes everywhere else, i.e.:

dT =
[t0 ··· ti ··· tn

0 · · · 1 · · · 0
]

(3.4.15)

And more importantly, it can be shown that the R1 projection of this segment vector is equi-
valent to the R2 projection of type vector ti. This is stated more formally as follows.

84

Computational Background Latent Semantic Analysis

Theorem 3.4.4 (R2 as the projection of an isolated token). If d is a (column) vector of dimensions
t1, . . . , tm for which ti = 1 and tj = 0 for every 0 ≤ j ≤ m such that j ̸= i and ti is a (row)
vector in the unreduced matrix A, then

R1(d) = R2(ti)T (3.4.16)

Proof. We know from Definition 3.4.1 that R1(d) = Uk
Td (3.4.5). The matrix multiplication

operation in this equation can be seen as arranging the results of dot products between the
row vectors in Uk

T and d into a column vector R1(d). Since all dimensions in d are 0 with the
exception of ti, then only the values in the corresponding column from Uk

T will be carried
over to R1(d). Compare the following equation with (3.4.12):

R1(d) = Uk
Td =

u1

T ··· uiT ··· umT

u11 · · · u1i · · · u1m
...

uk1 · · · uki · · · ukm

×

d1 0
...

...
di 1
...

...
dm 0

=

uiT

u1i
...

uki

 = uiT = R2(ti)T

(3.4.17)

There is an analogous relationship between the R1 projection of a type vector and the R2

projection of a segment vector. It has a less straight-forward interpretation, but it could be
understood as relating to a word that only appears in one single segment.

Theorem 3.4.5 (R2 as the projection of a single-segment type). If t is a (row) vector of dimen-
sions d1, . . . , dn for which di = 1 and dj = 0 for every 0 ≤ j ≤ m such that j ̸= i and di is a
(column) vector in the unreduced matrix A, then

R1(t) = R2(di)T (3.4.18)

Proof. The proof is similar to that of Theorem 3.4.4. Recall that R1(t) = tVk (3.4.9). Since
only the value di in t is 1 and all others are 0, only the i-th row of Vk, which corresponds to
vector vi, will be preserved after the multiplication. In sum, R1(t) = tVk = vi = R2(di)T.
See (3.4.8).

85

Latent Semantic Analysis Computational Background

3.4.3 The R1 and R2 projections in the literature

In Emms and Maldonado-Guerra (2013) we argued that the difference between the R1 and
R2 SVD projections has been overlooked in the literature. This section considers the work of
a number of authors, arguing that some are adhering to the R1 formulation and some to the
R2 formulation.

The R2 formulation is presented in many, fairly widely cited, publications. For example,
in the notation of Rosario (2000), the reduced rank SVD of the word-document matrix is
TkSk(Dk)

T, with Tk, Sk and Dk used in place of Uk, Σk and Vk, respectively. This is de-
scribed as providing a representation in an alternative space whereby “the matrices T and D

represent terms [word types] and documents in this new space” (p. 3) and additionally the
representation of a query is given (p. 4) as qTTkSk−1, which matches, modulo notational
switches, the R2 formulation given in (3.4.6). Similarly, in the notation of Zelikovitz and
Hirsh (2001), the SVD of a word-document matrix is TSDT: “a query is represented in the
same new small space that the document collection is represented in. This is done by mul-
tiplying the transpose of the term vector of the query with matrices T and S−1” (p. 114).
Again modulo notational switches, this is the R2 formulation of (3.4.6). And finally, in the
notation of Gong and Liu (2001), the SVD of a word-segment matrix is A = UΣVT, and
the SVD is described as defining a mapping which “projects each column vector i in matrix

A [...] to column vector ψi =
[

vi1 vi2 · · · vir

]T
of matrix VT” (p. 21). Thus the i-th

column of A is represented by the i-th row of V, which is the R2 formulation given in (3.4.8).
On the other hand, the R1 formulation of LSA is also presented in other many, fairly widely

cited, publications. For example, in the notation of Bartell et al. (1992) the reduced rank SVD
of a word-document matrix is UkLkAk

T, and their definitions of document and query repres-
entations are “row i of AkLk gives the representation of document i in k-space. [...] Let the
query be encoded as a row vector q in Rt. Then the query in k-space would be qUk” (p.
162). These coincide, modulo notational differences, with the R1 formulations of (3.4.7) and
(3.4.5), respectively. Similarly, in the notation of Papadimitriou et al. (1998), the reduced
rank SVD of a word-document matrix is UkDkVk

T . Then concerning document represent-
ation they say that “[t]he rows of VkDk above are then used to represent the documents. In
other words, the column vectors of A (documents) are projected to the k-dimensional space
spanned by the column vectors of Uk” (p. 220). This coincides, modulo notation, with the
R1 formulations in (3.4.7) and (3.4.5). Finally, in the notation of Kontostathis and Pottenger
(2006), the reduced-rank SVD of a word-document matrix is TkSk(Dk)

T. They represent
queries “in the reduced space by Tk

Tq. [...] Queries are compared to the reduced document
vectors, scaled by the singular values (SkDk

T)” (p. 3). These column vector formulations
would be a row vector formulation qTk and DkSk, which, modulo notational differences are
the R1 formulations of (3.4.5) and (3.4.7), respectively. On the basis of these works, there
would appear to be an R1-vs-R2 ambiguity in the formulation of LSA, possibly a fairly wide-
spread one.

86

Computational Background Latent Semantic Analysis

Table 3.4.1: Word type-segment matrix A
A c1 c2 c3 c4 c5 m1 m2 m3 m4

human 1 1

interface 1 1

computer 1 1

user 1 1 1

system 1 1 2

response 1 1

time 1 1

EPS 1 1

survey 1 1

trees 1 1 1

graph 1 1 1

minors 1 1

3.4.4 Semantic properties of LSA

It has been mentioned that the truncated SVD operation involved in LSA has the effects of
reducing the noise in the reduced-dimensionality vector space as well as uncovering a hid-
den semantic structure that identifies words that are paradigmatically related (synonyms, co-
hyponyms, etc.) and that is sensitive to the polysemy of words. This section explores these
semantic properties of LSA in more detail. This exploration will be done intuitively using a
toy corpus used for illustration purposes in publications by the creators of LSA such as Furnas
et al. (1988) and Deerwester et al. (1990). Despite being such a small sample, this toy corpus
is useful for visualising the operations involved in LSA easily and transparently. It also has
the advantage of being used in several other works such as Kontostathis and Pottenger (2006)
to illustrate LSA and SVD concepts, so it can be useful to also compare explanations and
definitions between works. The toy corpus is a selection of article titles on human computer
interaction and graph theory. They are used here to demonstrate intuitively the aforemen-
tioned semantic properties of LSA. The toy corpus of article titles is as follows:

• c1: Human machine interface for ABC computer applications

• c2: A survey of user opinion of computer system response time

• c3: The EPS user interface management system

• c4: System and human system engineering testing of EPS

• c5: Relation of user perceived response time to error measurement

• m1: The generation of random, binary, ordered trees

• m2: The intersection graph of paths in trees

87

Latent Semantic Analysis Computational Background

Table 3.4.2: SVD matrices of A truncated to k = 2 dimensions
Uk k1 k2

human -0.22 -0.11

interface -0.20 -0.07

computer -0.24 0.04

user -0.40 0.06

system -0.64 -0.17

response -0.27 0.11

time -0.27 0.11

EPS -0.30 -0.14

survey -0.21 0.27

trees -0.01 0.49

graph -0.04 0.62

minors -0.03 0.45

Σk k1 k2

k1 3.34 0.00

k2 0.00 2.54

Vk k1 k2

c1 -0.20 -0.06

c2 -0.61 0.17

c3 -0.46 -0.13

c4 -0.54 -0.23

c5 -0.28 0.11

m1 0.00 0.19

m2 -0.01 0.44

m3 -0.02 0.62

m4 -0.08 0.53

• m3: Graph minors IV: Widths of trees and well-quasi-ordering

• m4: Graph minors: a survey

Article titles on human-computer interaction are c1-c5 and those on graph theory are m1-m4.
For our purposes one text segment will be a whole article title. In order to build the actual
word-segment matrix, we need to do a vocabulary (feature) selection. The selected vocabulary
from this dataset is: {human, interface, computer, user, system, response, time, EPS, survey, trees,
graph, minor}. All other word types are ignored. This allows us to construct a type-segment
matrix A ∈ R12×9 which can be seen in Table 3.4.1. Table 3.4.2 shows the SVD matrices of
A reduced to k = 2 dimensions.

3.4.4.1 Semantic relations

As explained in Section 3.3, the vector space introduced by Salton’s original VSM, exemplified
by the type-segment/document matrix A, is a syntagmatic space. That is, it is able to give an
indication on whether two words tend to co-occur or not in a corpus through the cosine
measure of the vectors representing these words in the vector space. As we shall see shortly,
type vectors projected into the SVD-reduced space of A forms a combination of a syntagmatic
and paradigmatic space, capable of predicting, via the same cosine operation, whether two
word types are both syntagmatically and paradigmatically related. A few examples from the
toy corpus will help shed some light on this. Some of the observations made here are based
and expanded upon those made by Kontostathis and Pottenger (2006).

Table 3.4.3 shows pairwise cosines between all type vectors from the toy corpus. The table is
divided in two sections: the right-upper part (white cells) shows the pairwise cosines between
word type vectors from the unreduced matrix A of Table 3.4.1, whilst the left-lower part

88

Computational Background Latent Semantic Analysis

Table 3.4.3: Pairwise cosines of word type vectors from toy corpus – Cosine values between
unreduced word type vectors (white cells) and cosine values of SVD-reduced
word type vectors (shaded cells)

human interface computer user system response time EPS survey trees graph minors

human 0.50 0.50 0.00 0.58 0.00 0.00 0.50 0.00 0.00 0.00 0.00

interface 0.99 0.50 0.41 0.29 0.00 0.00 0.50 0.00 0.00 0.00 0.00

computer 0.88 0.93 0.41 0.29 0.50 0.50 0.00 0.50 0.00 0.00 0.00

user 0.89 0.93 1.00 0.47 0.82 0.82 0.41 0.41 0.00 0.00 0.00

system 0.99 1.00 1.00 0.95 0.29 0.29 0.87 0.29 0.00 0.00 0.00

response 0.79 1.00 0.98 0.98 0.88 1.00 0.00 0.50 0.00 0.00 0.00

time 0.79 0.85 0.98 0.98 0.88 1.00 0.00 0.50 0.00 0.00 0.00

EPS 1.00 1.00 0.89 0.90 0.99 0.80 0.80 0.00 0.00 0.00 0.00

survey 0.42 0.51 0.80 0.79 0.56 0.89 0.89 0.44 0.00 0.41 0.50

trees -0.33 -0.23 0.15 0.14 -0.17 0.32 0.32 -0.31 0.72 0.67 0.41

graph -0.28 -0.17 0.21 0.20 -0.11 0.38 0.38 -0.25 0.76 1.00 0.82

minors -0.27 -0.17 0.21 0.20 -0.11 0.38 0.38 -0.25 0.76 1.00 1.00

(shaded cells) shows the pairwise cosines between R1-projected word type vectors of dimen-
sionality 2, computed using the matrices of Table 3.4.2. As an example of how to read the
table, say that we would like to compare the cosine score between computer and system in the
unreduced space, so we seek this value from the cell at the intersection of the computer row
and the system column, which is 0.29. If instead we wish to obtain the cosine value for the
same pair but in the reduced space, we refer to the cell at the system row and the computer
column, which reads 1.00. The value of 0.29 is a measurement of the degree to which bot
computer and system tend to collocate. And indeed, we see that the two words only co-occur
once. As we previously mentioned, the vectors in the reduced space are expected to to better
capture the semantic relations between any two words. A value of 1 could be interpreted as
indicating that computer and system are identical concepts. In a way, this is the case since
by examining the article titles above we can tell that every mention of system seems to be in
relation to a computer system and since all titles are from human-computer interaction and
graph theory, both sub-disciplines within computer science, we can safely assume that every
title is computer related. The value of 1 given by the LSA model is usually interpreted as
indicating that system and computer are synonyms. So, not only is LSA telling us that these
two words are syntagmatically associated, but that there is also a paradigmatic relationship
between them, i.e. it is possible to substitute one word for the other in any context for this
corpus. Of course, this interpretation can only be derived in the context of this toy corpus
and cannot be generalised as applying to the English language as a whole.

Table 3.4.4 presents pairwise cosine values in a similar manner to Table 3.4.3 but the vectors
used in its cosine computations were constructed from about two years worth of articles (1998-
2000) from The New York Times (NYT). Just as before, Table 3.4.4 shows cosines from

89

Latent Semantic Analysis Computational Background

unreduced word type vectors (white cells) and cosines from R1-projected word type vectors
(shaded cells). This time the space was reduced to 300 dimensions. Although much bigger
than the toy corpus, the sample of The New York Times is still too small to be considered
an unbiased sample of the English language. It only covers journalistic language, which is
a rather contained and specific type of language with very specific style and characteristics.
It cannot be even be considered as a representative sample of journalistic English since it is
tied to one single newspaper at a very specific time frame and in a very specific geographical
location. But for the purposes of this example, it should be enough for illustrative purposes.
In this NYT corpus, the cosine value between system and computer in the unreduced space
is 0.055 whilst in the reduced space it is slightly reduced to 0.052. This indicates that there
is little syntagmatic association between the two words and that there is very little evidence
to suggest that one word could substitute the other in any given context in the NYT. This is
perhaps because system in the NYT is used in much broader senses such as weather systems,
political systems, the civil justice system, financial systems, etc. and computer systems do not
feature as predominantly in the selected articles.

Another interesting word pair is human and user. In the toy corpus unreduced space (Table
3.4.3) their cosine is 0 since they do not co-occur within any title. But in the reduced space
their cosine is 0.89. This is explained because both words co-occur separately with interface.
That is, human and user have second-order co-occurrence. It is tempting to interpret this result
as LSA somehow understanding that a user is a human being. While LSA does recognise a
second-order co-occurrence relationship, there is no evidence to believe that this hyponymy
relation is being captured by LSA explicitly. In fact, notice that the cosine between human
and computer shoots from 0.50 in the unreduced space to 0.88 in the unreduced space and
user and computer from 0.41 in the unreduced space to 1 in the reduced space. In the LSA
literature, this is interpreted as evidence for the topical relationship between these words. That
is, we would say that human, user and computer are topically related. And indeed, all three
words feature in the human computer interaction titles from the toy corpus. In the NYT
corpus (Table 3.4.4) the cosine between human and user in the unreduced space is 0.002 and
0.036 in the reduced space, which while being 18 times larger it still is quite small. Relatively
speaking, it is a promising result since the cosine between human and computer only doubles
when going from the unreduced (0.010) to the reduced space (0.021). Notice however that
the cosine between user and computer is also quite powerful, being 0.051 in the unreduced
space and 0.626 in the reduced space, 12 times larger.

This topical relationship can also be confirmed by contrasting the cosines of these three
words with the cosines of the words that belong to the graph theory titles: trees, graph and
minors. In the toy corpus (Table 3.4.3) the cosine between any of these three graph theory
words and human, user or computer in the unreduced space is 0. In the reduced space, the
cosine between human and any of the three graph theory words is negative. A negative result
can be interpreted very much like a 0 result: complete non-relatedness. Both computer and
user hold positive cosine values ranging from 0.15 to 0.21 with the three graph theory words.

90

Computational Background Latent Semantic Analysis

Table 3.4.4: Pairwise cosines of word type vectors from full articles of The New York Times
– Cosine values between unreduced word type vectors (white cells) and cosine
values of SVD-reduced word type vectors (shaded cells)

human interface computer user system response time EPS survey trees graph minors

human 0.003 0.010 0.002 0.013 0.008 0.015 0.000 0.006 0.003 0.001 0.002

interface 0.078 0.022 0.079 0.012 0.001 0.002 0.000 0.000 0.001 0.000 0.001

computer 0.021 0.617 0.051 0.055 0.007 0.022 0.000 0.007 0.001 0.003 0.004

user 0.036 0.837 0.626 0.020 0.002 0.007 0.000 0.001 0.000 0.000 0.000

system 0.020 0.333 0.052 0.224 0.009 0.022 0.001 0.004 0.002 0.001 0.007

response 0.150 0.210 0.102 0.250 0.124 0.013 0.000 0.005 0.001 0.000 0.002

time 0.021 0.059 0.023 0.073 0.022 0.153 0.000 0.009 0.008 0.001 0.009

EPS 0.012 0.122 -0.001 0.087 0.054 0.121 0.000 0.000 0.000 0.000 0.000

survey 0.057 0.091 0.054 0.125 0.023 0.293 0.059 0.308 0.001 0.000 0.001

trees 0.077 0.112 0.007 0.078 0.020 0.193 0.107 0.136 0.135 0.000 0.001

graph 0.074 0.354 0.268 0.362 0.119 0.323 0.069 0.111 0.279 0.267 0.000

minors 0.031 0.118 0.048 0.113 0.087 0.272 0.105 0.092 0.102 0.165 0.130

These positive values can be explained via higher-order co-occurrence via a word that bridges
the two sets of titles: survey since it appears in a human computer interaction title (c2) and in a
graph theory title (m4). Both graph and minors have a second-order co-occurrence relationship
with both computer and user. But trees holds a third-order co-occurrence relationship with
these two words. It is clear in the toy corpus that words belong to one or the other topic in
varying degrees, depending on their higher-order co-occurrence behaviour. Obviously, this is
not observed in the NYT corpus (Table 3.4.4) where the topical specialised human-computer-
interface/graph-theory dichotomy is unlikely to play a role in such a newspaper that reports
on broader, more mainstream news topics.

The size of a training corpus is an important engineering decision in any NLP project.
Usually, the more training data available to a system, the better chance it will have to find
and generalise semantic relations. However, another (and perhaps more important) decision
is that of deciding the domain of the training corpus. An NLP system designer should select
as training corpora those texts belonging to the same domain that the NLP system will be
applied upon. In Table 3.4.4 the training and the application corpora were from different
domains. This explains why specialised term such as graph and minors receive low values both
in the unreduced and reduced spaces even if they are truly related within its own specialised
domain.

Nevertheless, having access to a bigger and less specialised corpus such as the NYT does
open up the possibility of exploring word pairs that hold more obvious or conventional se-
mantic relations. Table 3.4.5 presents cosine scores in unreduced and reduced space from the
NYT for a few of the following word pairs: buy and purchase (synonyms), cheap and expensive
(antonyms), cat, feline, mammal and animal (hypernyms – i.e. a cat is a feline, all felines are

91

Latent Semantic Analysis Computational Background

Table 3.4.5: Pairwise cosine scores between a few words holding obvious semantic relation-
ships – Cosine values between unreduced word type vectors (white cells) and
cosine values of SVD-reduced word type vectors (shaded cells) constructed from
The New York Times corpus

buy purchase cheap expensive bird cat feline mammal animal house room window

buy 0.035 0.017 0.023 0.002 0.002 0.001 0.000 0.002 0.015 0.006

purchase 0.691 0.003 0.007 0.001 0.000 0.000 0.000 0.000 0.006 0.003 0.002

cheap 0.601 0.504 0.019 0.001 0.000 0.001 0.000 0.001 0.003 0.003 0.002

expensive 0.623 0.569 0.821 0.001 0.001 0.000 0.000 0.002 0.007 0.006 0.003

bird 0.126 0.139 0.362 0.287 0.007 0.000 0.008 0.009 0.003 0.004 0.004

cat 0.250 0.186 0.460 0.398 0.491 0.080 0.001 0.016 0.007 0.005 0.003

feline 0.118 0.153 0.349 0.274 0.382 0.574 0.000 0.006 0.000 0.002 0.000

mammal 0.059 0.087 0.277 0.298 0.334 0.348 0.371 0.007 0.000 0.000 0.000

animal 0.180 0.190 0.371 0.372 0.385 0.535 0.460 0.648 0.007 0.002 0.002

house 0.062 0.056 0.068 0.097 0.060 0.199 0.019 0.028 0.125 0.030 0.012

room 0.007 0.036 0.096 0.121 0.108 0.176 0.235 0.013 0.048 0.029 0.018

window 0.311 0.228 0.488 0.463 0.420 0.567 0.428 0.263 0.371 0.181 0.350

mammals, all mammals are animals) vs. bird (not a cat, not a feline and not a mammal, but
an animal), house, room, window (meronyms – i.e. a house has rooms, a house has windows
and a room has windows).

The reduced space is able to capture relatively high values for the synonym and antonym
pairs, as expected, as well as between conceptually related words such as buy and cheap and
expensive and between the latter two words and purchases. It is a bit surprising that the pair buy
and cat has a higher value (0.250) than buy and house (0.062). As expected, there are relatively
high values for cat and feline (0.574) and cat and animal (0.535), but not as high for cat and
mammal (0.348) or feline and mammal (0.371), even if the value is high for mammal and
animal (0.648). Bird and cat have a medium value, perhaps due to a tendency to co-occur
(0.491) and while the cosines for bird and feline (0.382) and mammal (0.334) are relatively
low, disappointingly the cosine between bird and animal scores at around the same value
(0.385). The meronymy set (house, room, window) all score low, with the exception of the
combination room and window which does not do too bad (0.350), showing again that many
times the interpretation of these scores as high or low can be relative.

As we have seen here, LSA can tell whether two words are semantically related, whether
this relation is syntagmatic, paradigmatic or both but it cannot tell what is the proportion
of syntagmatic vs. paradigmatic or even what subtype of relation is operating (synonymy,
antonymy, hyponymy, etc.)

92

Computational Background Latent Semantic Analysis

3.4.4.2 Polysemy

LSA is also expected to capture polysemy or be sensitive to polysemous words. The word
type vector for any given word as explored in Section 3.4.4.1, both in reduced and unreduced
form, is representative of all of the occurrences of that word in the corpus irrespective of any
difference of sense or usage in each of those occurrences. In a way, such a type vector conflates
senses and it is not easy to determine which segment dimensions (in the unreduced form)
or which reduced dimensions relate to which sense of the word. The segment vector, on the
other hand, could be used to disambiguate or discriminate senses. For example, Levin et al.
(2006) employed SVD-reduced segment vectors to discriminate senses of polysemous words
achieving good results (this experiment is further discussed in Section 4.2, p. 110). In fact, it
can be shown that such SVD-reduced segment vectors can modulate the different senses of a
word. An example is given by Landauer (2007, p. 17) in which he computes the cosine of the
segment “a circle’s diameter” with “radius of spheres” (0.55) and with “music of the spheres”
(0.03), showing that LSA is sensitive to the polysemy of the word sphere and is seemingly
able to select (or modulate) the correct sense of the word given the words that surround it (its
context), i.e. either radius or music. In the SVD-reduced space of the NYT corpus introduced
in Section 3.4.4.1 the values these cosines yield are 0.441 for the first pair and 0.0121 for the
second.

This sense modulation can be explained intuitively by projecting segment vectors through
the SVD matrices from the toy corpus introduced in the previous section. As discussed in
that section, there are two main topics in the corpus: human-computer interaction and graph
theory. There is only one word that is present in titles from both topics: survey. Because of this,
this word can be considered to be polysemous. In fact, within the confines of this toy corpus it
indeed is polysemous. In the only human-computer interaction title using it, survey is used in
the ‘questionnaire’ sense, whereas ‘literature review’ is the sense used in the one graph theory
title this word occurs. Since LSA is only able to capture polysemy in segment vectors, let us
make up the segments “system survey”, “EPS survey”, “graph survey” and “minors survey”, the
former two relating to the human-computer interaction topic and the latter two to the graph
theory topic. In LSA/information retrieval parlance these made up segments would be called
pseudodocuments, since they do not form part of the collection and can indeed be viewed as
queries, although that is not how we see them here. The pairwise cosines of the R1-projected
(3.4.5) versions of these segment vectors can be seen in the shaded cells of Table 3.4.6. As
before, the white cells in this table are the cosines of unreduced vectors. Notice that in the
unreduced space every vector for these segments would only have two non-zero values (two
ones to be precise). One of which will always be in the survey dimension and the other non-
zero value in some other dimension, which will never be matched by another vector. Because
of this, the cosine value of any two of these particular segment vectors will always be 0.5. As
expected, in the reduced space the cosines for pairs belonging to the same topic are quite high
(0.99 for “system survey” and “EPS survey”, 1 for “graph survey” and “minors survey”) and

93

Latent Semantic Analysis Computational Background

Table 3.4.6: Pairwise cosines of segment (pseudodocument) vectors using the toy corpus –
Cosine values between unreduced word type vectors (white cells) and cosine val-
ues of SVD-reduced word type vectors (shaded cells)

system survey EPS survey graph survey minors survey

system survey 0.50 0.50 0.50

EPS survey 0.99 0.50 0.50

graph survey 0.38 0.50 0.50

minors survey 0.43 0.54 1.00

relatively low for cross-topic cosines with values in the 0.38 to 0.54 range.
This behaviour can be easily explained by tracing the way the R1 projection is computed.

Recall that the projection is performed via R1(d) = Uk
Td. If we see this matrix multiplication

as the dot products between the row vectors in Uk
T and the d column vector, we can see

that only those columns in Uk
T corresponding to non-zero values in d will be preserved.

In addition, all of those preserved columns will be summed in order to generate the final,
reduced vector R1(d), with the values in d acting as weights in this sum. In other words, the
R1 projection could be seen as a weighted sum of the column vectors of Uk

T (or equivalently
the row vectors of Uk) in which the weights are specified by the segment vector d itself.

Table 3.4.7 shows the R1 projections for the four segments introduced above, in row vector
format. It can easily be verified that the dimensions for these vectors are in fact the sums of the
rows in Uk corresponding to the non-zero dimensions in the unreduced segment vector, i.e.
those corresponding to the words appearing in the segment itself. For example, for “system
survey”, the resulting reduced vector from 3.4.7 can be seen as a sum of the row vectors for sys-
tem and survey fromUk (see Table 3.4.2): RT

1 (system, survey) = dsystem usystem+dsurvey usurvey =

[−0.64,−0.17] + [−0.21, 0.27] = [−0.85, 0.10].
It can be seen by inspecting the Uk matrix from Table 3.4.2, that the values of the reduced

dimensions (k1 and k2) for words occurring in titles for one topic fall within a particular range
while the corresponding dimensional values for words occurring in titles for the other topic
fall in another range. For the human-computer interaction words, the ranges are −0.64 ≤
k1 ≤ −0.21 and −0.17 ≤ k2 ≤ 0.27, whereas the rages for the graph theory words are
−0.21 ≤ k1 ≤ −0.01 and 0.27 ≤ k2 ≤ 0.62. The effect that the vector sum has on word
vectors from the same topic is that the dimensional values get deeper inside the ranges typical
of one topic and move away from the ranges of the other topic. As will be seen in Section
4.1 (p. 108), a similar idea serves as the inspiration in the construction of Schütze’s indirect
(second-order) context vectors, a token-based representation derived from word type vectors
in Word Space.

94

Computational Background Word Space

Table 3.4.7: R1-reduced segment vectors
RT

1 (d) k1 k2

system survey -0.85 0.10
EPS survey -0.51 0.13
graph survey -0.25 0.89
minors survey -0.24 0.72

3.4.4.3 Noise reduction

The noise reduction property is inherent to the actual dimensionality reduction process. As
mentioned in Section 3.4.1, Ak is the best approximation of rank k of A and the error of
this approximation can be measured by the Frobenius norm of A−Ak (see Eq. 3.4.4). Recall
from Theorem 3.4.2 that singular values inΣ are arranged in decreasing order in the diagonal,
i.e. σ11 ≥ σ22 ≥ . . . ≥ σrr ≥ 0. Therefore, removing the higher order singular values
(σk+1,k+1, . . . , σrr) only incurs in a small error. Of course, the larger k is, the smaller this
error is. But recall as well that singular values can be interpreted as an indication of the
importance of a dimension in the vector space produced by SVD. So by eliminating the
higher and therefore less important dimensions, we also remove less important information,
which we interpret to be mostly noise such as chance or irrelevant word co-occurrences.

3.5 Word Space

For the purposes of this thesis, the term Word Space refers to the word matrix introduced
by Schütze (1992), the indirect (second-order) context vectors derived from this word matrix
introduced by Schütze (1998) as well as the direct (first-order) context vectors used in word-
sense discrimination experiments by Pedersen and Bruce (1997) and Purandare and Pedersen
(2004). Whilst these context vectors do not form part of the core Word Space matrix, they
are considered here to be part of Word Space because they are computed from this matrix.
Also, recall that the matrices involved in both Salton’s VSM as well as LSA are capable of
representing word types as well as word tokens via segment/document vectors. Second-order
context vectors, which represent tokens, complement the main Word Space matrix because
it is only capable of representing word types. So, second-order context vectors are added as a
mechanism that make Word Space a more complete counterpart to Satlon’s VSM and LSA.
Although strictly speaking not part of Word Space, first-order context vectors, another token-
based vector representation, will also be introduced here. This is because, as it will be shown
in Section 3.5.2, first-order context vectors can be used to define the word vectors that make
up the word matrix at the core of Word Space, so they naturally fit as a component of the
model.

This section mostly introduces Word Space as commonly described in the literature. Chapter

95

Word Space Computational Background

4 redefines it as a linear transformation, explores its properties and makes detailed comparisons
with LSA.

3.5.1 The word matrix: representing word types

The core component of Word Space is a word-word co-occurrence matrix W ∈ Rm×n, also
called a word co-occurrence matrix, often simply called a word matrix. In its simplest in-
carnation, a cell wij in W counts how many times word type τi co-occurs with word type τj.
More specifically, wij counts how many times τi and τj both occur within the same context.
Just like in LSA, a “context” here can be any textual unit such as a paragraph, a sentence or a
word segment of fixed length. However, a sliding word window of fixed length centred at a
token (see Section 2.2.3) is commonly used.

Provided that the vocabulary represented by the rows and columns is the same and is repres-
ented in the same order in both rows and columns, then W will always be a square, symmetric
matrix. There are variations of this matrix though that violate this symmetry. For example,
some word matrices in Schütze (1998) represent the top 20,000 most frequent words in the
corpus as the rows of the matrix, but only the top 2,000 most frequent words as the columns
of the matrix, producing a 20, 000×2, 000 rectangular word matrix, which is only symmetric
in its first 2,000 rows. Purandare and Pedersen (2004) use a word matrix variant in some ex-
periments that only takes into account the co-occurrence of a word with words co-occurring
to its right (the so-called bigram features, i.e. ordered co-occurrence). A word matrix of “bi-
gram features” will not be symmetric even if it is square. Besides, the feature values wij can
again be weighted by different functions so that the value wij reflects the degree of importance
of the co-occurrence of τi and τj.

Each row vector of the word matrix W is called a word vector t, which represents a word
type τ . If W is symmetric, then its column vectors are also word vectors. By convention in
this thesis, however, when the term word vector is used, normally a reference to the row vectors
of the word matrix is implied. Word vectors are formally defined in Definition 3.5.3 in terms
of first-order context vectors. A formal definition of a word matrix can be given in terms of
these word vectors:

Definition 3.5.1 (Word Matrix). Let W be an m× n matrix, with m the size of some chosen
vocabulary Vm and n the size of the feature set (a vocabulary Vn) used by the word vectors.
The ith row of W is the word vector for the ith word in Vm.

The row vectors of bothA andW represent the same thing: word types. So, cosines between
any two row vectors (from the same matrix) reflect a degree of similarity between the two
words represented by each vector. However, the cells aij and wij in each matrix represent
rather different things and, as a consequence, the type of similarity measured by the cosines

96

Computational Background Word Space

of any two row vectors is different for each matrix. In A a cell represents occurrence in a
context. In W a cell represents a co-occurrence of two words in several contexts in a corpus.
Therefore, if ai and aj are row vectors (type vectors) from A representing τ1 and τ2, respectively,
then cos(ai, aj) will measure the degree to which words types τi and τj tend to co-occur. As
established in Section 3.3, this makes A to be a syntagmatic vector space. On the other hand,
if wi and wj are row vectors (word vectors) from W representing τ1 and τ2, respectively, then
cos(wi,wj) will measure the degree to which words types τi and τj tend to co-occur with the
same words. That is, a high cosine score indicates that τi and τj tend to collocate with the same
words but not necessarily with each other. We assume that if two words co-occur with the
same words, i.e. they occur in similar environments, then one of these words could potentially
be substituted by the other. We thus say that these words hold a paradigmatic relation (see
Section 2.2.2). As a consequence, we considerW to be a paradigmatic vector space (or simply
a paradigmatic space).

As a highly dimensional matrix,W is often decomposed by truncated SVD, in a similar way
as it is done in LSA. In contrast with its use in LSA, Schütze (1992) justifies his use of SVD
mostly as a dimensionality reduction tool and not so much as a noise reduction technique
or as a method for finding higher order co-occurrences. Basically he uses SVD to be able to
make comparisons and computations between high-dimensional vectors tractable given the
computational restrictions of the time when that first paper was written. However, Schütze
(1998) seems to have changed opinion slightly and concedes that his motivation for using
SVD in his Word Space matrix is similar to the use of SVD in LSA. He notes in this later
paper that SVD finds the major dimensions of variation in Word Space and as a consequence
expects cosine similarities to be a better similarity measure between SVD-reduced vectors
than between unreduced vectors. In addition, Purandare and Pedersen (2004) justify their
use of truncated SVD because of its expected abilities to capture synonyms. All of these
authors intuitively expect to obtain, from an SVD-reduced word matrix, similar properties
to those usually obtained from an SVD-reduced type-segment matrix. However, since the
two matrices being reduced are very different from each other, it is reasonable to ask whether
the two matrices have similar or different properties. We shall see in Section 4.3 (p. 122),
however, that there are many similarities to the SVD structure from both matrices and the
expectations of these authors are therefore warranted. However, in Chapter 6 we shall see
that despite these similarities, context vectors derived from one or the other model can still
perform differently in WSX experiments.

3.5.2 Context vectors: representing word tokens

As previously mentioned, the word matrix from Definition 3.5.1 can only represent word
types and not word tokens. In order to represent word tokens, we turn to context vectors.
In this thesis, two basic types of context vectors are studied: direct or first-order context
vectors and indirect second-order context vectors. Direct (first-order) context vectors record

97

Word Space Computational Background

the words that a word token co-occurs with, whilst indirect (second-order) context vectors
represent a word token by counting the words that the words occurring in the token’s context
tend to co-occur with elsewhere in the corpus. In general, two words τ and υ are considered to
have second-order co-occurrence if a third wordϕ tends to co-occur with both τ and υ, but not
necessarily at the same time. The arguments in favour of second-order context representations
against first-order representations somewhat echo the arguments given for LSA and word space
against Salton’s original VSM, in that the first-order context vectors of two tokens of the same
word type used in the same sense will only have a high cosine similarity value if both tokens
appear in the vicinity of mostly the same words. Second-order context vectors will suffer less
from this problem because even if the two tokens are surrounded by different words, since
the token is used in the same sense, the meaning of these surrounding words will have to be
related somehow (they will probably belong to the same semantic field) so they will have to
co-occur together at some point in the corpus. To illustrate this reasoning, consider these
sample contexts using the word line in two senses: telephone line and queue (taken from
the HILS corpus/Wall Street Journal, see Sec. 5.1, p. 136).

(3.5.1) He made another call and came back on the line with the news. [telephone]

(3.5.2) ... he said while his lawyers held on another telephone line. [telephone]

(3.5.3) In this society, if someone gets hurt, somebody, anybody must pay – and a line of
hungry trial lawyers will be waiting outside the hospital room to get a share of the
action. [queue]

While line is used in the same sense (telephone) in examples (3.5.1) and (3.5.2), the co-
sine similarity value of their first-order vector representations (assuming that each dimension
counts co-occurrence with words like call, came, news, lawyers, held, telephone, etc.) will be
0. In fact, under such representation, the cosine similarity value between a first-order con-
text vector representing (3.5.2) and (3.5.3) will be more than 0, since both contexts share the
occurrence of lawyers.

Under a second-order vector representation, it would be expected that words neighbouring
line like call and telephone will co-occur with more or less the same words, i.e. they appear
in similar contexts, which is an indication that they are not only semantically related, but
paradigmatically related. Notice as well that it is very likely for call and telephone to co-occur
directly in many contexts, which would make them syntagmatically related as well.

Second-order context vectors represent tokens, as previously mentioned. However, since
they need to capture co-occurrence with words in other parts of the corpus, they are commonly
computed from word vectors, which represent the co-occurrence patterns of word types in
the corpus. The second-order context vector of a target token is computed by summing (or
averaging) the word vector’s of the token’s neighbours co-occurring with the target token. In
(3.5.1), for example, the second-order context vector would be the sum (or average) of the

98

Computational Background Word Space

corpus
c (κ

1
) = [n(υ

1
) … n(υ

m
)]

κ
2

κ
n

κ
1

Σ t

n(υ
1
)u

1
 + … + n(υ

m
)u
m
 = c (κ

1
)

n(υ
1
)u

1
 + … + n(υ

m
)u
m
 = c (κ

2
)

n(υ
1
)u

1
 + … + n(υ

m
)u
m
 = c (κ

n
)

.

.

.

21

c (κ
2
) = [n(υ

1
) … n(υ

m
)]

c (κ
n
) = [n(υ

1
) … n(υ

m
)]

.

.

.

1

1

.

.

.

2

2

Figure 3.5.1: Conceptual relationship between direct (first-order) context vectors, word vec-
tors and indirect (second-order) context vectors. – The centre of the figure rep-
resents a corpus in which the instances of a target word τ have been found as
tokens κi (a total of n tokens). Each context instance constitutes a word window
centred at each token. On the left-hand side of the figure, each of these context
instances are represented by direct context vectors c1(κi) of m dimensions. Each
dimension n(υj) is the count of υj unigrams occurring in the window. The sum
of all c1(κi) for τ produce its word vector t. In a similar manner, it is possible
to compute a word vector for any word occurring in the corpus, including the
uj unigrams. On the right-hand side of the figure, the word vectors for each
uj are used to compute indirect context vectors c2(κi) for each context instance
centred at κi by multiplying the frequency of each unigram in the word window
n(uj) by that unigram’s word vector uj.

word vectors for call, came, news, etc. Figure 3.5.1 depicts conceptually the computation of
first-order context vectors, word vectors and second-order context vectors.

So far intuitive descriptions of the first-order and second-order context and word vectors
have been provided. In what follows, a formal framework defining these objects is set out.

Let C be a corpus, and let winl(κ) be a function returning a set6 of tokens κ′ around κ
(i.e. the window around κ) where l is the window width and typically κ′ ∈ winl(κ) iff
pos(κ)− l/2 ≤ pos(κ′) ≤ pos(κ)+ l/2, where pos(κ) is a function that returns the position of
a token κ in the document or corpus. In other words, winl(κ) is a function that returns the
set of the l/2 tokens to the left of κ and the l/2 tokens to the right of κ, and does not include
κ itself. Then in general a feature can be identified with a function that maps windows to

6A set is a collection of distinct objects that does not allow member repetition. It could be argued that a set
representation of a word window (or text segment for that matter) such as “she loves you yeah yeah yeah”
should only contain one instance of yeah since sets do not allow repetition. Whilst this would be true for
a set representation of the word types of this example, it is certainly not true for a set representation of the
word tokens of the same example. Recall from Section 2.1.1 (p. 32) that a word token is an actual instance of
a word type. As a consequence, each of the yeah tokens is unique as it is, in its own right, a separate instance
of the (same) type . The set returned by winl(κ) is a set of tokens (not types) around κ.

99

Word Space Computational Background

real numbers. For a particular token κ in C, the direct or first-order context vector, c1(κ),
is a vector giving the values of the features in the window around κ. In most cases, features
are equated with unigrams, one for each member of Vm, some chosen subset of the unigrams
of the corpus C7, and the value of a unigram feature υ on the window winl(κ) is simply the
count of the tokens of υ in the window:

Definition 3.5.2 (Direct or first-order context vector D-C-UR). For window width l, and a
choice of dimensionality m corresponding to a restriction to some unigram vocabulary Vm,
the first-order context vector for token κ, c1(κ), is the vector of dimensionality m such that
for every υi ∈ Vm the i-th dimension ui in c1(κ) is

ui = n(υi, κ) (3.5.4)

where n(υi, κ) is the frequency of the tokens of unigram υi in word window winl(κ):

n(υ, κ) =
∑

∀λ∈winl(κ)

1 if υ = type(λ)

0 otherwise
(3.5.5)

In this thesis, c1(κ) ∈ Rm.

This is the token vector configuration D-C-UR summarised in Table 4.2.1 (p. 111). The
“C” indicates that it is a vector coming from the matrix of direct context vectorsC (see below).

Observe that c1(κ) is defined whether or not the token κ in C is one of the word dimensions
of the vector. In other words, c1(κ) is defined even if τ /∈ Vm, where τ is the corresponding
type for κ.

Context vectors can be thought of as either row or column vectors. In previous work, we
have considered them as row vectors (Maldonado-Guerra and Emms, 2012). However, in
this thesis, direct and indirect context vectors will be seen as column vectors, mostly to keep
their relation to their LSA counterparts, segment vectors, more transparent. This also allows
us to reserve the row vector configuration for word vectors coming either from A, W or any
other appropriate matrix.

This brings us to the matrix of direct context vectors. For a vocabulary choice V , an entire
corpus can be represented by a matrix C ∈ Rm×K, in which each first-order context vector for
every token κ in the corpus is arranged as a column of the matrix. This way, K is the number
of tokens for which a first-order context c1(κ) is defined, and m = |V|. The row vectors in this
matrix can be regarded as word vectors. However, these are not the word vectors traditionally
used in Word Space. These are word vectors of context or token features. For the remainder

7This subset of unigrams Vm is a selection of m words from the corpus that fulfil some criteria. Following
Schütze (1998), experiments in this work select the top m most frequent words in the corpus, excluding
function (stop) words, but many other selection criteria are possible.

100

Computational Background Word Space

of this chapter the matrix of direct context vectors C and the word vectors defined on its rows
will not be further considered. We shall return to their discussion in Section 4.2.1 (p. 111).

A traditional Word Space word vector t is a vector that represents a particular word type
τ in a corpus, and is based on the aggregation of the set of first-order context vectors of its
tokens κi. The simplest possibility is just to sum these.

Definition 3.5.3 (Word vector). If the direct (first-order) context vectors c1(κi) ∈ Rn rep-
resent each word token κi of word type τ in the corpus, the word vector of word type τ ,
t = w(τ), is the sum of all c1(κi):

t = w(τ) =
∑

∀κi:type(κi)=τ

(c1(κi))
T (3.5.6)

where type(κ) is a function or hash table mapping a word token κ in the corpus or document
with its corresponding word type. Notice that word vectors t ∈ R1×n and that they form the
rows of W ∈ Rm×n.

This definition implies that in the word vector for τ , t = [u1, . . . , um] with each unigram
feature ui corresponding to word type υi, each ui is simply the count of how often τ and υi

co-occur within l/2 words of each other in the corpus, where l is the chosen window-width
for the c1 vectors.

An indirect or second-order context vector, c2(κ), for a particular word token κ of word
type τ is, in its simplest incarnation, the sum of the word vectors of words occurring in the
context window.

Definition 3.5.4 (Indirect or second-order context vector as a sum of word vectors I-W-UR).
If w(υi) is the word vector of word type υi whose token λi co-occurs with token κ of target
word τ (i.e. type(κ) = τ and type(λi) = υi) within a word window centred at κ, then the
indirect or second-order context vector of κ is

c2(κ) =
∑

∀λi∈winl(κ)

(w(type(λi)))
T (3.5.7)

Notice that c2(κ) ∈ Rn because each w(type(λi)) ∈ R1×n.

This is the token vector configuration I-W-UR summarised in Table 4.2.1 (p. 111). “I”
indicates indirect or second-order and “W” is the matrix from which this vector is derived, the
word matrixW. Effectively, this nomenclature indicates that this context vector is “I”ndirectly
derived from “W”.

101

Syntagmatic space and paradigmatic space Computational Background

This is the standard definition found in works such as Schütze (1998) and Purandare and
Pedersen (2004). An alternative but equivalent definition of second-order context vectors as
a linear transformation is given in Section 4.1 (p. 108).

In word-sense disambiguation and discrimination works, often the notion of a sense vector
is employed. A sense vector is an aggregation of first or second-order context vectors that
correspond to a single sense of the word they represent. That is, a sense vector represents
geometrically the sense of a target word. Suppose τ has k senses σ1 . . . σk. If Pi is the set
of τ ’s occurrences manifesting sense σi, then by summing (or averaging) the vectors c1 that
represent these occurrences (i.e. ∀κ ∈ Pi), we obtain what can be termed the first-order sense
vector, s1

i. Such vectors have been used for word-sense disambiguation (Oh and Choi, 2002;
Sugiyama and Okumura, 2009; Martinez and Baldwin, 2011). Notice that the word vector
can be seen as the special case in which all occurrences representing all k senses of the word
are counted.

In unsupervised word-sense induction or discrimination tasks, the aim is to induce a sense-
reflecting partition over the tokens of an ambiguous word. There are a variety of ways to
evaluate such a partitioning, but one is basically to derive sense vectors from the induced
partitions, and categorise a test set of items by their nearness to the first-order context vectors
of test set items.

Just as a s1 vector can be defined from c1 vectors for a particular set of occurrences, a
second-order sense vector s2 can be defined by aggregating the c2 vectors for a particular set
of occurrences. A number of authors have since worked with essentially these second-order
representations (Schütze, 1998; Purandare and Pedersen, 2004; de Marneffe and Dupont,
2004; de Marneffe et al., 2005; Wang and Hirst, 2010; Sagi et al., 2011).

We now define first- and second-order sense vectors formally. If τ is an polysemous word
and Si is a set of τ ’s tokens exhibiting a particular sense σi, then the centroid of the context-
vectors for the occurrences in Si is a candidate representation of the sense:

Definition 3.5.5 (First- and second-order sense vector, s1, s2). If Si is a set of tokens, the
first-order sense and second-order sense vectors based on Si are

s1
i =

1
|Si|

∑
κ∈Si

c1(κ) and s2
i =

1
|Si|

∑
κ∈Si

c2(κ) (3.5.8)

3.6 Syntagmatic space and paradigmatic space

Section 3.3 described Salton’s vector space model adapted to distributional lexical semantics
and Section 3.5 described Schütze’s modification of this vector space model into what has

102

Computational Background Syntagmatic space and paradigmatic space

become known as Word Space. These sections also stated that the word vectors in the former
semantic space constitute a syntagmatic vector space whilst the word vectors in the latter form
a paradigmatic vector space, without too much justification other than an intuitive one. This
section intends to expand on this justification.

The syntagmatic or paradigmatic property emerging from comparisons of word vectors
from these two semantic spaces was first pointed out by Sahlgren (2006). The justification
given for these properties in this work was quite intuitive, not unlike the one given in the
present thesis so far and which can be summarised as follows as a recap. Recall that Saussur-
ean structuralism states that any two word types sustain a syntagmatic relation if they have the
potential to co-occur within the same syntagma (or unit of text), whereas if those two word
types can instead be substituted for one another in a particular syntagma without changing its
overall semantics (even if the actual meaning of the syntagma changes), then Saussurean struc-
turalism considers them to be engaged in a paradigmatic relation. We saw that a word type
can be represented as a high-dimensional vector with (at least) two types of dimensional fea-
tures: syntagma/document features (word-by-document vector/matrix) or word type features
(word-by-word vector/matrix). The cosine function (and other vector similarity functions)
measures the degree of dimensional overlap between any two vectors. If the dimensions over-
lapped by the cosine of word vectors are syntagmas or documents, we say that the vector space
formed by those vectors is a syntagmatic (vector) space. If, on the other hand, the dimensions
overlapped by word vectors are other word types, we say that the vector space formed by those
vectors is a paradigmatic (vector) space, since it measures the degree to which those two words
can substitute one another in environments where roughly the same words appear.

These paradigmatic and syntagmatic relation types are not necessarily mutually exclusive,
however. Two words, like vehicle and its hyponym car, do have a paradigmatic relation (hy-
pernymy/hyponymy) and yet hold a syntagmatic relation in a clause such as “cars and other
vehicles must not park on a double yellow line”. However, this degree of overlap will depend
somewhat on the type of paradigmatic relation involved. Whilst a hypernymy/hyponymy
will allow some overlap as we have seen, other paradigmatic relations, such as synonymy will
perhaps allow less overlap since it is expected that (near) synonyms are unlikely to co-occur.

Sahlgren attempted to measure this degree of overlap between syntagmatic and paradig-
matic spaces with a series of experiments. In one of such experiments, he directly estimated
this overlap by counting the number of common closest neighbours of words between syntag-
matic and paradigmatic spaces: given a corpus, he produced word vectors in syntagmatic space
(i.e. word-by-syntagma vectors) and word vectors in paradigmatic space (i.e. word-by-word
vectors). He then selected word types that had a frequency of at least 20 in the corpus and
computed pairwise cosine scores among the vectors representing these word types, within each
vector space. Then, for each word, he obtained the closest neighbour set in the paradigmatic
space and the closest neighbour set in the syntagmatic space and counted the degree of overlap
between the two sets. That is, for a word type τi, the closest paradigmatic neighbour set Pi is
the top 10 words whose vectors have the highest cosine value with ti in paradigmatic space,

103

Syntagmatic space and paradigmatic space Computational Background

whereas the closest syntagmatic neighbour set Si is the top 10 words whose vectors have the
highest cosine value with ti in syntagmatic space. The degree of overlap between both spaces
for word type τi is overlapi = |Pi ∩ Si|. Sahlgren found that when using short context win-
dows the average degree of overlap between both vector spaces was very low (around 1%).
However, as the context window in the paradigmatic vector space increased, the overlap with
the syntagmatic vector space also increased. He did notice though that this overlap was still
relatively small (around 10%) when the window size was set to the maximum he experimented
with (40 words). We shall comment on the interpretation of this increase in overlap in larger
windows shortly.

In another experiment Sahlgren contrasted the performance of syntagmatic spaces with
the performance of paradigmatic spaces in a synonym selection test, a primarily paradigmatic
task as we have seen. The synonym selection test is the same TOEFL synonym multiple
choice test performed by Landauer and Dumais (1997) with LSA. In this test, a stimulus
word is given and the candidate must choose its correct synonym from four possible answers
given. In Sahlgren’s reproduction of the test, he achieved a maximum score of 75% using a
paradigmatic space and 68% with a syntagmatic space, giving support to the hypothesis that
paradigmatic spaces indeed do represent paradigmatic relations. However, Sahlgren himself
as well as Schütze (1998) and Utsumi (2010) observe that paradigmatic spaces conflate the
different senses of the word that they represent and as a consequence it can become difficult
to tell the distribution of each sense apart in a word-by-word vector. Utsumi performs an
additional synonym test only using words that are monosemous in his corpus and notices
a further increase of performance on paradigmatic spaces and a decrease in performance on
syntagmatic spaces. This result seems to reflect that synonym selection depends somewhat
on selecting the correct sense of the word. To illustrate this intuitively, consider the sample
synonym test question in Table 3.6.1. The correct synonym for spot, among the options given,
is location. However, there are many other words that could be correct synonyms for spot such
as blemish, jot, particle, etc., each of them depending on a different sense of spot. Sahlgren
observed that this issue manifested more obviously when working with large corpora such as
the British National Corpus (BNC) and when using highly frequent word features. Filtering
out highly frequent word features from paradigmatic word vectors computed from the BNC,
increased their performance on the synonym test. The assumption is that more frequent words
tend to exhibit more senses in a corpus than less frequent words.

As previously mentioned, Sahlgren also observed that as he increased the context win-
dow in paradigmatic spaces their overlap with syntagmatic spaces also increased. Utsumi
also observes a similar trend by observing that paradigmatic relationships such as synonymy
are better represented by paradigmatic spaces using short contexts. Similarly, Peirsman et al.
(2008a) experimented with Word Space word vectors in predicting word associations made
by humans when presented with a cue and observed that some cue-associate pairs are more
paradigmatic in nature, whilst others are more syntagmatic. They noticed that word vectors
produced from short contexts predicted paradigmatic cue-associate pairs relatively more accur-

104

Computational Background Syntagmatic space and paradigmatic space

Table 3.6.1: Sample TOEFL synonym test question with the correct answer highlighted.
Taken from Sahlgren (2006, p. 101)

Stimulus Choices
spot sea

location
latitude
climate

ately whilst word vectors using longer contexts predicted the syntagmatic pairs relatively more
accurately. For example, they found short contexts to better predict paradigmatic pairs such
as melancholy-sad and rapidly-quickly which are synonymous pairs, as well as cormorant-bird
which have a hypernym-hyponym relation and new-old, an antonymous relation. Longer
contexts, by contrast were better at predicting syntagmatic/co-occurrence pairs such as sill-
window, riding-horse, reflection-mirror, spend-money, etc. These results seem to point that as
context windows become larger, paradigmatic spaces start approximating syntagmatic spaces.
This can also be explained intuitively. As the context window in a paradigmatic space gets
bigger, it begins to cover a bigger fraction of the document. So, the cosine measure between
two word vectors in a paradigmatic space that uses context windows sufficiently large to al-
most cover the size of an average document, will be a measure of the overlap of documents in
which both words occur, which is similar to our interpretation of the cosine of two vectors
in syntagmatic space. Despite of this overlap on larger context windows, we shall continue to
designate word-word spaces as paradigmatic spaces and word-segment spaces as syntagmatic
spaces and will leave their respective context window sizes as parameters. But we should re-
main aware that as context windows on paradigmatic spaces become wider, their difference
with syntagmatic spaces becomes more blurred.

There is an alternative vector space formulation modelling paradigmatic and syntagmatic
spaces that is not studied in this thesis but is worth mentioning for the sake of completeness:
the directional word-by-word matrix C introduced by Schütze and Pedersen (1993). This
word-by-word matrix is similar to W from Word Space, except that is not symmetric. The
j-th dimension in row vector li in C counts the number of ordered co-occurrences τiτj in
the corpus, whereas the j-th dimension in column vector ri in C counts the number of the
ordered co-occurrences τjτi. That is, the row vectors count right co-occurrences whilst column
vectors count left co-occurrences. Schütze and Pedersen then decompose C by SVD. For the
purposes of the present discussion, suffice it to say that the authors discovered some interesting
properties in this SVD-decomposed version of C. First, this decomposition produced a left-
hand side vector space and a right-hand side vector space. Then, the left-hand side vector space
could be called a left-hand paradigmatic space in that the cosine between any two left-hand
side vectors cos(li, lj) measures the degree in which corresponding words τi and τj shared the
same neighbours on the left. In other words, cos(li, lj) measures the degree to which words τi

105

Syntagmatic space and paradigmatic space Computational Background

and τj tend to have the same left-neighbours. Similarly, they found that cos(ri, rj) measures
the degree to which τi and τj tend to have the same right-neighbours, forming a right-hand
side paradigmatic space. Interestingly, they also found that cos(li, rj) measures the degree to
which τj can appear to the right of τi, i.e. the degree to which τiτj is a valid collocation, whilst
cos(ri, lj) measures the degree to which τjτi is a valid collocation. That is, the left-hand side
vectors and the right-hand side vectors form, when compared between each other, a directional
(left-to-right or right-to-left) syntagmatic space.

As a final point, it is worth mentioning that the theoretical insight given by this discussion
of paradigmatic vs syntagmatic spaces can have practical implications for tasks such as word-
sense disambiguation and discrimination. For example, it is unlikely that two different senses
of a word will be called upon within the same syntagma (unless of course some sort of pun is
taking place). That is, if a word occurs more than once in a syntagma, both occurrences are
likely to use the word in the same sense. In addition, two unrelated senses (or homonyms) like
bank1 ‘financial institution’ and bank2 ‘edge of body of water’ will co-occur with different sets
of words (i.e. a paradigmatic “cosine” between bank1 and bank2 will be low), making them
non-substitutable by each other.

106

4 Linear Transformations in Word

Space and LSA

Section 3.5 (p. 95) gave the basic definitions for Word Space as commonly found in the
literature. This chapter presents a continuation of that section in that it advocates a particu-
lar equivalent formulation of indirect (second-order) context vectors of dimensionality n in
which they are derived from direct (first-order) context vectors of dimensionality m by mul-
tiplication by a m × n word matrix W. In essence, the word matrix is regarded as a linear
transformation that maps token-based representations in Rm to Rn, where n can potentially
(but not necessarily) be much smaller than m. This formulation makes more transparent the
relation of the second-order context vector construction to standard methods for dimension-
ality reduction, such as SVD. This linear transformation formulation is presented in Section
4.1, where it is observed that W can indeed be substituted for any other suitable matrix, and
in fact, the direct context vector matrix C and the LSA word-segment matrix A are suitable
candidates.

This linear transformation does constitute a generic method of indirect context vector con-
struction, and Section 4.2 further explores this. It presents how indirect context vectors can
be produced from unreduced and SVD-reduced word vectors coming from A, C and W. This
section also reviews SVD projection of Word Space direct context vectors and LSA segment
vectors, the latter of which were already covered in Chapter 3.

Finally, Section 4.3 offers an analytical comparison between the direct and indirect token
vector representations provided by Word Space and LSA. First the unreduced direct token
representations from Word Space and LSA are compared, noticing trivial similarities between
them. It is shown however, that this trivial similarity translates into a more complicated
relationship between the word vectors in Word Space and in LSA. However, due to a math-
ematical equivalence, it is shown that the SVD projections of LSA word vectors and Word
Space word vectors are approximate to each other. The consequence of this is that the indirect
context vector representations derived from A, C and W studied in Section 4.2 must also be
similar. This is shown both analytically and by producing some numerical toy examples. A
systematic and empirical comparison between the direct and indirect LSA and Word Space in
word-sense disambiguation and discrimination experiments is conducted in Chapter 6.

107

W as a linear map Linear Transformations in Word Space and LSA

4.1 W as a linear map

Definition 3.5.4 (p. 101) characterises the construction of a second-order context vector for a
specific token κ as a sum of a selection of word vectors taken from the rows of the word matrix
W. A word vector is selected to be summed if a token of the word type it represents co-occurs
with κ within a word window of length l centred at κ. In other words, the corresponding
word vector for every token that appears in the token set winl(κ) gets selected and summed
to construct c2(κ), the second-order context vector of κ. Recall from Section 3.2 (p. 67) that
sets can be represented as vectors, provided that an appropriate feature (dimension) mapping
function is provided. The definition for first-order context vectors (Definition 3.5.2 on page
100) can be seen as such a mapping function capable of translating the token set winl(κ) into a
vector format c1(κ) that contains zeroes in the dimensions corresponding to words not present
in winl(κ) and non-zero values in dimensions corresponding to words present in that set. If
the feature set (vocabulary) of c1(κ) is Vm and the word matrix W defines a word vector for
every word in that same set Vm and the order in which the dimensions of c1(κ) are arranged is
the same order in which the rows of W are arranged, then the matrix multiplication WTc1(κ)

selects the word vectors (row vectors) in W that correspond to the non-zero dimensions in
c1(κ) and sums those word vectors. Thus, this matrix multiplication is equivalent to the
summation of word (type) vectors in W of the tokens present in winl(κ) from Definition
3.5.4. This observation was previously made in Maldonado-Guerra and Emms (2012).

Proof. (3.5.7) sums the word vectors of the words co-occurring with κ in context. Word
vectors are summed the same number of times as the frequency of the words they represent
in that context. Since [c1(κ)]i holds the frequency of τi in the context we could equivalently
multiply every row vector ri in W by ci = [c1(κ)]i and sum the resulting vectors, i.e.

c2(κ) =

(
m∑

i=1

ciri

)T

=

(
m∑

i=1

ci
[
wi1, . . . ,wij, . . . ,win

])T

(4.1.1)

=

[
m∑

i=1

ciwi1, . . . ,
m∑

i=1

ciwij, . . . ,
m∑

i=1

ciwin

]T

(4.1.2)

If a word is not present in winl(κ), it will have a ci value of zero, preventing the sum of its
corresponding word vector ri. If a word appears more than once in winl(κ) (i.e. if there is
more than one token for the same type), then its corresponding word vector would be summed
the same number of times it appears in the window by using either the above equation or the
original Definition 3.5.4. The number of times a word appears in the window is also recorded
by its corresponding dimension ci in c1(κ).

Let us now consider the matrix multiplication WTc1(κ). This multiplication can be seen
as computing the dot product of every column vector in W with c1(κ) and placing each
result in each dimension of c2(κ). This matrix multiplication can be expanded in terms of
these dot products for the j-th row of WT (using the wij indexation for W) as [c1, . . . , cm] ·

108

Linear Transformations in Word Space and LSA W as a linear map

[
w1j, . . . ,wmj

]
=
∑m

i=1 ciwij, which is the same as the central element in (4.1.2).

We can now re-define direct (second-order) context vectors as the result of a matrix multi-
plication:

Definition 4.1.1 (Indirect (second-order) context vector with parameter W — I-W-UR).
Given a word matrix W ∈ Rm×n whose rows are the word vectors for words in some chosen
vocabulary Vm with m = |Vm|, if c1(κ) ∈ Rm is the direct (first-order) context vector rep-
resentation (using Vm for features) of token κ, then c2(κ) ∈ Rn is the second-order context
vector representation (with features Vn) of token κ and is defined by

c2(κ) = cW(κ) = WTc1(κ) (4.1.3)

This configuration is also I-W-UR from Table 4.2.1 just like in Definition 3.5.4 (p. 101),
as they are equivalent. This formulation of the c2 construction is not the customary one, but
a useful one. Although (4.1.3) and (3.5.7) look different, (4.1.3) is also defining c2(κ) to be
a sum of multiples of relevant rows of W, as demonstrated before. Moreover, it is not hard
to show that the relation between c1 and c2 vectors exemplified in (4.1.3) lifts to a relation
between s1 and s2, given the definition of sense vectors as averages over c1 and c2 vectors:

s2
i =

1
|Si|

WTs1
i (4.1.4)

Because the word vectors on the rows of W are sometimes shorter than the height of W i.e.
n < m, equation (4.1.3) typically represents a dimensionality lowering transformation. It is
interesting to note, that formulating the c2 construction as we have, (4.1.3) is strikingly similar
to the projection equations for dimensionality reduction via SVD. As discussed in Section
3.4.1, if M is a m×n matrix, it has a so-called reduced-rank SVD M̂ = UkΣkVk

T. Applied to
anyMwhose rows have the same dimensionality as that of c1 vectors, the SVD dimensionality
reduction procedure would lead via (3.4.5) or (3.4.6) (p. 82) to a transformation of a c1 ∈ Rm

vector to a vector in Rk. In an analogous manner, the c2 construction as defined in (4.1.3)
transforms a c1 ∈ Rm vector to a c2 ∈ Rn vector.

In order to encompass all variants of the c2 vector notion that have been proposed in the
literature, the formulation in (4.1.3) must be developed a little further, addressing weighting
and normalisations. If α ∈ Rm is a weight vector, let diag(α) ∈ Rm×m be a diagonal matrix
with α on the diagonal and zeros elsewhere. Pre-multiplying W by diag(α) corresponds to
weighting its rows by the values in α. Let nm be a function on vectors v ∈ Rm giving a
normalising factor. Possible settings for such a function are the L1-norm, which simply sums
the values, the L2-norm, which gives the Euclidean length, and a constant setting I, mapping
all vectors to 1.

109

Direct and indirect token representations Linear Transformations in Word Space and LSA

Definition 4.1.2 (Second-order context vector with parameterW, α, nm— I-W-UR). Given
a word matrix W ∈ Rm×n, a weights vector α ∈ Rm, and a function nm, from a first-order
context vector c1(κ) ∈ Rm representing token κ, the corresponding second-order context
vectors c2(κ) ∈ Rn is defined by

c2(κ) =
1

nm(c1(κ))
(diag(α)W)T c1(κ) (4.1.5)

Note that with nm = I, and α consisting of all 1’s, then this reduces to (4.1.3). The notion
of c2 in Schütze (1998) is an instance of (4.1.5) using nm = I and a non-trivial weights vectors
α, based on TF-IDF values. The notion of c2 in Purandare and Pedersen (2004) is an instance
of the definition, with trivial weight vectors, and with nm set to be L1-norm.

For simplicity, however, for the remainder of this thesis we shall focus on the simpler
formulation from Definition 4.1.1. It will be used in the next section to demonstrate the
construction of indirect context vectors by using matrices other than W, such as the direct
context vector matrix C or the LSA word-segment matrix A. When used with these alternat-
ive matrices, the resulting indirect context vectors will receive the labels I-C-UR and I-A-UR
from Table 4.2.1, respectively.

4.2 Direct and indirect token representations

Chapter 3 introduced, among other things, VSM/LSA segment vectors and Word Space direct
(first-order) context vectors. It was then mentioned that Word Space direct context vectors
were specifically designed to represent tokens, whilst VSM/LSA segment vectors have been
used by a number of works as proxies to represent tokens. Basically, if a text segment contains
a token of a target word of interest, its segment vector can be used as a vector representation
for that token. This will be examined in more detail in Section 4.3, but for now let us assume
that both LSA and Word Space have their own, competing mechanism of (unreduced) direct
token representation: segment vectors and direct (first-order) context vectors, respectively.
Both vector types are column vectors and as such they can form the columns of one of two
matrices: A, a matrix whose columns are LSA’s segment vectors, and C, a matrix that has
Word Space direct context vectors for columns. Both matrices are equally amenable to SVD
reduction, and as a consequence both token representations have an SVD-reduced version.

Word Space also defines an indirect token vector representation: indirect or second-order
context vectors. These can be created by aggregating word vectors (Def. 3.5.4, p. 101), or
equivalently, transforming direct context vectors via a word matrix W containing such word
vectors along its rows, as defined in Section 4.1. And as mentioned in that same section, the
rows in both A and C also define word vectors, albeit of different features. So, they too can be

110

Linear Transformations in Word Space and LSA Direct and indirect token representations

used in the aggregation or linear transformation operations mentioned above (I-A-UR, I-C-
UR). Alternatively, the SVD-reduced versions of these matrices can be used in order to obtain
SVD-reduced indirect token representations (I-A-R1/2, I-C-R1/2, I-W-R1/2). This section
presents all of these token vector representation configurations, making some observations
along the way. Table 4.2.1 summarises them all.

Table 4.2.1: Token vector representation configurations from LSA and Word Space. Config-
urations are named as a three-part label X-X-XX. The values for the first part are
“D” (direct) and “I” (indirect). The values in the middle part refer to the matrix
from which the representation is derived (A, C or W). The values on the last part
represent the projection type if SVD is used (“R1” or “R2”) or “UR” (unreduced)
to indicate that SVD was not used.

Direct token representations

Conf. Description Also known as Def. Equation

D-A-UR LSA direct context vector LSA doc. vec. 3.2.1 d, column in A

D-A-R1 SVD R1 LSA direct context vector SVD R1 LSA doc. vec. 3.4.1 R1(d) = Uk
Td

D-A-R2 SVD R2 LSA direct context vector SVD R2 LSA doc. vec. 3.4.1 R2(d) = Σ−1
k Uk

Td

D-C-UR WS direct context vector WS first-order 3.5.2 [c1(κ)]i = n(υ, κ)
D-C-R1 SVD R1 WS direct context vector SVD R1 WS first-order 4.2.1 R1(c1(κ)) = Uk

Tc1(κ)

D-C-R2 SVD R2 WS direct context vector SVD R2 WS first-order 4.2.1 R2(c1(κ)) = Σ−1
k Uk

Tc1(κ)

Indirect token representations

Conf. Description Also known as Def . Equation
I-A-UR LSA indirect context vector via A 4.2.6 cA(κ) = ATc1(κ)

I-A-R1 SVD R1 LSA indirect context vector via A 4.2.7 cR1(A)(κ) = ΣkUk
Tc1(κ)

I-A-R2 SVD R2 LSA indirect context vector via A 4.2.7 cR2(A)(κ) = Uk
Tc1(κ)

I-C-UR WS indirect context vector via C 4.2.3 cC(κ) = CTc1(κ)

I-C-R1 SVD R1 WS indirect context vector via C 4.2.4 cR1(C)(κ) = ΣkUk
Tc1(κ)

I-C-R2 SVD R2 WS indirect context vector via C 4.2.4 cR2(C)(κ) = Uk
Tc1(κ)

I-W-UR WS indirect context vector via W WS second-order 4.1.1 cW(κ) = WTc1(κ)

I-W-R1 SVD R1 WS indirect context vector via W SVD R1 WS second-order 4.2.5 cR1(W)(κ) = ΣkUk
Tc1(κ)

I-W-R2 SVD R2 WS indirect context vector via W SVD R2 WS second-order 4.2.5 cR2(W)(κ) = Uk
Tc1(κ)

4.2.1 Token representations via C

As previously mentioned, direct (first-order) context vectors arranged as the columns of a
matrix C can be used to compute indirect context vectors and/or transformed into objects of
lower dimensionality via SVD. There are several ways in which first-order context vectors can
be arranged as the column vectors of a matrix. These are three basic options:

1. For every token κ in the corpus, produce n direct context vectors c1(κ) ∈ Rm with
a window winl(κ) of length l centred at κ and arrange each of these n direct context
vectors as the columns of a matrix C ∈ Rm×n.

111

Direct and indirect token representations Linear Transformations in Word Space and LSA

2. For every token κ of a specific target word type τ in the corpus, produce p direct context
vectors c1(κ) ∈ Rm with a window winl(κ) of length l centred at κ and arrange each
of these p direct context vectors as the columns of a matrix C ∈ Rm×p.

3. For each segment δ in the corpus, choose one token κ in occurring in δ, produce q
direct context vectors c1(κ) ∈ Rm with a window winl(κ) centred at κ of sufficient
length to cover the whole segment, and arrange each of these q direct context vectors
as the columns of a matrix C ∈ Rm×q.

Option 1 effectively represents every token in the corpus in each column in C. As such,
n ≥ m, as every corpus usually has far more tokens than types. So, an indirect representation
based on this version of C will not result in a dimensionality reduction. Also, notice that
tokens that lie close to each other in the corpus will have very similar vectors (as they co-occur
with almost the same tokens). Whilst this might look like storing redundant information,
an SVD-reduction might be able to properly benefit from such information. Option 2 is an
attractive choice for a WSX experiment in which all of the tokens of a target or ambiguous
word have been identified. Option 3, however, is the option that more closely resembles the
LSA segment vector in which every discrete segment of the corpus is captured. This is the
option used in the experiments presented in Chapter 6. In those experiments, LSA segment
vectors are created for every segment of the corpus and direct context context vectors are
created for every occurrence of the target word, making sure that its word window covers the
whole segment. Since every segment in each of the corpora (Sec. 5.1, p. 136) used in the
experiments contains an occurrence of the target word, the approach used for constructing C
is really a hybrid between options 2 and 3.

4.2.1.1 D-C-UR: Unreduced direct context vectors

Regardless of the option chosen to create C, direct context vectors can be readily used to
represent tokens. Definition 3.5.2 (p. 100) introduces the way they are computed.

4.2.1.2 D-C-R1/2: SVD-reduced direct context vectors

After constructing the first-order context matrix C in one of the three ways presented earlier
or some other similar way, the matrix can then be decomposed by truncated SVD through
Theorem 3.4.3 (p. 80) and individual first-order context vectors can be transformed using R1

and R2 projections in the following manner:

Definition 4.2.1 (Direct context vector projections D-C-R1/2). Given a word token κ repres-
ented by direct context vector c1(κ) ∈ Rm, we can obtain its SVD-reduced version ĉ1(κ) ∈ Rk

112

Linear Transformations in Word Space and LSA Direct and indirect token representations

via one of the following two projections:

ĉ1(κ) = R1(c1(κ)) = Uk
Tc1(κ) (4.2.1)

ĉ1(κ) = R2(c1(κ)) = Σ−1
k Uk

Tc1(κ) = Σ−1
k R1(c1(κ)) (4.2.2)

If c1(κ) is actually a column vector in C and therefore is also represented in Vk by row vector
v ∈ R1×k, then these projections become:

ĉ1(κ) = R1(c1(κ)) = ΣkvT (4.2.3)

ĉ1(κ) = R2(c1(κ)) = vT (4.2.4)

Notice that with any of these projections ĉ1(κ) ∈ Rk, i.e. we obtain row vectors of dimen-
sionality k.

In Emms and Maldonado-Guerra (2013) a dimensionality reduction like the one described
in this section was performed on direct context vectors. First, a direct context vector matrix
C was constructed using method 2 above and decomposed by SVD using various truncation
values k in the low hundreds. Then, the direct context vectors were transformed using R1 and
R2 projections from Definition 4.2.1. The resulting SVD-reduced direct context vectors were
then employed in word-sense discrimination experiments. It was found that R1-projected
direct context vectors performed better than R2-projected direct context vectors in said word-
sense discrimination experiments. Similar experiments, including supervised word-sense dis-
ambiguation experiments, are presented in Chapter 6.

Notice that the projections from Definition 4.2.1 correspond to the segment/document
vector projections that were studied in Definition 3.4.1 (p. 82). Recall that the rows of
the direct context vector matrix C represent word types. So, it is possible to use a row vector
projection (like that from Definition 3.4.2, p. 83) to produce SVD-reduced word type vectors:

Definition 4.2.2 (Type vector projections from C). Given a word type τ represented by row
vector t ∈ R1×n, we can obtain its SVD-reduced version t̂ through one of the two following
projections:

t̂ = R1(t) = tVk (4.2.5)

t̂ = R2(t) = tVkΣ
−1
k = R1(t)Σ−1

k (4.2.6)

If t is actually a row vector in C and therefore is also represented by row vector u ∈ R1×k in

113

Direct and indirect token representations Linear Transformations in Word Space and LSA

Uk, then these projections become:

t̂ = R1(t) = uTΣk (4.2.7)

t̂ = R2(t) = uT (4.2.8)

Notice that with any of these projections t̂ ∈ R1×k, i.e. we obtain column vectors of dimen-
sionality k.

In Sections 4.3.1 and 4.3.2 it will be discussed that word type representations in C are
related, if not similar to word type representations in A and W. Definition 4.3.1 establishes
a relationship between direct (first-order) context vectors and the segment vectors along the
columns of A. Effectively, Salton’s VSM and the first-order context matrix are very similar
representations, with the only significant difference being described by Definition 4.3.1: the
token representations in the first-order context matrix do not count its own type as occurring
in the representation.

4.2.1.3 I-C-UR: Unreduced indirect context vectors via C

The indirect context vector version via C, which transforms direct context vectors of word
type features into indirect context vectors of token features is computed as follows:

Definition 4.2.3 (Indirect context vector with parameter C — I-C-UR). Given a direct (first-
order) context matrix C ∈ Rm×n whose rows are the word vectors for words types in some
chosen vocabulary Vm with m = |Vm| and whose columns represent the dimensions (features)
of each of those row token vectors corresponding to a selection of word tokens Kn extracted
from some corpus, with n = |Kn|, if c1(κ) ∈ Rm is the direct (first-order) context vector
representation (using Vm for features) of token κ, then cC(κ) ∈ Rn is the indirect context
vector representation (using the Kn as its feature set) of token κ, and is defined by

cC(κ) = CTc1(κ) (4.2.9)

This definition is virtually identical to Definition 4.1.1. Notice however that whilst the con-
text vectors produced by Definition 4.1.1 are usually regarded as second-order co-occurrence
vectors, the indirect context-vectors produced by Definition 4.2.3 cannot be realistically called
“second-order”. This is the reason why we use the more general term indirect over second-order.
In addition, by using the word vector projections form C or W in place of those matrices in
these definitions, it is possible to use them to produce SVD-reduced indirect context vectors.
This is covered by Subsections 4.2.1.4 for the case of SVD-reduced C and 4.2.2.2 for that of
SVD-reduced W.

114

Linear Transformations in Word Space and LSA Direct and indirect token representations

4.2.1.4 I-C-R1/2: SVD-reduced indirect context vectors via C

The word vector projections from Definition 4.2.2 can be used in Definition 4.2.3 to obtain
SVD-reduced indirect context vectors via C:

Definition 4.2.4 (Indirect context vector with parameter Ĉ — I-C-R1/2). Given a direct
context vector matrix C ∈ Rm×n whose rows are the word vectors for words types in some
chosen vocabulary Vm with m = |Vm| and whose columns represent the dimensions (features)
of each of those row token vectors corresponding to a selection of word tokens Kn extracted
from some corpus, with n = |Kn|, let Ĉ = UkΣkVk be the singular value decomposition of
C truncated to k ≤ min(m, n) dimensions. If c1(κ) ∈ Rm is the direct (first-order) context
vector representation (using Vm for features) of token κ, then cĈ(κ) ∈ Rk is the indirect
context vector representation (using the orthogonal feature set given by the truncated SVD)
of token κ, and is defined by either (4.2.10) or (4.2.11) below depending on whether the R1

or R2 projection is used:

cĈ(κ) = cR1(C)(κ) = ΣkUk
Tc1(κ) (4.2.10)

cĈ(κ) = cR2(C)(κ) = Uk
Tc1(κ) (4.2.11)

4.2.2 Token representations via W

The Word Space word matrix W cannot represent tokens directly. However, it can represent
them indirectly, via the the so-called second-order context vectors. Alternatively, these indirect
context representations can be produced from SVD-reduced word vectors. This section studies
these possibilities.

4.2.2.1 I-W-UR: Unreduced indirect context vectors via W

Unreduced indirect context vectors via W are computed through Definition 4.1.1, or equi-
valently Definition 3.5.4 (p. 101).

Schütze (1998), Purandare and Pedersen (2004) and related works produce indirect (second-
order) context vectors via the word matrix W. The second-order context vector of a token of
a target word in context (or an instance of a target word) is computed by summing or av-
eraging the (row) word vectors from W that correspond to the words co-occurring with the
target word. So, for example, if survey is our ambiguous word in “A survey of user opinion of
computer system response time” (title number c2 in the toy corpus of Section 3.4.4, p. 87),
a second-order context representation (using the whole title as the context window) based on
the matrixW from table 4.3.1, based on the sum of the context’s word vectors (or equivalently
via word matrix multiplication) would be:

115

Direct and indirect token representations Linear Transformations in Word Space and LSA

c2(κ) =
∑

wi occurs in winl(p)

wi = WTc1(κ) (4.2.12)

c2(surveyc2) = wuser + wcomputer + wsystem + wresponse + wtime (4.2.13)

=

[0 1 1 0 2 2 2 1 1 0 0 0]

+ [1 1 0 1 1 1 1 0 1 0 0 0]

+ [2 1 1 2 2 1 1 3 1 0 0 0]

+ [0 0 1 2 1 0 2 0 1 0 0 0]

+ [0 0 1 2 1 2 0 0 1 0 0 0]

= [3 3 4 7 7 6 6 4 5 0 0 0]

a vector in which the last three dimensions (relating to the graph theory paper titles) are zeroes
and non-zero values on the other dimensions, which pertain to the HCI papers. In a way,
survey is a polysemous word in this toy dataset. It appears once in a HCI paper title (the one
in this example) and once in a graph theory paper title (“Graph minors: a survey”, title m4).
Presumably, the sense in which survey is used in each paper is different: in the HCI paper it is
used in its ‘questionnaire’ sense, whereas in the graph theory paper it is used in its ‘study’ or
‘literature review’ sense. Compare c2(surveyc2) with c2(surveym4):

c2(surveym4) = wgraph + wminors (4.2.14)

= [0 0 0 0 0 0 0 0 2 3 2 2]

which has zeroes in the HCI dimensions and non-zero values on the graph theory dimensions.
The cosine between these two vectors is cos (c2(surveyc2), c2(surveym4)) = 0.14, a relatively low
similarity value.

4.2.2.2 I-W-R1/2: SVD-reduced indirect context vectors via W

Schütze (1998) and Purandare and Pedersen (2004) also compute second-order context vec-
tors using SVD-reduced versions of word vectors and not the word vectors from W directly.
Effectively, they project W via R1 or R2 using equations (3.4.11) or (3.4.12) to form the re-
duced matrix Ŵ and row vectors ŵi from this matrix are used in the sum involved in Definition
3.5.4 instead of wi. We can equivalently say that they transform first-order context context
vectors via Definition 4.1.1 by using Ŵ instead of W. These works continue to call the res-
ulting context vectors “second-order context vectors” even when they clearly do not capture
second-order co-occurrence information in the same way as the context vectors computed
from unreduced word vectors do. To avoid confusion, this terminology is abandoned in this
thesis and instead we call these indirect context vectors produced from SVD-reduced word
vectors as SVD-reduced indirect context vectors and are defined as follows:

116

Linear Transformations in Word Space and LSA Direct and indirect token representations

Definition 4.2.5 (Indirect context vector with parameter Ŵ — I-W-R1/2). Given a word
matrix W ∈ Rm×n whose rows are the word vectors for words in some chosen vocabulary Vm

with m = |Vm| and whose columns represent the dimensions (features) of each of those row
word vectors corresponding to some chosen vocabularyVn with n = |Vn|, let Ŵ = UkΣkVk be
the singular value decomposition of W truncated to k ≤ min(m, n) dimensions. If c1(κ) ∈
Rm is the first-order context vector representation (using Vm for features) of token κ, then
cŴ(κ) ∈ Rk is the SVD-reduced indirect context vector representation (using the orthogonal
feature set given by the truncated SVD) of token κ, and is defined by either (4.2.15) or
(4.2.16) below depending on whether R1 or R2 projection is used:

cŴ(κ) = cR1(W)(κ) = ΣkUk
Tc1(κ) (4.2.15)

cŴ(κ) = cR2(W)(κ) = Uk
Tc1(κ) (4.2.16)

4.2.3 Token representations via A

The word-segment matrix A used in Salton’s VSM and LSA represents both word types and
text segments. Text segments can be used (and have been used) as proxies to represent tokens.
So, matrix A is well capable of representing tokens directly, which can in addition be SVD-
reduced. Since this matrix also produces word types, it is well possible to use them to compute
indirect context vectors, in the same manner customarily done with W. This section contem-
plates these possibilities.

4.2.3.1 D-A-UR: Unreduced segment vectors

Levin et al. (2006) adapted LSA for word-sense disambiguation. In their experiments, they
split a sense-tagged corpus into training and test portions from which they construct high-
dimensional representations. The representations from the training set are grouped according
to the sense tagging of the corpus and the centroids (sense vectors) of the groups formed are
used to classify each representation from the test portion of the corpus. Evaluation is done
by the accuracy of this classification of the test set. Effectively, Levin et al. are using LSA’s
segment vectors are proxies for token representations. The unreduced version of these segment
vectors is defined formally in Definition 3.2.1 (p. 70).

4.2.3.2 D-A-R1/2: SVD-reduced segment vectors

The vectors used in Levin et al. (2006) were actually SVD-reduced. In this work, the repres-
entation of each training instance of w was a projection of a segment vector (column vector)
of A into reduced space, presumably via R1 or R2 (the authors did not specify which) as per
equations (3.4.7) or (3.4.8) (p. 82). Then, representations for each test instance of w are con-

117

Direct and indirect token representations Linear Transformations in Word Space and LSA

structed by representing each test instance as a column vector that has the same dimensions
as rows as A and then projecting that vector by R1 or R2 (whichever method was used in the
training phase) via equations (3.4.5) or (3.4.6) using the SVD matrices produced from the
SVD reduction of the matrix A containing the training vectors.

This method of projecting vectors on the “segment space” of LSA is the most obvious and
natural way to apply LSA for this problem as the segment vector represents an actual instance
of the token of the ambiguous word in context. This way of applying LSA is also the most
similar to the way it is applied in Information Retrieval, where documents and queries are
represented using practically the same segment vectors.

This method is defined formally in Definition 3.4.1 (p. 82).

4.2.3.3 I-A-UR: Unreduced indirect context vectors via A

Pedersen (2010) suggested that an alternative way of using LSA to create a token-based rep-
resentation is to use the unreduced or reduced word type vectors from A and sum them (or
alternatively use them to transform first-order context vector) as it is done in the creation of
indirect (second-order) context vectors in Word Space. Here we contemplate the method us-
ing unreduced word type vectors from the rows of A. Subsection 4.2.3.4 does the same but
using SVD-reduced versions of those word type vectors instead.

Definition 4.2.6 (Indirect context vector with parameter A— I-A-UR). Given a VSM matrix
A ∈ Rm×n whose rows are the word vectors for words in some chosen vocabulary Vm with m =

|Vm| and whose columns represent the dimensions (features) of each of those row word vectors
corresponding to the segments δ in some corpus Cn with n = |Cn| (i.e. the number of segments
in the corpus), if c1(κ) ∈ Rm is the direct (first-order) context vector representation (using Vm

for features) of token κ, then cA(κ) ∈ Rn is the indirect context vector representation (using
the segments in the corpus as its feature set) of token κ, and is defined by:

cA(κ) = ATc1(κ) (4.2.17)

4.2.3.4 I-A-R1/2: SVD-reduced indirect context vectors via A

Given that AAT andW are similar, as will be discussed in Section 4.3.2, it can be expected that
indirect context vectors created by employing LSA in this way would be similar to the indirect
context vectors produced by Word Space. Second-order context vectors computed from word
type vectors from LSA’s Â (or equivalently from the SVD of W+ F) can be formally stated as
follows:

118

Linear Transformations in Word Space and LSA Direct and indirect token representations

Definition 4.2.7 (Indirect context vector with parameter Â— I-A-R1/2). Given a VSM mat-
rix A ∈ Rm×n whose rows are the word vectors for words in some chosen vocabulary Vm with
m = |Vm| and whose columns represent the dimensions (features) of each of those row word
vectors corresponding to the segments δ in some corpus Cn with n = |Cn| (i.e. the number of
segments in the corpus), let Â = UkΣkVk be the singular value decomposition of A truncated
to k ≤ min(m, n) dimensions. If c1(κ) ∈ Rm is the direct (first-order) context vector rep-
resentation (using Vm for features) of token κ, then cÂ(κ) ∈ Rk is the SVD-reduced indirect
context vector representation (using the orthogonal feature set given by the truncated SVD)
of token κ, and is defined by either (4.2.18) or (4.2.19) below depending on whether R1 or
R2 projection is used:

cÂ(κ) = cR1(A)(κ) = ΣkUk
Tc1(κ) (4.2.18)

cÂ(κ) = cR2(A)(κ) = Uk
Tc1(κ) (4.2.19)

Observe that the R2 projection in Definition 4.2.7 is equivalent to the R1 projection in
Definition 3.4.1 (p. 82) if d represents a segment containing κ and if we accept c1(κ) ≈ d

(See Def. 4.3.1).

4.2.4 A (toy) numerical comparison

To summarise, there are two kind of projections that LSA can give: segment projections or
word type projections. The natural, obvious way to apply LSA to word-sense discrimination
is to use the segment projections, which is what Levin et al. (2006) did. But what Schütze
(1998) and Purandare and Pedersen (2004) did in their respective works was to use an indirect
approximation of LSA, by computing indirect context vectors based on Word Space’s word
matrix.

Which one is better? The segment projections option is definitely more natural and obvious.
But there is nothing wrong in principle with the method using indirect representations via type
projections. Recall the example given by Landauer (2007) which shows that LSA’s segment
projections are sensitive to the polysemy of the words in the segment and seem to “select”
the appropriate sense of each word in the segment (see Section 3.4.4.2 on p. 93). However,
the indirect context vectors produced though (4.2.15) or (4.2.16) are also context sensitive.
Section 4.3 will perform an analytical comparison between LSA and Word Space and Chapter
6 is dedicated to performing extensive experiments on the effects of these alternative ways of
creating token representations from reduced spaces.

We can do toy experiments here with the toy dataset of paper titles and Octave. For all of
these “experiments”, we shall use k = 2 and R1 in the SVD projections. We will compute
cosine measures between different representations of the two tokens of survey (surveyc2 and

119

Direct and indirect token representations Linear Transformations in Word Space and LSA

surveym4) as well as a new token of survey which appears in the segment “user survey on the
interface quality of the graph minors visualisation system” (surveyx). Intuitively surveyx should
be more similar to surveyc2 than surveym4 since it uses survey in its ‘questionnaire’ sense. Notice
however that graph and minors occurs in this segment, so let us see if this has a negative impact
in the representations.

Recall that despite being such a small sample, this toy corpus is useful for visualising the
operations involved in unreduced and reduced spaces easily and transparently. Since it has also
been used in several other works (Furnas et al., 1988; Deerwester et al., 1990; Kontostathis
and Pottenger, 2006), it can be useful to also compare explanations and definitions between
works.

Experiment A Let us try first the unreduced token vectors computed from W (i.e. “plain
vanilla” unreduced second order context vectors):

• cos (c2(surveyc2), c2(surveym4)) = 0.14

• cos (c2(surveyc2), c2(surveyx)) = 0.90

• cos (c2(surveym4), c2(surveyx)) = 0.47

cos (c2(surveyc2), c2(surveyx)) is a high value as expected and cos (c2(surveym4), c2(surveyx)) is
not as high but still a considerable value, meaning that some confusion is taking place by the
presence of graph and minors.

Experiment B Let us now see what values we get from the unreduced segment vectors from
A (column vectors):

• cos (c2,m4) = 0.24

• cos (c2, x) = 0.50

• cos (m4, x) = 0.71

This is a particular bad result because it’s saying that the meaning of surveyx is more similar to
the m4 ‘literature review’ sense than the c2 ‘questionnaire’ sense.

Experiment C Let us now see how LSA through segment projections behave (i.e. à la Levin
et al. (2006)):

• cos (R1(c2),R1(m4)) = 0.39

• cos (R1(c2),R1(x)) = 0.90

• cos (R1(m4),R1(x)) = 0.75

This is a bit better. At least the cosine value between surveyx and surveyc2 is higher than that
between surveyx and surveym4, but a value of 0.75 is still very high.

120

Linear Transformations in Word Space and LSA Direct and indirect token representations

Experiment D Now, let us see how first-order context vector transformations via SVD-
reduced word space (c1(p)×U(W)

k Σ
(W)
k , where U(W)

k and Σ
(W)
k are the SVD matrices coming

fromW), i.e. pseudo-second-order context vectors (à la Schütze and Purandare and Pedersen)
fare:

• cos
(
cŴ(surveyc2), cŴ(surveym4)

)
= 0.23

• cos
(
cŴ(surveyc2), cŴ(surveyx)

)
= 0.98

• cos
(
cŴ(surveym4), cŴ(surveyx)

)
= 0.42

This is much better. The cosines between surveyx and surveyc2 have gone up whilst the cosines
between surveyx and surveym4 have gone down.

Experiment E As a sanity check, let us compute these cosines using the projection c1(p)×
U(A)

k Σ
(A)
k , where U(A)

k and Σ
(A)
k are the SVD matrices coming from A, (i.e. using “the other

side of the coin” of LSA). The cosine values should be similar to those in Experiment D, but
not quite exactly the same, due to the differences along the diagonal between AAT and W.

• cos
(
cÂ(surveyc2), cÂ(surveym4)

)
= 0.14

• cos
(
cÂ(surveyc2), cÂ(surveyx)

)
= 0.92

• cos
(
cÂ(surveym4), cÂ(surveyx)

)
= 0.53

As expected, these values are not too different from Experiment D. However, notice that these
values are actually quite similar to those of Experiment A, (plain vanilla second-order context
vectors). So, those different values along the diagonals of the matrices being reduced can play
an important part in discrimination.

Experiment F Finally, an experiment that computes the cosines between the first-order
context vectors without any reduction whatsoever:

• cos (c1(surveyc2), c1(surveym4)) = 0

• cos (c1(surveyc2), c1(surveyx)) = 0.40

• cos (c1(surveym4), c1(surveyx)) = 0.63

As expected, not very good results. However, consider that in a K-Means clustering experi-
ment, context vectors are not computed with each other directly in this way. They are instead
compared with a cluster centroid, i.e. a generalised sense vector. So, whilst first-order context
vectors might not fare well using direct pairwise comparisons, they can perform much better
on a word-sense discrimination experiment based on K-Means. Chapter 5 is indeed devoted
to comparing extensively unreduced first-order context vectors with unreduced second-order
context vectors and finds that first-order context vectors can perform better than second-order
context vectors in WSX experiments using means-based sense vectors.

121

A comparison between LSA and Word Space Linear Transformations in Word Space and LSA

4.3 A comparison between LSA and Word Space

Both LSA (Deerwester et al., 1990) and Schütze’s Word Space (Schütze, 1992, 1998) rep-
resent word types as high dimensional vectors. At some point, both LSA and Word Space
use SVD as a method of reducing the dimensionality of the high dimensional vectors to a
few hundred dimensions. As discussed in Section 3.4.4 (p. 87), SVD in LSA also has the
effect of reducing noise and finding higher-order co-occurrences, giving the space some use-
ful semantic qualities such as synonym/semantic relation detection and sensitivity towards
polysemous words. Authors such as Schütze (1992, 1998); Purandare and Pedersen (2004)
defend their use of SVD on Word Space for word-sense discrimination experiments, based on
its semantic benefits when used on LSA.

The matrices being reduced in Word Space and LSA are quite different, however. And so
it is reasonable to question whether SVD will be able to replicate the same semantic effects
from LSA on Word Space. An analysis of the effects that the application that SVD has on
these matrices is presented here. Perhaps the key difference to note is that an unreduced Word
Space direct (first-order) context vector counts the words co-occurring with the target token
but does not count the target token itself, whilst an unreduced LSA context vector counts
every word occurring in a context, including the target token. The reason for this difference is
really historical or based in the original applications of the models: Word Space direct context
vectors are designed to count co-occurrence with a target word whilst LSA context vectors
capture full contexts (or documents), without regard to any particular target word of interest.
We also find that in their unreduced form word (type) vectors represented by A and W are
different and incompatible since LSA word vectors have segment features whilst Word Space
word vectors have word features. However, we find that, due to a mathematical equivalence,
the SVD-reduced versions of both vector types are approximate to each other, with their
difference stemming from the same counting difference we pointed out earlier. Of course, by
controlling and manipulating these differences in the early processing stages, it is possible to
adapt an LSA system to exactly emulate a WS system and vice versa. Whilst it is relatively
easy to demonstrate this equivalence mathematically, it seems that this fact has escaped the
literature, causing the two spaces to be treated differently by different authors. Some works
treat the models as distinct, sometimes acknowledging a relationship which they often do
not explore in detail (e.g. Pedersen, 2007; Cohen and Widdows, 2009). Other works make
simplified assumptions on this relationship like Pedersen (2010) and ourselves in Emms and
Maldonado-Guerra (2013) by assuming that LSA and Word Space direct context vectors are
identical or that their differences are negligible. Yet many other works either are ambiguous
on their distinction, assume that the two models are interchangeable or assume that the only
difference between them is that LSA uses SVD while Word Space does not (e.g. Levin et al.,
2006; Katz and Giesbrecht, 2006; Navigli, 2009).

At the same time, it is noted that many works in the literature are vague when it comes to
describing exactly how they apply SVD in experimentation and it is therefore possible that

122

Linear Transformations in Word Space and LSA A comparison between LSA and Word Space

each experimenter has applied SVD in slightly different ways, making even more difficult to
see the mathematical equivalence presented here. In the discussion that follows the features
in all matrices are raw co-occurrence counts only and, in the case of word matrices from
Word Space, only square symmetric matrices that reflect unordered co-occurrences will be
considered.

There is a body of works comparing two or more different vector space models. Within
the Word Space tradition, there have been works comparing the performance of direct (first-
order) vs. indirect (second-order) context vectors in tasks relying on word senses (Purandare
and Pedersen, 2004; Peirsman et al., 2008b; Maldonado-Guerra and Emms, 2012), generally
concluding that first-order context vectors tend to perform equally or better than second-order
context vectors. Pedersen (2010) attempts a comparison between LSA and Word Space, but
as mentioned, this work does not capture the subtle difference in counting between each
model’s direct token representations. Pedersen’s work however does compare several Word
Space variants on word-sense discrimination experiments, specifically between Word Space
direct variants (configurations D-C-* in Table 4.2.1) vs. Word Space indirect variants via
word vectors from W (I-W-*) vs. Word Space indirect variants via word vectors from C (I-
C-*), in unreduced and SVD-reduced forms. Pedersen found his unreduced indirect variants
to perform best. Sahlgren (2006), Utsumi and Suzuki (2006) and Utsumi (2010) compared
the word vectors produced by LSA and Word Space in identifying semantic relations (such
as synonymy, hyponymy, collocation, etc.) between word pairs. They found LSA to perform
better on collocation prediction and Word Space to perform better on predicting the other
types of semantic relations. In one way, the work of Dinu et al. (2012) could be seen as
an analogous comparison to the one made here. In this work, the authors compared the
mathematical properties and performance of what they call contextualised type vectors, which
amount to be different methods of vector composition (Guevara, 2011). By composing (i.e.
combining through a linear operation) the type vector of a word τ1 with the type vector
of another word τ2 found in the vicinity of a token of τ1, the authors “contextualise” the
type vector of τ1. The authors found that after applying some simplifications, the different
methods of semantic composition (and thus contextualisation) turn out to be equivalent or
nearly equivalent to each other. Just like this thesis compares two token vector representations
(LSA and Word Space) and finds similarities between them, Dinu et al. find near equivalences
between diverse methods of vector composition.

4.3.1 A vs W: The difference and relationship between the unreduced

spaces of LSA and Word Space

The row vectors of Salton’s original VSM matrix (or equivalently, the LSA matrix before SVD)
A and the unreduced Word Space word matrix W, both represent the same thing: word types.
So, cosines between any two row vectors from the same matrix reflect a degree of similarity
between the two words represented by each vector. As mentioned in Sections 3.3, 3.5 and

123

A comparison between LSA and Word Space Linear Transformations in Word Space and LSA

3.6 (pages 75, 95 and 102, respectively), cosines in the vector space formed by the rows of A
measure syntagmatic relations between words whilst cosines in the vector space formed by the
rows of W (or by its columns, since the matrix is symmetric) measure paradigmatic relations
between words. It is that for this reason, A is called a syntagmatic vector space and W is called
a paradigmatic vector space in this thesis.

While the vectors and the values that A and W hold are different, they are not unrelated.
We shall see that they are, in fact, very much related.

Recall that a Word Space direct context vector is a row vector c1 ∈ Rm in which the i-th
dimension [c1]i represents a word type feature τi ∈ Vm (see Definition 3.5.2, p. 100). Recall
also that the j-th column vector in Salton’s VSM matrix A, dj, represents the corpus segment
δj, with each of its cells (dimensions) aij counting the frequency of word type τi in segment δj

(see Definition 3.2.2, p. 75). Since both vectors have the same dimensions, we can state that
the LSA segment vector dj is equivalent to the Word Space direct (first-order) context vector
of any word token κi occurring in δj, adding 1 in the dimension representing the dimension
corresponding to the word type τi of κi as the Word Space direct context vector does not
record the occurrence of κi but dj does. This equivalence holds if the sliding window in c1

and the segment in dj cover the exact same span of text. We can formalise this relationship by
defining dj vectors in terms of c1 vectors:

Definition 4.3.1 (Relationship between segment vectors and direct context vectors —
D-A-UR and D-C-UR). Given a segment δj represented by column vector dj in A, then
we have

dj = c1(κ) + g(κ) (4.3.1)

where c1(κ) is the direct (first-order) context vector of a token occurring in δj with a slid-
ing window extending to the whole word segment covered by δj and g(κ) is a vector of
the same dimensions as c1(κ) containing zeroes in all dimensions, except in the one cor-
responding to the word type τ = type(κ) which has the value of 1, i.e. (g(κ))T =

[g1 ... gi=type(κ) ... gm

0 . . . 1 . . . 0
]
.

If the corpus is divided in n segments and each column vector dj is arranged in such a way
as to form the columns of matrix A, then A is an m × n matrix (recall that each vector dj has
m dimensions, one for each word type feature in Vm).

In Word Space, if we have a row word vector wi for every word in Vm and each of these
vectors have Vm for features (i.e. wi ∈ R1×m since m = |Vm|) and if each of those row
word vectors is arranged in such a way as to form the rows of matrix W, then W is a square,
symmetric matrix of size m×m. Equivalently, we could have arranged every vector wi

T as the
columns of W and we would have arrived at the same matrix.

124

Linear Transformations in Word Space and LSA A comparison between LSA and Word Space

Notice that in Definition 3.5.3 (p. 101) no reference is made to the segments in which
the corpus is divided up. While the segmentation of the corpus is not explicitly used in
the definition, it is taking an effect via the first-order context vectors since the segmentation
does not allow sliding windows to cross a segmentation boundary. For example, imagine that
“No pain. No gain.” is a corpus segmented into its two constituent segments (“No pain”
is one segment and “No gain” is the other segment). If we define a sliding window of (at
most) length 3 centred at each token (ignoring punctuation marks), we would generate the
following windows: “No pain”, “No pain” (from segment 1), “No gain”, “No gain” (from
segment 2). Notice that a window like “pain No gain” cannot be formed, because it would
require a segment boundary to be crossed.

There is one further way in which A and W are related. Recall from Theorem 3.4.2 (p. 80)
that when SVD is applied to A, the U matrix contains the eigenvectors of AAT (i.e. the so-
called left-singular vectors of A) andΣ contains the square roots of its eigenvalues. Conjecture
4.3.2 below describes an equation between this matrix AAT and W:

Conjecture 4.3.2. If the sliding word windows in a Word Space are created in such a way as
to always be of the same length as Salton’s VSM text segments, so that the word window of a
token includes all of the other tokens occurring within the same segment (whether this segment is a
sentence, paragraph, fixed-length word segment, document, etc.), then the following equation holds:

AAT = W+ F (4.3.2)

where F is an m×m diagonal matrix containing the overall corpus frequency of each word type τi

along its diagonal elements fii and zero everywhere else.

This equation can be justified intuitively. A (row) word vector wi in W counts the co-
occurrences of τi with every other word in the corpus. A row vector ai in A counts the occur-
rences of the τi in every segment in the corpus. A row vector mi in AAT (or column vector
since the matrix is symmetric) essentially multiplies the occurrences of τi with the occurrences
of every other word in each document in the corpus, and then sums the resulting products
in order to get the total number of co-occurrences of τi with every other word in the corpus.
Along the diagonal, however, AAT counts each occurrence of τi as if it were co-occurring with
itself, in addition to real co-occurrences. As an example, imagine that a segment has the token
sequence “a b c b”, producing the segment vector d1

T = [1, 2, 1], where each dimension re-
spectively corresponds to frequencies of types a, b and c. When computing d1d1

T, we obtain
the following 3 × 3 matrix:

d1d1
T =

 1 2 1
2 4 2
1 2 1

 (4.3.3)

Let mij denote an entry in this matrix. As previously noted, mij is counting the co-occurrences
between word τi and τj in the corpus, which in this simple case consists of just one segment.

125

A comparison between LSA and Word Space Linear Transformations in Word Space and LSA

For example, m12 counts how many times a and b co-ocurr, which is two, since b occurs
twice and each occurrence co-occurs with the single occurrence of a. However, notice that
the values on the diagonal are [1, 4, 1] and the only self co-occurrence (i.e. the only type
with more than one token featured) in the segment is b, and this co-occurrence happens only
twice and not four times as suggested by m22. Additionally, both a and c are recorded as
co-occurring once with themselves, something that is not possible, since the minimum value
for a self co-occurrence is 2. If a word occurs only once in a segment or word window, its
self co-occurrence value is 0. If it occurs twice, then its self co-occurrence value is 2, since
each occurrence co-occurs with the other co-occurrence, as we have seen in the case of b in
the example above1. The diagonal in d1d1

T is therefore counting both self co-occurrences as
well as the raw frequencies of words in the corpus. By contrast, the diagonal in the word
matrix, W, only counts self co-occurrences. The word matrix for the example segment above
(in which the sliding word window for each token extends to the whole segment) is:

W =

 0 2 1
2 2 2
1 2 0

 (4.3.4)

whose diagonal values are [0, 2, 0], reflecting the true self co-occurrence counts in the example.
The F matrix that would equate W and d1d1

T (or AAT) via Conjecture 4.3.2 is the diagonal
matrix containing the frequencies of each word in the example, F = diag(1, 2, 1).

Despite this difference between AAT and W, it is worth mentioning that row (or column)
vectors in both matrices form paradigmatic spaces. That is, a cosine measure between any
two row vectors (from the same matrix) measures to what degree the words they represent co-
occur with the same words. Whilst A on its own is a syntagmatic space, AAT is a paradigmatic
space, similar to that described by W. Recall that we previously mentioned that the SVD of A
computes eigenvalues and eigenvectors for AAT. Word type and segment vectors are projected
using matrices containing these eigenvalues and eigenvectors (see Section 3.4.2 on p. 81). It is
perhaps at least in part due to this that these projected word type and segment vectors manifest
some semantic (paradigmatic) properties as discussed in Section 3.4.4 (p. 87).

4.3.2 Decomposition of W

At the core of LSA there is a matrix decomposition process via SVD. A related, but more
fundamental way of matrix decomposition is the eigendecomposition presented in Theorem
3.4.1 (p. 79). Its main drawback, however, is that it can only decompose diagonalisable
matrices. Because Salton’s VSM matrix A is not guaranteed to be diagonalisable, SVD is used
in LSA as it can be applied to arbitrary matrices, like A. Roughly speaking, SVD computes
the “square of the matrix”, AAT and ATA, and decomposes that. Those “matrix squares” are

1In general, the number of self co-occurrences for a word is the number of 2-permutations of the word fre-
quency f in the sequence or word window, i.e. f!

(f−2)!

126

Linear Transformations in Word Space and LSA A comparison between LSA and Word Space

Table 4.3.1: Word Space matrix W
W hu. in. co. us. sy. re. ti. EP. su. tr. gr. mi.

human 1 1 2 1

interface 1 1 1 1 1

computer 1 1 1 1 1 1 1

user 1 1 2 2 2 1 1

system 2 1 1 2 2 1 1 3 1

response 1 2 1 2 1

time 1 2 1 2 1

EPS 1 1 1 3

survey 1 1 1 1 1 1 1

trees 2 1

graph 1 2 2

minors 1 1 2

symmetric and all symmetric matrices are diagonalisable by orthogonal matrices.
The word matrix W is already symmetric and can therefore be decomposed directly via

regular eigendecomposition:

W = QΛQ−1 (4.3.5)

where Q ∈ Rm×m is a matrix whose columns are the eigenvectors of W and Λ is a diagonal
matrix whose diagonal elements are the corresponding eigenvalues of W.

Recall from Conjecture 4.3.2 that W and AAT are similar matrices. Because of this, their
eigenvectors Q (for W) and U (for AAT) should also be similar.

One way to test this is by computing some SVDs and eigendecompositions on matrices A
and W derived from a toy dataset like that by Deerwester et al. (1990), which was presented
in Section 3.4.4 (p. 87). Assuming that each title itself is one segment and that first-order
context vectors will be constructed from this corpus from word windows that cover the full
segment (i.e. the title) centred at each target word, this dataset, allows us to construct a type-
by-segment matrix A ∈ R12×9, which can be seen in Table 3.4.1 (p. 87) and a type-by-type
matrix W ∈ R12×12, which is shown in Table 4.3.1.

What follows are matrix dumps and code snippets from GNU Octave2, a software envir-
onment that offers convenient ways of computing eigendecompositions and SVDs.

The full, rank-9 SVD matrices of A are:
octave:13> [Ua, Sa, Va] = svd(A, 9)

Ua =

-0.22 -0.11 0.29 -0.41 -0.11 -0.34 -0.52 0.06 0.41

-0.20 -0.07 0.14 -0.55 0.28 0.50 0.07 0.01 0.11

-0.24 0.04 -0.16 -0.59 -0.11 -0.25 0.30 -0.06 -0.49

-0.40 0.06 -0.34 0.10 0.33 0.38 -0.00 0.00 -0.01

2https://www.gnu.org/software/octave/

127

A comparison between LSA and Word Space Linear Transformations in Word Space and LSA

-0.64 -0.17 0.36 0.33 -0.16 -0.21 0.17 -0.03 -0.27

-0.27 0.11 -0.43 0.07 0.08 -0.17 -0.28 0.02 0.05

-0.27 0.11 -0.43 0.07 0.08 -0.17 -0.28 0.02 0.05

-0.30 -0.14 0.33 0.19 0.11 0.27 -0.03 0.02 0.17

-0.21 0.27 -0.18 -0.03 -0.54 0.08 0.47 0.04 0.58

-0.01 0.49 0.23 0.02 0.59 -0.39 0.29 -0.25 0.23

-0.04 0.62 0.22 0.00 -0.07 0.11 -0.16 0.68 -0.23

-0.03 0.45 0.14 -0.01 -0.30 0.28 -0.34 -0.68 -0.18

Sa =

Diagonal Matrix

3.34 0 0 0 0 0 0 0 0

0 2.54 0 0 0 0 0 0 0

0 0 2.35 0 0 0 0 0 0

0 0 0 1.64 0 0 0 0 0

0 0 0 0 1.50 0 0 0 0

0 0 0 0 0 1.31 0 0 0

0 0 0 0 0 0 0.85 0 0

0 0 0 0 0 0 0 0.56 0

0 0 0 0 0 0 0 0 0.36

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Va =

-0.197 -0.056 0.110 -0.950 0.046 -0.077 -0.177 0.014 0.064

-0.606 0.166 -0.497 -0.029 -0.206 -0.256 0.433 -0.049 -0.243

-0.463 -0.127 0.208 0.042 0.378 0.724 0.237 -0.009 -0.024

-0.542 -0.232 0.570 0.268 -0.206 -0.369 -0.265 0.019 0.084

-0.279 0.107 -0.505 0.150 0.327 0.035 -0.672 0.058 0.262

-0.004 0.193 0.098 0.015 0.395 -0.300 0.341 -0.454 0.620

-0.015 0.438 0.193 0.016 0.349 -0.212 0.152 0.762 -0.018

-0.024 0.615 0.253 0.010 0.150 0.000 -0.249 -0.450 -0.520

-0.082 0.530 0.079 -0.025 -0.602 0.362 -0.038 0.070 0.454

The squares of the diagonal elements in Σ of A (Sa in Octave) are:
octave:18> SSa = (diag(Sa) .^ 2)’

SSa =

11.16 6.46 5.54 2.70 2.26 1.71 0.72 0.31 0.13

We now compute the eigendecomposition of W. Octave’s eig function performs the
eigendecomposition operation. However it does not sort eigenvectors and eigenvalues like
svd does. So we need to rearrange matrices after computation:
octave:17> [Qw, Lw] = eig(W);

octave:18> dlw = diag(Lw);

octave:19> [v, i] = sort(abs(dlw), ’descend’);

octave:20> diag(dlw(i, :)) % Lw (eigenvalues) sorted by descending abs value of eigenvalue

ans =

Diagonal Matrix

8.26 0 0 0 0 0 0 0 0 0 0 0

0 3.84 0 0 0 0 0 0 0 0 0 0

0 0 3.11 0 0 0 0 0 0 0 0 0

0 0 0 -2.66 0 0 0 0 0 0 0 0

0 0 0 0 -2.50 0 0 0 0 0 0 0

0 0 0 0 0 -2.41 0 0 0 0 0 0

0 0 0 0 0 0 -2.00 0 0 0 0 0

0 0 0 0 0 0 0 -1.89 0 0 0 0

0 0 0 0 0 0 0 0 -1.43 0 0 0

128

Linear Transformations in Word Space and LSA A comparison between LSA and Word Space

0 0 0 0 0 0 0 0 0 -0.61 0 0

0 0 0 0 0 0 0 0 0 0 0.49 0

0 0 0 0 0 0 0 0 0 0 0 -0.20

% We also display Qw with its columns sorted by their corresponding eigenvalue (abs value descending):

octave:21> Qw(:,i)

ans =

0.23 -0.19 0.31 -0.35 -0.06 0.02 -0.00 -0.35 0.41 -0.47 0.37 0.16

0.22 -0.13 0.18 0.28 0.17 0.00 -0.00 -0.28 0.08 0.56 0.47 -0.41

0.27 0.05 -0.13 -0.03 -0.05 -0.13 0.00 0.59 -0.33 -0.15 0.63 0.07

0.41 0.06 -0.25 -0.50 -0.51 0.30 -0.00 0.01 0.01 0.25 -0.15 -0.28

0.57 -0.20 0.28 0.54 -0.17 0.28 0.00 0.07 -0.13 -0.15 -0.29 0.18

0.30 0.16 -0.41 0.14 0.22 -0.19 -0.71 -0.06 0.24 -0.17 -0.08 -0.12

0.30 0.16 -0.41 0.14 0.22 -0.19 0.71 -0.06 0.24 -0.17 -0.08 -0.12

0.31 -0.23 0.35 -0.39 0.36 -0.49 0.00 0.22 -0.08 0.17 -0.34 -0.05

0.23 0.32 -0.11 -0.16 0.25 0.08 -0.00 -0.43 -0.38 0.24 0.07 0.58

0.01 0.41 0.28 -0.11 0.33 0.34 0.00 -0.06 -0.34 -0.37 -0.04 -0.51

0.04 0.55 0.31 0.15 -0.50 -0.55 -0.00 -0.15 -0.04 -0.01 -0.01 -0.06

0.04 0.48 0.26 -0.01 0.17 0.28 0.00 0.42 0.56 0.25 0.00 0.22

We cannot say that the eigenvalues of W (Lw in Octave) are too similar to the squares of
the singular values of A (the eigenvalues of AAT), SSa in Octave. However, W’s eigenvectors
in Qw are very similar to A’s left-singular vectors Ua. However, notice that the sign of some
columns have been flipped. Observe as well that some columns corresponding to the higher
rank eigenvalues appear in different positions in Ua and Qw. For example, column 4 in Ua
corresponds to column 11 in Qw, column 5 in Ua to column 12 in Qw, column 6 in Ua

to column 10 in Qw, etc. This difference in column ordering is due to the differences in
the eigenvalues associated to each matrix being significant enough to cause this difference in
ordering. In practice, this difference in column ordering would have no effect as the order
of dimensions in vectors do not affect the cosine measure or any distance measure. Notice as
well that columns 6, 7, 8 and 9 in Ua become increasingly difficult to match with columns
in Qw. The approximation seems to drop as we move to higher ranks. This is more likely to
have an impact on the performance of context vectors derived from each of these matrices.
W is not completely equal to AAT as the matrices differ in their diagonals, as already shown

through Conjecture 4.3.2. So, let us now eigendecompose W+ F instead:
octave:45> [Qwf, Lwf] = eig(W + F);

octave:47> dlwf = diag(Lwf);

octave:48> [v, i] = sort(abs(dlwf), ’descend’);

octave:49> diag(dlwf(i, :)) % Lwf (eigenvalues) sorted by descending abs value of eigenvalue

ans =

Diagonal Matrix

11.16 0 0 0 0 0 0 0 0 0 0 0

0 6.46 0 0 0 0 0 0 0 0 0 0

0 0 5.54 0 0 0 0 0 0 0 0 0

0 0 0 2.70 0 0 0 0 0 0 0 0

0 0 0 0 2.26 0 0 0 0 0 0 0

0 0 0 0 0 1.71 0 0 0 0 0 0

0 0 0 0 0 0 0.72 0 0 0 0 0

0 0 0 0 0 0 0 0.31 0 0 0 0

0 0 0 0 0 0 0 0 0.13 0 0 0

0 0 0 0 0 0 0 0 0 -0.00 0 0

0 0 0 0 0 0 0 0 0 0 0.00 0

0 0 0 0 0 0 0 0 0 0 0 -0.00

129

A comparison between LSA and Word Space Linear Transformations in Word Space and LSA

% We also display Qwf with its columns sorted by their corresponding eigenvalue (abs value descending):

octave:50> Qwf(:,i)

ans =

0.22 -0.11 0.29 -0.41 -0.11 -0.34 -0.52 -0.06 -0.41 0.23 0.09 0.23

0.20 -0.07 0.14 -0.55 0.28 0.50 0.07 -0.01 -0.11 -0.17 0.19 -0.47

0.24 0.04 -0.16 -0.59 -0.11 -0.25 0.30 0.06 0.49 -0.06 -0.28 0.25

0.40 0.06 -0.34 0.10 0.33 0.38 -0.00 -0.00 0.01 0.46 0.18 0.45

0.64 -0.17 0.36 0.33 -0.16 -0.21 0.17 0.03 0.27 0.06 0.28 -0.25

0.27 0.11 -0.43 0.07 0.08 -0.17 -0.28 -0.02 -0.05 0.25 -0.49 -0.56

0.27 0.11 -0.43 0.07 0.08 -0.17 -0.28 -0.02 -0.05 -0.71 0.31 0.11

0.30 -0.14 0.33 0.19 0.11 0.27 -0.03 -0.02 -0.17 -0.35 -0.66 0.27

0.21 0.27 -0.18 -0.03 -0.54 0.08 0.47 -0.04 -0.58 0.00 0.00 -0.00

0.01 0.49 0.23 0.02 0.59 -0.39 0.29 0.25 -0.23 0.00 0.00 0.00

0.04 0.62 0.22 0.00 -0.07 0.11 -0.16 -0.68 0.23 -0.00 -0.00 -0.00

0.03 0.45 0.14 -0.01 -0.30 0.28 -0.34 0.68 0.18 0.00 -0.00 0.00

The eigenvalues of W + F (Lwf) are identical to the squares of the singular values of A
(SSa), with the exception of the last three values. Also, the eigenvectors of W+ F (Qwf) are
also identical to the left-singular values of A (Ua), with the exception of the last three columns
and the flipped signs in some columns.

LSA can be defined as the process in which a word-segment matrix A is decomposed by
an SVD truncated to dimensionality k and the type vectors of A are projected into the vector
space formed by this truncated dimensionality. If we define as “Eigenreduced Word Space”
the process of decomposing a word type-by-word type matrix W, which has been computed
from sums of first-order token vectors for each token in each segment and consider the whole
segment as the context for the token, by an eigendecomposition truncated to dimensionality k
and the type vectors ofW, then we can say that this Eigenreduced Word Space is equivalent to
LSA, given what we have seen so far. Notice however that while LSA can also project segment
vectors into the reduced space, Eigenreduced Word Space cannot project segment vectors,
simply because they are not represented at all in the original Word Space word matrix.

As mentioned previously, previous work (like Schütze, 1998; Purandare and Pedersen,
2004, just to name two) perform matrix decomposition and dimensionality reduction on
W by SVD and not by eigendecomposition. From what we have seen so far, we know that
decomposing such a Word Space word matrix by SVD should produce matrices U = V con-
taining the eigenvectors of WWT or WTW (since WWT = WTW because W is symmetric).
If we are willing to accept that AAT ≈ W, then in terms of A, the eigenvectors that we are
obtaining are roughly those of WWT ≈ AATAAT. It is therefore reasonable to argue that the
SVD being performed to W has nothing to do with the SVD done to the matrix A involved
in LSA, since both SVDs are computing the eigenvectors of different (although still related)
matrices. It turns out, however, that the SVD of W is actually almost identical to its direct
eigendecomposition. The consequence of this is that since AAT ≈ W, then the SVD of W
should also be approximate to that of A. This implies that many of the Word Space experi-
ments in the literature that use an SVD-reduced have been performing, perhaps unwittingly,
to an approximation of LSA.

Let us state more formally this equivalence of SVD and eigendecomposition for symmetric

130

Linear Transformations in Word Space and LSA A comparison between LSA and Word Space

matrices of real values.

Theorem 4.3.1. Let W ∈ Rm×m. If W = WT, then

W = QΛQ−1 = UΣVT (4.3.6)

Furthermore,
U = Q (4.3.7)

and U and V are almost identical, differing only in the signs of their columns:

vi = sign(λii)ui (4.3.8)

where λii is the i-th eigenvalue in Λ diagonal and ui and vi are the corresponding column vectors
in U and V, respectively. The relationship between the singular values σii in Σ and the eigenvalues
λii in Λ is given by

σii = |λii| (4.3.9)

Proof. Because W ∈ Rm×m is a symmetric matrix, its eigendecomposition (4.3.10) is defined.
And since a singular value decomposition exists for arbitrary matrices, (4.3.11) is also defined
for W:

W = QΛQT (4.3.10)

W = UΣVT (4.3.11)

This proves the equality (4.3.6). Since W = WT, we have WWT = WTW = WW = W2.
By inserting the eigendecomposition definition from Theorem 3.4.1 (p. 79) in these equations
we have:

WWT = QΛQT(QΛQT)T (4.3.12)

= QΛQTQΛQT

= QΛ2QT

WTW = (QΛQT)TQΛQT (4.3.13)

= QΛQTQΛQT

= QΛ2QT

131

A comparison between LSA and Word Space Linear Transformations in Word Space and LSA

Similarly, by inserting the SVD definition from Theorem 3.4.2 (p. 80) we get:

WWT = UΣVT(UΣVT)T (4.3.14)

= UΣVTVΣUT

= UΣ2UT

WTW = (UΣVT)TUΣVT (4.3.15)

= VΣUTUΣVT

= VΣ2VT

We therefore have
UΣ2UT = QΛ2QT = VΣ2VT (4.3.16)

One of the properties of eigenvalues is that if λ1, λ2, ..., λn are the eigenvalues of some
matrix M, the eigenvalues of Mk for any positive integer k are λk

1, λ
k
2, ..., λ

k
n. Since Σ has the

square roots of the eigenvalues of W2, it would be well possible to equate it with Λ, which
contains the eigenvalues of W (i.e. Λ = Σ). And from (4.3.16) and the fact that WWT and
WTW have the same eigenvectors, we could also equate Q = U = V. However, whilst WWT

and WTW are guaranteed to be non-negative definite symmetric matrices (see e.g. App. A
in Lawson and Hanson, 1974), W is not guaranteed to be non-negative definite. This means
that W can have negative eigenvalues in Λ. As a convention from Theorem 3.4.2, the values
in Σ are non-negative. So, instead of having Λ = Σ, the relationship between Λ and Σ is
given by (4.3.9). In order to preserve the equality in (4.3.16) we must disallow a sign equality
between U and V. One way of doing this is by stating (4.3.7) and establishing (4.3.8) as the
relationship between U and V.

This can be shown numerically through Octave as well. Recall that the eigenvalues of the
toy corpus’ W (Lw in Octave above) are

diag(Λ) = [8.26, 3.84, 3.11,−2.66,−2.50,−2.41,−2.00,−1.89,−1.43,−0.61, 0.49,−0.20]
(4.3.17)

The SVD matrices of W can be seen in the Octave code dump below. Notice that the ab-
solute values in U and V (Uw and Vw, respectively in the Octave code below) are identical.
However, the sign in the columns of these matrices are flipped for all columns except the
first three and the 11th column. Observe that the columns with flipped signs correspond to
the negative eigenvalues in diag(Λ) and the columns with identical signs correspond to the
positive eigenvalues. This behaviour is consistent with (4.3.8). Notice as well that (4.3.9) also
describes the relationship between diag(Λ) and diag(Σ) below (diagonal values in Sw).

132

Linear Transformations in Word Space and LSA Summary

octave:54> [Uw, Sw, Vw] = svd(W)

Uw =

-0.23 -0.19 -0.31 0.35 -0.06 0.02 0.00 -0.35 0.41 0.47 0.37 -0.16

-0.22 -0.13 -0.18 -0.28 0.17 0.00 -0.00 -0.28 0.08 -0.56 0.47 0.41

-0.27 0.05 0.13 0.03 -0.05 -0.13 0.00 0.59 -0.33 0.15 0.63 -0.07

-0.41 0.06 0.25 0.50 -0.51 0.30 -0.00 0.01 0.01 -0.25 -0.15 0.28

-0.57 -0.20 -0.28 -0.54 -0.17 0.28 0.00 0.07 -0.13 0.15 -0.29 -0.18

-0.30 0.16 0.41 -0.14 0.22 -0.19 0.71 -0.06 0.24 0.17 -0.08 0.12

-0.30 0.16 0.41 -0.14 0.22 -0.19 -0.71 -0.06 0.24 0.17 -0.08 0.12

-0.31 -0.23 -0.35 0.39 0.36 -0.49 -0.00 0.22 -0.08 -0.17 -0.34 0.05

-0.23 0.32 0.11 0.16 0.25 0.08 0.00 -0.43 -0.38 -0.24 0.07 -0.58

-0.01 0.41 -0.28 0.11 0.33 0.34 0.00 -0.06 -0.34 0.37 -0.04 0.51

-0.04 0.55 -0.31 -0.15 -0.50 -0.55 -0.00 -0.15 -0.04 0.01 -0.01 0.06

-0.04 0.48 -0.26 0.01 0.17 0.28 0.00 0.42 0.56 -0.25 0.00 -0.22

Sw =

Diagonal Matrix

8.26 0 0 0 0 0 0 0 0 0 0 0

0 3.84 0 0 0 0 0 0 0 0 0 0

0 0 3.11 0 0 0 0 0 0 0 0 0

0 0 0 2.66 0 0 0 0 0 0 0 0

0 0 0 0 2.50 0 0 0 0 0 0 0

0 0 0 0 0 2.41 0 0 0 0 0 0

0 0 0 0 0 0 2.00 0 0 0 0 0

0 0 0 0 0 0 0 1.89 0 0 0 0

0 0 0 0 0 0 0 0 1.43 0 0 0

0 0 0 0 0 0 0 0 0 0.61 0 0

0 0 0 0 0 0 0 0 0 0 0.49 0

0 0 0 0 0 0 0 0 0 0 0 0.20

Vw =

-0.23 -0.19 -0.31 -0.35 0.06 -0.02 0.00 0.35 -0.41 -0.47 0.37 0.16

-0.22 -0.13 -0.18 0.28 -0.17 -0.00 -0.00 0.28 -0.08 0.56 0.47 -0.41

-0.27 0.05 0.13 -0.03 0.05 0.13 0.00 -0.59 0.33 -0.15 0.63 0.07

-0.41 0.06 0.25 -0.50 0.51 -0.30 -0.00 -0.01 -0.01 0.25 -0.15 -0.28

-0.57 -0.20 -0.28 0.54 0.17 -0.28 -0.00 -0.07 0.13 -0.15 -0.29 0.18

-0.30 0.16 0.41 0.14 -0.22 0.19 -0.71 0.06 -0.24 -0.17 -0.08 -0.12

-0.30 0.16 0.41 0.14 -0.22 0.19 0.71 0.06 -0.24 -0.17 -0.08 -0.12

-0.31 -0.23 -0.35 -0.39 -0.36 0.49 0.00 -0.22 0.08 0.17 -0.34 -0.05

-0.23 0.32 0.11 -0.16 -0.25 -0.08 -0.00 0.43 0.38 0.24 0.07 0.58

-0.01 0.41 -0.28 -0.11 -0.33 -0.34 -0.00 0.06 0.34 -0.37 -0.04 -0.51

-0.04 0.55 -0.31 0.15 0.50 0.55 0.00 0.15 0.04 -0.01 -0.01 -0.06

-0.04 0.48 -0.26 -0.01 -0.17 -0.28 -0.00 -0.42 -0.56 0.25 0.00 0.22

4.4 Summary

This chapter analysed in some detail the relationship (similarities and differences) between
LSA and Word Space. It also analysed the relationship between the different components of
Word Space (direct context vectors, indirect context vectors and the word matrix) in more
detail. It also analysed the properties of the SVD-reduced token representations in LSA and
Word Space (direct and indirect vectors). The main points are summarised as follows.

First, the Word Space word matrix can be seen as a linear transformation matrix that can
be used to convert direct context vectors into indirect (second-order) context vectors. Since
the dimensions of word vectors can be different to the dimensions of direct context vectors,

133

Summary Linear Transformations in Word Space and LSA

the word matrix can be itself used as a method of dimensionality reduction (or feature trans-
formation), an idea that is further explored in Chapter 7.

Second, The square of Salton’s VSM, the matrix used in LSA, is very similar to the word
matrix. And this relationship can be explicitly and easily stated. The implication of this is
that when Salton’s VSM and the word matrix are reduced by SVD, they produce similar word
type spaces. Since the relationship between the unreduced VSM and word matrices is known,
it is possible to compute an LSA word type space via a word matrix or vice versa.

Third, token representations from VSM/LSA and Word Space/SVD-reduced Word Space
via direct and indirect context vectors are also related, but this relationship is somewhat more
complicated. Unreduced segment (token) vectors from VSM are similar to unreduced direct
context vectors. Again, the exact relationship between the two is known. Because of this,
reduced segment vectors (LSA) and directly SVD-reduced direct context vectors are also re-
lated. These reduced representations have already been employed in WSX experiments: LSA
segment vectors were used by Levin et al. (2006) and SVD-reduced Word Space direct con-
text vectors were used by Emms and Maldonado-Guerra (2013). The reduced indirect context
vectors are computed from an SVD-reduced word matrix. Schütze (1998) and Purandare and
Pedersen (2004) conducted word-sense discrimination experiments using variants of these re-
duced indirect context vectors. There is a relationship between indirect context vectors and
LSA that has not been explored in detail yet. These are indirect or “second-context” context
vectors computed from the word type vectors of LSA’s VSM (after SVD reduction). Chapter
6 in this thesis is dedicated to comparing the performance of these different definitions of
SVD-reduced direct and indirect context vectors on word-sense disambiguation and discrim-
ination experiments. Chapter 5 explores the performance on unreduced direct and indirect
context vectors.

Table 4.2.1 summarises the methods of token vector construction and categorises them.
The upper sub-table shows the direct token representations (i.e. first-order token representa-
tions) from LSA and Word Space. The lower sub-table shows their indirect token representa-
tion counterparts (i.e. the second order representations).

134

5 WSX experiments: direct vs. indirect

Word Space token spaces

Both direct (first-order) and indirect (second-order) context vectors aim to represent the same
object: an instance of a target word in context. While direct context vectors seek to opera-
tionalise the distributional hypothesis directly by simply counting the words occurring in a
particular context, indirect context vectors instead sum the word vectors of the words that
occur in that context.

There are diverse intuitions/motivations for using indirect context vectors, rather than their
direct counterparts. One intuition is that direct vectors will tend to be sparse, having zeros on
all but a small number of dimensions and that indirect vectors will tend to be less so (Schütze,
1998). A related intuition is that by finding indirect co-occurrences, indirect context vectors
can help identifying similarities amongst instances that are conceptually related but that do not
necessarily share the exact same set of words (Purandare and Pedersen, 2004), an argument
similar to that used to justify the use of LSA. Consequently, if the corpus on which word-
sense discrimination is done is relatively small, clustering could benefit from indirect context
vectors built from word vectors computed on a much larger corpus. These are intuitions
only and there has not been a great deal of work systematically comparing the two context
representations. Purandare and Pedersen (2004) made a comparison of (a certain variant of)
direct context vectors with (a certain variant of) indirect context vectors. Their conclusion
coincides with the intuition that indirect vectors out-perform direct vectors when the corpus
is small (a few hundred instances). But they also concluded that direct vectors out-perform
indirect vectors when there are many examples (≈ 4, 000).

The easiest way of comparing direct and indirect context vectors is to simply run word-sense
disambiguation and/or discrimination experiments and compare results from direct context
vectors with results from indirect context vectors, and indeed this has been done (with cer-
tain differences) both in Purandare and Pedersen (2004) and Maldonado-Guerra and Emms
(2012). However, since the general philosophy of the vector space model is to model mean-
ings with vectors, and to model semantic relations with geometrical notions based on these
vectors, it is also reasonable to consider ways to compare the geometry of sets of modelled
meanings under the direct and indirect approaches. Given a corpus of sense-labelled occur-
rences, all tokens instantiating a particular sense σi of a particular word τ can grouped in the
set Si, and from this set direct and indirect sense vectors, s1

i and s2
i, can be computed – once

all relevant direct context vectors, c1, and indirect context vectors, c2, have been computed.

135

Corpora WSX experiments: direct vs. indirect Word Space token spaces

<instance id=”hard-a.sjm-274_1:”>
<answer instance=”hard-a.sjm-274_1:” senseid=”HARD1”/>
<context>
<s>

” He may lose all popular support ,
but someone has to kill him to
defeat him and that ’s
<head>HARD</head> to do . ”

</s>
</context>

</instance>

<instance id=”hard-a.t12_1:”>
<answer instance=”hard-a.t12_1:” senseid=”HARD3”/>
<context>
<s>

Water becomes stiff and
<head>HARD</head> as clear stone .

</s>
</context>

</instance>

Figure 5.1.1: Hard subcorpus sample

By studying geometric properties of these sense vectors, we should be able to predict their
performance in a word-sense disambiguation or discrimination setting.

This chapter is divided into two main sections: Section 5.2 describes the geometric exper-
iments performed and Section 5.3 covers the word-sense disambiguation and discrimination
experiments done to give a perspective to the geometric experiments. Section 5.5 concludes
and compares our work with that of Purandare and Pedersen (2004). As a preamble, Section
5.1 describes the corpora used in this chapter’s experiments.

5.1 Corpora

The geometric and WSX experiments presented in this chapter were conducted using two
datasets. One is the hard-interest-line-serve dataset (henceforth called “the HILS dataset”)
widely used in the word-sense disambiguation literature1. The second dataset is a larger corpus
of untagged articles from the New York Times (NYT) from the 1998-2000 period2.

For each target word (hard, interest, line and serve), the HILS dataset contains sense-tagged

1This dataset is in the public domain and can be freely downloaded from
http://www.d.umn.edu/~tpederse/data.html

2The NYT articles are part of the AQUAINT Corpus:
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2002T31

136

WSX experiments: direct vs. indirect Word Space token spaces Geometric experiments

short context samples from newspaper articles written between 1987 and 1991. Figure 5.1.1
is a sample of two contexts in the hard subcorpus. For each word in the corpus there are 3 to
6 senses. Each target-word subcorpus was compiled by different people at different times: line
by Leacock et al. (1993), interest by Bruce and Wiebe (1994) and hard and serve by Leacock
et al. (1998). Each target word subcorpus consists of short context samples from several bigger
corpora:

• The 1987-89 Wall Street Journal corpus (WSJ) - interest, line, serve

• The corpus from American Printing House for the Blind (APHB) - line, serve

• The 1991 San José Mercury News corpus (SJM) - hard

See Figure 5.1.2 for the number of instances of each target word and their sense distribution.
The 1998-2000 portion of the NYT was chosen because it would present a journalistic style

comparable to that used in the HILS dataset and also because the years covered by HILS and
the NYT are distant enough to ensure the same news stories will not feature in both datasets.
The NYT dataset consists of 1.92 × 108 tokens distributed in 205990 articles.

The untagged NYT dataset is used in several different ways. We use the pseudoword tech-
nique (Yarowsky, 1993) whereby occurrences of two unrelated words (for example banana and
moon) are replaced by their concatenation (banana_moon), creating a resolution task to revert
each pseudoword correctly to the word replaced. Applied carefully, this generates a larger
number of training and test instances than in a sense-tagged corpus. We use the pseudowords
introduced by de Marneffe and Dupont (2004). They are listed here with their total number
of occurrences and their constituent distribution in the NYT:

• animal_river – total: 11808, animal : 33%, river: 67%

• banana_moon – total: 3953, banana: 24%, moon: 76%

• data_school – total: 49498, data: 21%, school : 79%

• railway_admission – total: 3733, railway: 14%, admission: 86%

• rely_illustration – total: 4970, rely: 78%, illustration: 22%

In work connected to the sense disambiguation and discrimination of the ambiguous words
in the HILS dataset, the NYT dataset is also used as a source of the word vectors used in the
construction of indirect context vectors.

5.2 Geometric experiments

A simple geometric property that can be considered is how similar the direct sense vector of a
particular sense of a word is to the indirect sense vector of the same sense of the same word (i.e.
how similar s1

i and s2
i are?) In this work, this property is called parallelism. It is measured by

137

Geometric experiments WSX experiments: direct vs. indirect Word Space token spaces

TARGET hard
INSTANCES 4333

0
2

5
5

0
7

5
1

0
0

80%

12% 9%

TARGET interest
INSTANCES 2368

0
2

5
5

0
7

5
1

0
0

53%

21%
15%

8%
3% 1%

TARGET line
INSTANCES 4146

0
2
5

5
0

7
5

1
0
0

53%

10%10% 9% 9% 8%

TARGET serve
INSTANCES 4378

0
2

5
5

0
7

5
1

0
0

41%

29%

19%
10%

Figure 5.1.2: HILS dataset sense distributions

computing the cosine (Eq. 3.2.9 on p.72) between s1
i and s2

i. The left-hand side of Figure
5.2.1 shows two examples of how parallel an s1 vector is to an s2 when both represent the
same sense ‘difficult’ of the adjective hard. The more parallel (more similar) they are, the more
they are approximations of each other.

Another geometric property considered is the angular spread, as measured by cosine sim-
ilarity, amongst the sense vectors for different senses of a given word. The right-hand side
of Figure 5.2.1 shows examples of low and high spread of two same-order sense vectors for
different senses of the word hard. Intuitively, a high angular spread will benefit a sense dis-
ambiguation or discrimination algorithm exploiting means-based sense vectors, whereas a low
spread will make distinguishing amongst senses more difficult. Spread is measured by taking
the average of pairwise cosine measures between sense vectors of the same order that represent
different senses of an ambiguous word.

S1(difficult)

S2(difficult)

S1(difficult)

S2(difficult)

S1(difficult)

S1(stiff)

S1(difficult)

S1(stiff)

Parallelism Spread

(Almost) parallel Non-parallel Low spread High spread

Figure 5.2.1: A depiction of parallelism and spread in sense vectors representing two senses
for hard – On the left-hand side, we measure how parallel different-order sense
representations of the same sense are between each other. On the right-hand
side, we measure how same-order sense vectors representing different senses are
spread.

Geometric parallelism and spread experiments were conducted on the sense-tagged HILS
dataset and on the pseudoword-tagged NYT dataset.

For simplicity, this work ensures that the direct and indirect context vectors (and thereby
their derived direct and indirect sense vectors) have the same dimensional unigram features,
from a vocabulary Vm, and build a square m×m word matrix (i.e. a word matrix W ∈ Rm×n

where n = m). We can then make m-dimensional direct context vectors, which convert to
further m-dimensional indirect context vectors (see Definitions 3.5.4 on p. 101 and 4.1.1

138

WSX experiments: direct vs. indirect Word Space token spaces Geometric experiments

on p. 109). For the HILS data, the word matrix used in the derivation of indirect context
vectors was computed once in an internal fashion and once in an external fashion3. In the
internal variant, for each word-specific (i.e. hard, interest, line or serve) sub-corpus T of the
HILS dataset, the word vectors making up the word matrix are computed from occurrences in
T , using all its non-stop (content) words, NS(T), as the features Vm. In the external variant,
word vectors are instead computed from the NYT corpus, using NS(NYT) ∩ NS(T) for
features of the word vectors, where NS(NYT) are the 20,000 most frequent non-stop words
in the NYT corpus. The idea is to have the word vectors determined from a much larger data
set, containing word-occurrences that are not constrained to be in the vicinity of one of the
words in the HILS dataset. For the pseudoword data, the word vectors were always computed
in the internal fashion.

Table 5.2.1: Summary of geometric experiment results
WORD PARALLELISM SPREAD

INTERNAL EXTERNAL INTERNAL EXTERNAL

s1 ∥ s2 s1 ∥ s2
Ŵ s1 ∥ s2 s1 ∥ s2

Ŵ s1 s2 s2
Ŵ s2 s2

Ŵ

hard .14 .18 .48 .49 .23 .99 .99 .98 .98
interest .27 .33 .36 .38 .13 .85 .85 .91 .95

line .35 .33 .40 .42 .14 .93 .95 .95 .96
serve .50 .45 .50 .54 .14 .74 .85 .89 .87

animal_river .64 .68 .42 .99 .99
banana_moon .45 .49 .23 .99 .98
data_school .62 .64 .26 .96 .96

railway_admission .57 .59 .28 .98 .98
rely_illustration .61 .61 .14 .79 .95

Parallelism results Under PARALLELISM, INTERNAL in Table 5.2.1, column s1 ∥ s2

reports the average of cosine measures between direct representations and indirect representa-
tions, 1

N

∑N
i=1 cos [s1

i, s
2
i], for all senses σi of each target word in the internal variant. Column

s1 ∥ s2
Ŵ shows outcomes when the rows of the word matrix are L2-normalised (euclidean

length), a common practice in word-sense disambiguation and discrimination experiments.
EXTERNAL gives the external variant.

For neither the internal nor the external variants would one say that these cosine values
indicate that the derived direct and indirect sense vectors are approximately parallel. For
most of the HILS items, the average cosine scores increased in moving from the internal to
the external calculation of the word vectors, but still did not result in approximately parallel
vectors. For the pseudowords, although the parallelism is higher, they still cannot be fruitfully
thought of as approximations of each other.

If both vector types were approximations of each other, we could predict that they would

3In Maldonado-Guerra and Emms (2012) the internal and external approaches described here are referred to
as local and global, respectively.

139

Supervised disambiguation WSX experiments: direct vs. indirect Word Space token spaces

perform similarly in any given WSX task. But since they are not, it is not possible to predict
the performance of one based on the performance of the other.

Spread results In Table 5.2.1, with the same settings used as for the consideration of par-
allelism under SPREAD, INTERNAL and EXTERNAL, the cosine averages are given for each
ambiguous item for the sense vector types s1, s2 and s2

Ŵ. For both the HILS and the pseudo-
word data, direct sense representations are far more spread (lowest average cosine scores) than
their indirect counterparts, with the external variants being still even less spread than the
internal.

The interpretation of this result is that means-based sense disambiguation/discrimination
algorithms, such as Rocchio classification or K-Means clustering, will be able to discriminate
senses better on spaces based on direct context vectors than on spaces based on indirect context
vectors. So, direct context vectors could perform better than indirect context vectors in those
experiments. However, recall that direct context vectors are far more sparse than indirect
vectors. So their actual performance will depend on a trade-off between angular spread and
their ability to capture the semantic properties of the contexts they represent.

5.3 Supervised disambiguation

In order to make the supervised experiments as comparable as possible with the unsupervised
experiments, a classifier that presented as many of the same characteristics as the K-Means
clustering method used in the unsupervised experiments was selected for the supervised ex-
periments. A Rocchio classifier (i.e. a nearest centroid classifier) was thus implemented. In
preparation to the classifier’s training, the data is separated into a training and a test portion.
The classifier is trained by creating sense vectors on the training portion. That is, for each
sense in the training portion, a sense vector is computed (direct or indirect). Classification
takes place by computing context vectors (direct or indirect) of ambiguous tokens from the
test portion and assigning each of these context vectors to the nearest candidate sense vector,
as measured by the cosine score. Evaluation is performed via a precision score representing
the percentage of test context vectors assigned to the correct senses (according to test set sense
tagging).

As previously mentioned, experiments were done both with HILS data and the pseudoword
data from the NYT. The corpus for an ambiguous item was randomly split into 60% training
and 40% test. To ensure robustness, four independent splits were done and results are reported
as averages over these splits. Performance is evaluated via a precision score representing the
percentage of test context vectors assigned to their correct senses. In computing indirect
context vectors, the internal approach was taken, so with word vectors computed from the
sub-corpus of occurrences of the ambiguous item. The outcomes are shown in Table 5.3.1
under the SUPERVISED header.

For the HILS and pseudoword data, direct context vectors outperformed indirect (both c2

140

WSX experiments: direct vs. indirect Word Space token spaces Unsupervised discrimination

and c2
Ŵ) vectors. And in three out of four HILS cases, and all pseudoword cases, c2

Ŵ vectors
outperformed c2 vectors. These results mirror to a large extent the behaviours observed in the
geometric experiments, specifically in the spread experiments: since indirect sense vectors are
not very spread out, it is difficult for the Rocchio classifier to correctly assign a sense to an
instance.

For the pseudoword data the gap between c1 and c2
Ŵ was smaller, and overall the pseudo-

word results are across the board significantly higher than the HILS target word results. This is
consistent with previous research that has found that word-sense disambiguation experiments
done on pseudowords tend to report higher results than the same experiments done on real
ambiguous words (Gaustad, 2001).

A majority sense baseline can also be seen in Table 5.3.1 under column M. c1 vectors out-
perform this baseline more often than the other two context vectors, but c2

Ŵ come at a close
second place.

Table 5.3.1: Performance results for Supervised Rocchio word-sense disambiguation experi-
ments and Unsupervised K-Means word-sense discrimination experiments

WORD M SUPERVISED UNSUPERVISED (L2) UNSUPERVISED (cos)

trn & tst: HILS trn & tst: HILS trn: NYT, tst:HILS trn & tst: HILS trn: NYT, tst:HILS

c1 c2 c2
Ŵ

c1 c2 c2
Ŵ

c1 c2 c2
Ŵ

c1 c2 c2
Ŵ

c1 c2 c2
Ŵ

hard 80 79 76 69 79 60 52 77 62 45 57 66 71 66 62 51

interest 53 78 60 71 46 32 42 50 47 59 47 55 49 48 49 59

line 53 77 48 69 50 31 36 53 39 51 43 38 44 44 47 52

serve 41 81 63 70 39 38 50 44 50 62 54 54 53 59 47 61

AVERAGE 57 79 62 70 54 40 45 56 49 55 50 53 54 54 51 56

trn & tst: NYT trn & tst: NYT trn & tst: NYT

PSEUDOWORD M c1 c2 c2
Ŵ

c1 c2 c2
Ŵ

c1 c2 c2
Ŵ

animal_river 67 85 65 79 67 67 63 67 66 57

banana_moon 76 88 66 82 75 74 75 69 73 65

data_school 79 83 82 87 73 77 68 58 77 64

railway_admission 86 90 68 83 83 71 56 70 77 58

rely_illustration 78 90 85 87 78 79 81 82 83 79

AVERAGE 77 87 73 84 75 74 69 69 75 65

5.4 Unsupervised discrimination

For the unsupervised experiments a training set of context vectors of an ambiguous item are
clustered via the K-Means algorithm4. Assuming a 1-to-1 sense/cluster relationship, k is set
to the number of senses of the ambiguous item. In the standard K-Means formulation, the
metric that decides the assignment of a data point to a cluster is the L2 (euclidean length)
distance. However, to ensure symmetry with the supervised experiments we also carried out

4We used a modified version of Wei Dong’s implementation: http://www.cs.princeton.edu/~wdong/kmeans/

141

Unsupervised discrimination WSX experiments: direct vs. indirect Word Space token spaces

experiments using cosine as the assignment metric. Clustering is evaluated according to the
Munkres (1957) algorithm: items from a test set are assigned to their nearest cluster centres
and for each possible sense-to-cluster mapping, a precision score on the test set is determined,
with the maximum of these reported as the final score. Two types of experiments are done
using the HILS data. An internal type uses the same training-test splits as in the supervised
experiments; results are reported in Table 5.3.1 under (trn & tst: HILS). An external type
induces clusters on the NYT and then uses the full HILS target word sub-corpora as test set;
results are reported under (trn: NYT, tst: HILS). Experiments are also done with the NYT
pseudoword data. For increased robustness, we run each K-Means experiment 10 times with
different sets of randomly chosen initial cluster centres. The evaluation scores of these 10 runs
are averaged. For the internal experiments, the 10-run averages for each splitting are in turn
averaged again to provide an overall precision score for each target word.

It is clear from the table that supervised results are far superior to the unsupervised results,
with the c1 roughly following the distribution of the predominant sense (column M). In gen-
eral, it is difficult for context-based WSDisc systems to outperform this baseline (McCarthy
et al., 2004). It seems that global training tends to benefit all three types of context vectors
when clustering by L2 K-Means. But the benefit of global training for cosine K-Means is mod-
est at best. Within the L2 K-Means case, the local c1 vectors perform better than the other
two types of indirect context vectors, largely reflecting the geometry predictions. However,
the global c2

Ŵ
turns out somewhat comparable to c1. Across the cosine K-Means experiments

(local and global), results for the two types of second-order context vectors have mixed per-
formance in relation to the baseline but remain comparable to c1. It can be seen that c2

Ŵ

vectors outperform the baseline 7 times, followed by c1 at 4 times and then the c2 at 3 times.
The target word where the baseline is outperformed more often is serve, which is the word
that has a more balanced sense distribution (see figure 5.1.2).

In the pseudowords (bottom part of table 5.3.1), c2 vectors follow the baseline closely in
L2 and cosine K-Means. L2 c1 scores follow the baseline closer than cosine c1 scores, while
c2
Ŵ

scores tend to stray below the baseline for both L2 and cosine K-Means, with the notable
exception of rely_illustration, a pseudoword that tends to have good results across the board
possibly because it is made up of words with mixed parts of speech (a verb and a noun),
making discrimination easier.

Notice that while the pseudoword “sense” distributions tend to be very skewed (see section
5.1 but also pseudoword baselines), the HILS sense distributions tend to be less so, with
the clear exception of hard. K-Means experiments will in general depend to a great extent
on the skewness of the underlying sense distribution. The performance of c1 vectors will
be consistent and predictable as they will tend to follow this skewness. c2 and c2

Ŵ
vectors

might achieve better or similar results to c1 vectors (under certain circumstances) but it is not
guaranteed that this will be consistent.

142

WSX experiments: direct vs. indirect Word Space token spaces Comparisons and conclusions

5.5 Comparisons and conclusions

The evaluation methods for WSD and WSDisc presented here were chosen due to their usage
in previous work, notably Schütze (1998), Purandare and Pedersen (2004) and de Marneffe
and Dupont (2004). Also, the classification and clustering methods used here are admittedly
basic and simple. The reason why they are used is because their properties are well understood
and they enable solid comparison between different versions of token representations. For
consistency, the same methods will be used in Chapters 6 and 7.

Purandare and Pedersen (2004) report a number of experiments on word-sense discrimin-
ation, and contrast direct and indirect outcomes. They evaluate on two separate sense-tagged
corpora: a version of the HILS dataset and a smaller dataset derived from the SENSEVAL-2
dataset which has 10 times fewer examples per sense than the HILS dataset. They found that
indirect outcomes exceeded direct on the smaller data set, but that direct outcomes exceeded
indirect on the larger data set. As we argue below, however, inspection of their definitions
reveals that they are not really comparing minimal pairs in the first and second order versions.

In all our experiments the features of vectors have been identifiable with unigrams in
some vocabulary V . Purandare and Pedersen (2004) work also with features they term co-
occurrences Fco and bigrams Fbi. Fco is a chosen set of co-occurrence features, each of which
is a pair {τ, υ} defined to occur in a window if τβυ or υβτ is a subsequence of the context,
with β a to-be-specified tolerance of intervening words. The selection of the actual set of
features in Fco from all possible such pairs is through a statistical word association test, such
as the log-likelihood criterion (Dunning, 1993). Fbi is a chosen set of bigram features, each
of which is a pair {τ, υ} in which τ and υ must occur in that order, again with a tolerated
interval of other words between them.

For their first-order experiments, they construct direct context vectors usingFco andFbi for
features, and these are contrasted with indirect outcomes as follows. For Fco, with a tolerance
of β, let Vco be all unigrams that are members of the selected co-occurrences in Fco, construct
direct context vectors using the unigrams Vco for features, with window width of β, and form
from these a word matrix Wco. Indirect context vectors are then made by transforming un-
reduced direct context vectors with unigram features from Vco by Ŵco, an SVD reduction of
Wco. For Fbi, with a tolerance of β, let Vfst (resp. Vsnd) be all unigrams occurring first (resp.
second) in a bigram feature, construct direct context vectors using the unigrams Vsnd for fea-
tures, with a window width of β, going only right of a target word, and form from these a
word matrix Wbi. Indirect context vectors are then made by transforming unreduced direct
context vectors with unigram features from Vfst by Ŵbi, an SVD reduction of Wbi.

They ultimately thus present results contrasting
⟨ c1: Fco vs. c2: c1(Vco)× Ŵco ⟩ ⟨c1: Fbi vs. c2: c1(Vfst)× Ŵbi ⟩

These experiments do not therefore contrast outcomes with a particular kind of direct con-
text vector with those that would be obtained simply by transforming exactly those direct context
vectors by a some kind of word matrix. The natural comparison to make is between outcomes

143

Comparisons and conclusions WSX experiments: direct vs. indirect Word Space token spaces

with these indirect context vectors and outcomes with their unigram-features direct counter-
parts before transformation by the word matrix.

Thus it seems fair to say that the conclusions they draw concerning dependency on the size
of the data set are not based on contrasting minimal pairs. Rather than contrasting outcomes
with a particular kind of direct context vector with those that would be obtained simply by
transforming exactly those direct context vectors by some kind of word matrix, they are con-
trasting co-occurrence based direct context vectors with the transformation of unigram-based
direct context vectors. Their findings concerning dependency on the size of the data-set are
thus potentially attributable to factors other than the direct vs. indirect contrast. In our ex-
periments we did not systematically vary the size of the data set and it remains for future
work to revisit this size dependency issue with more strictly comparable first- and indirect
representations.

In our work, we contrasted direct context vectors versus second order-context vectors, both
using unigram features. The geometric experiments as well as the supervised word-sense dis-
ambiguation experiments suggest that in this simplest configuration, c1 vectors are better than
c2 vectors. In the supervised WSD experiments, the c1 vectors beat both variants of c2 vectors
on all of the HILS words and on 4 of the pseudowords, out of a total of 5. On both datasets
c1 vectors beat the M baseline in 8 out of 9 cases and c2

Ŵ does so in 7 out of 9 cases.
In the unsupervised experiments, on the average the c1 vectors and c2 vectors outcomes are

much closer together, and for the HILS data, best outcomes are about 25% down from the
supervised case, whilst for the pseudoword data, the fall is around 12%; thus the multi-way
ambiguity of the HILS data versus the 2-way ambiguity of the pseudoword data seems to be
particularly challenging to the unsupervised methods. On the pseudowords, the M baseline
is seldom beaten, and the advantage of c1 vectors over c2 vectors from the supervised case is
not replicated. On the HILS data, only for serve is the M baseline often beaten. Across the
representations, the external version with clustering on the large NYT corpus performed better
than the internal version, which clusters on a subset of the HILS. And again, the advantage
of c1 vectors over c2 vectors from the supervised case is not replicated, with varying outcomes
across the words, and a close final average.

Thus these experiments have shown an advantage of c1 vectors over c2 vectors for the super-
vised case, and no clear winner for the unsupervised case. It has to be stressed that the setting
used for c1 vectors and c2 vectors were in many respects, the simplest possible, and a different
picture might emerge under different settings.

144

6 WSX experiments: unreduced vs.

SVD-reduced token spaces

As mentioned in Chapter 3, the motivation of using Singular Value Decomposition (SVD)
is threefold: 1) to reduce the dimensionality of the vector spaces in order to make compu-
tations more tractable, 2) to group together features that are deemed to be similar or related
via higher-order co-occurrence, and 3) to produce a vector space that is more sensitive to the
polysemy of words, a highly desirable effect for methods dealing primarily with word senses.
As a consequence, several adaptations of SVD have been involved in word-sense disambigu-
ation, induction and discrimination (WSX) methods based on the vector space model (VSM).
As it will be seen in Section 6.1, these adaptations are based on Word Space, LSA or some mix
of the two. However, works reporting WSX experiments based on these adaptations do not
usually consider the relationships between Word Space and LSA discussed in Chapter 4, so
even works that present benchmarks comparing the two approaches might not be completely
systematic. This chapter aims to conduct word-sense disambiguation and discrimination ex-
periments more systematically, according to the settings and combinations summarised in
Table 4.2.1 (p. 111).

6.1 Background

Perhaps the first work to incorporate SVD in a word-sense discrimination task was Schütze
(1998) who found indirect context vectors computed from SVD-reduced word matrices (I-
W-R1/2) to perform better than unreduced indirect context vectors (I-W-UR) on word-sense
discrimination experiments based on pseudowords and some real polysemous words. Pur-
andare and Pedersen (2004) also conducted word-sense discrimination experiments but they
contrasted different variants of direct context vectors (Pedersen and Bruce, 1997) and indirect
context vectors similar to Schütze’s. All of their indirect context vectors were constructed from
SVD-reduced word matrices (I-W-R1/2), whilst their direct context vectors were all used in
unreduced form (D-C-UR). So no comparison of the effects of using SVD on same-order
context vectors was performed (i.e.: I-W-UR vs. I-W-R1/2 or D-C-UR vs. D-C-R1/2).
Emms and Maldonado-Guerra (2013) did work with SVD-reduced direct context vectors
(D-C-R1/2). While we did not perform experiments with unreduced direct context vectors
in this work, by consulting results in Maldonado-Guerra and Emms (2012) (see also Chapter
5), it can be found that unreduced direct context vectors actually perform very similarly to

145

Background WSX experiments: unreduced vs. SVD-reduced token spaces

SVD-reduced vectors on unsupervised word-sense discrimination experiments. The common
thread uniting these works is that they all cluster direct (first-order) or indirect (second-order)
context vectors based on Word Space.

An alternative line of work using SVD on word-sense discrimination is Levin et al. (2006).
This work disambiguates SVD-projected segment vectors from Salton’s original vector space
model, essentially a direct token representation based on LSA which this thesis labels as D-A-
R1/2. It is reasonable to expect D-A-* and D-C-* to perform similarly, given that A ≈ C as
per Definition 4.3.1 (p. 124). Something similar could be said for I-A-* and I-C-*. Since the
SVD projections for word vectors from A andW are also approximations of each other ifW is
symmetric as shown in the discussions in Section 4.3 (p. 122), we can expect I-W-R1/2 and
I-A-R1/2 to perform similarly, even if I-W-UR and I-A-UR turn out to perform differently
as the word vectors and their features in each configuration is different and incompatible.

It would be interesting to compare empirically the performance of these token vector con-
figurations in actual WSX experiments. A work that goes some way towards this direction
is Pedersen (2010). This work carried out word-sense discrimination experiments based on
pseudowords using three main types of context vectors:

• Unreduced direct context vectors (called o1 in Pedersen’s paper). There were two
subtypes of direct context vectors features: unigram features (o1-uni), which are
identical to the vectors defined by Definition 3.5.2 (p. 100), and bigram features (o1-
big), which use the bigram features used by Purandare and Pedersen (2004) and dis-
cussed in Section 5.5 (p. 143).

• Indirect context vectors computed from a word matrix of so-called bigram features. This
is the matrix Wbi described in Section 5.5 (o2SC). Another subtype of indirect context
vector is also produced using Ŵbi, an SVD-reduced version of Wbi (o2SC-SVD). The
paper does not make explicit if R1 or R2 projections are used in the computation of
Ŵbi.

• LSA-inspired variants of context vectors. The paper mentions that a word-context mat-
rix, which I shall call X, is constructed with direct context vectors of unigram features as
its columns. Then, indirect context vectors are formed by (averaged) matrix multiplic-
ation of direct context vectors by this matrix, i.e.: c2(κ) = XTc1(κ)/

∑m
i=1[c

1(κ)]i,
where [c1(κ)]i is one of the m features in c1(κ). Pedersen refers to this setting as
o2LSA, even if it does not use SVD. In the paper descriptions, it is somewhat am-
biguous whether X = C, where C is the matrix of direct context vectors, or X = A,
Salton’s original VSM matrix. Recall that the main difference between A and C is the
fact that A gives an additional count to the token that would be represented by each
type vector in C, since it counts full segments (Def. 4.3.1, p. 124). Given Peder-
sen team’s experience with Word Space methods, it is highly likely that X = C. But
that is only a guess. Also, recall from Section 4.2.1 (p. 111) that there are at least

146

WSX experiments: unreduced vs. SVD-reduced token spaces Background

Table 6.1.1: An attempt to align vector configurations in Pedersen (2010) with vector config-
urations in this thesis.

Pedersen’s This thesis configuration
configuration Definition Conf. label
o1-uni 3.5.2 D-C-UR
o1-big 3.5.2 (bigram) D-C-UR (bigram)
o2SC 4.1.1(bigram) I-W-UR (bigram)

o2SC-SVD 4.2.5(bigram) I-W-R1? or -R2? (bigram)

o2LSA
4.2.3? I-C-UR?
4.2.6? I-A-UR?

o2LSA-SVD
4.2.4? I-C-R1? or -R2?
4.2.7? I-A-R1? or -R2?

three ways in which C can be constructed. Option 3 is the most similar to Salton’s
VSM matrix. But it is not clear from Pedersen’s paper which of the three options
(or even whether another option not contemplated in this list) was used, if he in-
deed used X = C. An SVD-reduced version of X was also created, X̂ = UkΣkVk,
and used to create reduced indirect context vectors via the usual matrix transform-
ation of first order context vectors: either cR1(X)(κ) = ΣkUk

Tc1(κ)/
∑m

i=1(c
1(κ))i or

cR2(X)(κ) = Uk
Tc1(κ)/

∑m
i=1(c

1(κ))i. This setting is called o2LSA-SVD in Pedersen’s
paper.

Table 6.1.1 summarises the vector configurations used in Pedersen’s paper and attempts to
pair them with the summary of vector configurations from Table 4.2.1 (p. 111). The main
issue with Pedersen’s configurations is the ambiguity in the two o2LSA configurations. An-
other issue is the comparison of different configurations using different features (unigrams vs.
bigrams), which adds another layer of complexity to the comparison between configurations.
Lastly, a significant omission is the direct reduced and unreduced segment vector based on A

as in Levin et al. (2006), or at least its approximation via C.
This chapter aims to repeat these experiments in a more systematic way as informed by

the conclusions in Section 4.4 and largely following the methodology used in Maldonado-
Guerra and Emms (2012) upon which Chapter 5 is based and plotting the performance of
different degrees of truncation on the SVD as was done in Levin et al. (2006) and Emms and
Maldonado-Guerra (2013). It is expected that these experiments will show:

1. Which of the two LSA configurations, direct (D-A-*) or indirect (I-A-*), performs
better?

2. Are the differences in LSA and Word Space significant enough to impact on their per-
formance on WSX experiments? In particular: D-A-* vs. D-C-* and I-A-* vs. I-W-*.

147

Methodology WSX experiments: unreduced vs. SVD-reduced token spaces

6.2 Methodology

Maldonado-Guerra and Emms (2012), work upon Chapter 5 is based, contrasted unreduced
direct context vectors with unreduced indirect context vectors by comparing two geometric
properties of these representations (parallelism and angular spread) as well as by conduct-
ing word-sense disambiguation and discrimination experiments. This work found that both
vector representations are very different from each other (low parallelism), that sense vectors
based on direct context vectors are more spread than indirect context vectors and found a su-
perior performance of direct context vectors on supervised word-sense disambiguation, while
finding relatively poor performance in both context representations on unsupervised word-
sense discrimination experiments. This chapter will only be concerned with the word-sense
disambiguation and discrimination experiments. In order to avoid running many configur-
ation combinations, only experiments on the internal HILS dataset will be conducted. That
is, experiments training externally on the NYT and testing on the HILS dataset are not con-
sidered. Table 4.2.1 (p. 111) shows the configurations for the experiments presented in this
chapter.

We largely follow the methodology used by Levin et al. (2006) and Maldonado-Guerra and
Emms (2012) (Chapter 5) and use the HILS dataset (Sec. 5.1, p. 136). Using repeated (4
times) random sub-sampling validation, each target-word corpus was split into a 60% training
portion and a 40% test portion in each repetition. Context vectors using the configuration
combinations from Table 4.2.1 were constructed. For those combinations requiring SVD,
vectors were created using truncations from 50 to 1000 dimensions at 50 dimension intervals.
Independent word-sense disambiguation and discrimination experiments were conducted on
every configuration and dimension combination for every split of each target-word corpus
and the accuracy results were averaged across the splits for each combination.

Supervised word-sense disambiguation experiments are based on a simple Rocchio classi-
fier: the training vectors are grouped by sense as per the dataset’s own sense-tagging, and the
centroid (average) of every sense-specific group is taken. Each test vector is then classified
to the sense whose sense vector is closest according to the cosine measure. Performance is
measured by the accuracy of the classifier on the test set.

Unsupervised word-sense discrimination experiments are based on a cosine-based K-Means
clusterer. Being an unsupervised experiment, the sense-tagging of the training set is com-
pletely ignored. K clusters are induced from the training set, with K being the number of
the target word senses. Test vectors are then assigned to their closest cluster based on cosine.
Performance is measured according to the Munkres (1957) algorithm: accuracies are com-
puted for each possible mapping of senses with cluster assignments and the maximum of such
accuracies is reported as the experiment’s performance. A K-Means experiment is repeated 30
times for robustness and the average accuracy is then reported as its overall accuracy.

148

WSX experiments: unreduced vs. SVD-reduced token spaces Experimental results

Table 6.3.1: Accuracy maxima for supervised (top sub-table) and unsupervised (bottom sub-
table) experiments. For R1 and R2 projections, the number of SVD dimensions
kept is indicated in parentheses.

SUP
hard (MS=80) interest (MS=53) line (MS=53) serve (MS=41)

R1 R2 UR R1 R2 UR R1 R2 UR R1 R2 UR

D-A 79.14 (1000) 80.36 (350) 79.69 62.18 (900) 75.97 (450) 62.23 58.99 (1000) 75.11 (950) 59.52 67.77 (1000) 81.20 (600) 67.88
D-C 77.53 (950) 73.34 (500) 78.08 72.94 (950) 73.36 (400) 72.94 75.66 (1000) 75.59 (950) 76.28 75.23 (950) 80.17 (600) 75.54
I-W 75.38 (950) 76.96 (1000) 75.36 58.96 (500) 72.12 (900) 58.75 48.63 (750) 75.17 (1000) 48.61 64.19 (100) 74.86 (850) 64.22
I-A 72.61 (900) 77.03 (1000) 72.42 64.08 (650) 72.89 (1000) 64.06 67.14 (850) 75.73 (1000) 67.17 67.20 (950) 75.50 (950) 67.25
I-C 74.28 (950) 77.53 (950) 74.25 64.27 (700) 72.94 (950) 64.19 68.58 (1000) 75.66 (1000) 68.58 67.38 (950) 75.23 (950) 67.37

UNS
hard interest line serve

R1 R2 UR R1 R2 UR R1 R2 UR R1 R2 UR

D-A 65.15 (650) 51.34 (50) 64.87 45.42 (650) 35.65 (50) 45.50 26.07 (850) 25.63 (100) 26.47 39.16 (950) 36.37 (50) 39.60
D-C 55.05 (50) 39.81 (50) 52.77 42.10 (150) 31.02 (50) 41.86 29.18 (900) 29.10 (100) 31.40 53.73 (850) 39.02 (50) 54.44
I-W 68.28 (1000) 52.90 (250) 67.28 44.93 (350) 42.31 (450) 44.39 37.55 (1000) 29.56 (800) 37.37 58.98 (350) 54.69 (50) 58.89
I-A 60.44 (250) 50.11 (900) 60.00 43.11 (850) 42.02 (800) 42.99 32.47 (400) 29.82 (250) 32.97 56.18 (700) 53.91 (150) 56.86
I-C 59.42 (50) 55.12 (50) 57.54 43.17 (950) 42.11 (200) 42.73 32.75 (650) 29.52 (300) 31.80 56.43 (1000) 53.58 (900) 56.29

6.3 Experimental results

Table 6.3.1 shows the best accuracy scores achieved by the R1 and R2 projections (R1 and R2
columns, respectively) for each configuration combination, indicating the number of SVD
dimensions kept in parentheses. The UR column (“unreduced”) reports the accuracy achieved
when SVD is not applied. The accuracies in bold are the maximum accuracy obtained from
all configuration combinations for a word in the supervised or unsupervised settings. The MS
numbers next to the word headings in the top sub-table indicate the majority sense baseline
for each word, i.e. the accuracy score obtained when assigning all test instances to the majority
sense. Figure 6.3.1 reports these results in more detail as plots of accuracy against number of
SVD dimensions kept.

6.3.1 General observations

First, from the graphs it is evident that in general supervised experiments (solid lines) achieve
higher accuracy scores than unsupervised ones (dotted lines), which is not surprising and is
consistent with previous results (Pedersen, 2007). The supervised scores generally meet or
exceed the majority sense baseline (MS number in Table 6.3.1, see also Figure 5.1.2, p. 138)
whilst the unsupervised scores struggle to approximate it.

Second, The R1 vectors (lines with black points) on the supervised (solid) and unsupervised
(dotted) cases perform below their respective unreduced vectors (grey lines) in the lower di-
mensions but as dimensions grow, they increase their performance and meet the unreduced
vectors’ performance generally quite quickly, with the exception of hard -D-A-R1 and line-
D-C-R1 which increase relatively slowly. However, the R1-projected vectors never really out-
perform the unreduced vectors, in neither supervised/unsupervised case. The R2-projected

149

Experimental results WSX experiments: unreduced vs. SVD-reduced token spaces

vectors (lines with white dots) on the other hand behave very differently to the unreduced
vectors (grey lines). For the supervised case (solid lines), R2 vectors meet or outperform the
unreduced vectors, but for the unsupervised case (dotted lines), their performance seems to
decrease as dimensions grow in the direct configurations (D-A-R2, D-C-R2), whilst in the
indirect configurations (I-W-R2, I-A-R2, I-C-R2) they remain roughly constant and almost
always below the unreduced and R1 vectors.

Third, D-A-R2 (standard LSA via R2) gives the overall best scores for the supervised case.
However, observe that the scores for unreduced D-C-UR (first-order) vectors are quite similar.
Given the expense of performing SVD, D-C-UR vectors might perhaps offer the best trade-
off between computational cost and accuracy. The best unreduced unsupervised score (bold
grey dotted line) is generally achieved with the I-W-UR configuration, i.e. using Schütze’s
standard second-order context vectors, with the exception of interest. For the unsupervised
case, SVD does not seem to help much, a result consistent with Pedersen (2010), and given
the expense of computing SVD and the overall modest benefits it brings to D-A-R2 over D-
C-UR, it is perhaps advisable to stick to unreduced vectors (in this case the D-C-UR version)
for the supervised case as well.

Section 3.4.2 (p. 81) argued that R1 projections should be more appropriate than R2 pro-
jections for the type of comparisons that we wanted to perform in WSX experiments in LSA
and Word Space. However, the experimental results presented here suggest that R2 projections
can indeed provide much better results than R1 projections in some supervised experiments
(such as supervised D-A-R2, I-A-R2, I-W-R2 and I-C-R2), but the whole picture almost re-
verses for the unsupervised case (esp. in D-A-R2 and to a lower extent in I-W-R2), where
R2 performs worse or at least not better than R1, which is more consistent with the original
remarks made in Section 3.4.2. Recall as well that in that section an intuitive interpretation
of R2 projections was given in which they could be regarded as segments in which only one
token occurs or types that only occur in one segment. Perhaps this is having a noise reduction
effect in the supervised case that aids in classification, but perhaps hinders the generalisations
needed to successfully cluster in an unsupervised manner. Further investigation into this is
left for future work.

6.3.2 Direct vectors: D-A vs. D-C

The unreduced vectors (grey bold lines) do present some variation for both the supervised
(solid line) and the unsupervised case (dotted line), indicating that the small difference in
count from (4.3.1) has an impact on performance. However, for supervised R2 (solid lines
with white points), the scores and the shapes of the lines between D-A-R2 and D-C-R2 are
very similar for all words, although they are a bit dissimilar for hard. Similarly, the shapes
between supervised D-A-R1 and D-C-R1 (solid lines with black points) are also similar, even
if the actual accuracies are not that similar. The overall effects of SVD seem to be the same in all
words, but the difference in count between Word Space and LSA will offset the performance

150

WSX experiments: unreduced vs. SVD-reduced token spaces Conclusions

of both unreduced vectors and SVD-reduced vectors.

6.3.3 Indirect vectors: I-W vs. I-A and I-C

For I-A-* vs. I-C-*, with the exception of unsupervised hard, the supervised and unsupervised
lines for all words are almost identical. It seems therefore that the difference in count between
Word Space and LSA do not impact the overall performance of unreduced and SVD-reduced
vectors when these are computed using the indirect (a.k.a. “second-order”) method. Both
I-A-* and I-C-* are slightly more different to I-W-*, which comes as a slight surprise, given
that from the analysis in Chapter 4, we would have expected I-W-* to be more similar to both
I-A-* and I-C-* than they actually are. The difference in the diagonals between AAT and W

described in (4.3.2) seems to have a slightly bigger impact on performance.

6.4 Conclusions

Chapter 4 showed that the relationship between Word Space and LSA is more complicated
than generally believed and whilst it can be shown that the vectors used to represent word types
and tokens in each model are approximations of each other, they are not interchangeable in
all circumstances. Despite being approximations, it is possible to state relations of equality
between the objects in each model, allowing the adaptation of software tools designed for one
model to be used for the other model with some degree of ease. That chapter also demonstrated
that Word Space and LSA allow two basic methods of representing tokens via context vectors:
a direct (or “first-order”) method and an indirect (or “second-order”) method, the latter of
which can be regarded as the result of a linear transformation of the former via some matrix
acting as a linear map. Customarily, this linear map is the Word Space word matrix W, but
can be any other matrix, including a matrix of Word Space direct context vectors C or the
LSA word-document matrix A.

The experiments in this chapter showed that whilst the difference between both models
boils down to a very small difference in counting between the two models, it can cause the
models to either keep their difference in performance negligible (I-A-* vs. I-C-*) or diverge
to a point in which the difference offsets performance considerably (all other combinations),
depending on how the LSA or Word Space objects are actually employed.

Given the common ways in which LSA and Word Space are actually employed (namely, D-
A-*, D-C-* and I-W-*), this offset in performance of means-based word-sense disambiguation
and discrimination experiments will depend on the actual token representation configuration
chosen. Finally, it was found that whilst SVD can help when LSA direct context vectors
are used, the overall best results were obtained with the standard application of Word Space
(D-C-UR “first-order” and I-W-UR “second order” vectors) without using SVD.

151

Conclusions WSX experiments: unreduced vs. SVD-reduced token spaces

200 600 1000

20
40

60
80

hard D−A

●

●
●

● ●

●

● ● ● ●

● ● ● ● ●

●
●

● ● ●

200 600 1000

20
40

60
80

hard D−C

●

● ● ● ●

●
● ● ● ●

●
● ● ● ●

●
● ● ● ●

200 600 1000

20
40

60
80

hard I−W

● ● ● ● ●
●

● ● ● ●

● ● ● ● ●

● ●
● ● ●

200 600 1000

20
40

60
80

hard I−A

●
● ● ● ●

●

● ● ● ●

● ● ● ● ●

●
●

● ● ●

200 600 1000

20
40

60
80

hard I−C

●
● ● ● ●

●

● ● ● ●

● ● ● ● ●
●

● ● ● ●

200 600 1000

20
40

60
80

interest D−A

●

● ● ● ●●

● ● ●
●

● ● ● ● ●

●

●
● ● ●

200 600 1000

20
40

60
80

interest D−C

●

● ● ● ●

●

● ●
●

●

● ● ● ● ●

●

● ● ● ●

200 600 1000

20
40

60
80

interest I−W

● ● ● ● ●
●

● ● ● ●

● ● ● ● ●
● ● ● ● ●

200 600 1000

20
40

60
80

interest I−A

●
● ● ● ●●

● ● ● ●

● ● ● ● ●● ● ● ● ●

200 600 1000

20
40

60
80

interest I−C

●
● ● ● ●●

● ● ● ●

● ● ● ● ●● ● ● ● ●

200 600 1000

20
40

60
80

line D−A

●

● ● ● ●●

●
● ● ●

● ● ● ● ●● ● ● ● ●

200 600 1000
20

40
60

80

line D−C

●

● ● ● ●

●

●
● ● ●

● ● ● ● ●●
●

● ● ●

200 600 1000

20
40

60
80

line I−W

● ● ● ● ●

●

● ● ● ●

● ● ● ● ●

● ● ● ● ●

200 600 1000

20
40

60
80

line I−A

●
● ● ● ●●

● ● ● ●

● ● ● ● ●
● ● ● ● ●

200 600 1000

20
40

60
80

line I−C

●
● ● ● ●

●

● ● ● ●

● ● ● ● ●
● ● ● ● ●

200 600 1000

20
40

60
80

serve D−A

●
● ● ● ●

●
● ● ● ●

● ● ● ● ●
●

● ● ● ●

200 600 1000

20
40

60
80

serve D−C

●
● ● ● ●●
● ● ● ●

● ● ● ● ●

●

● ● ● ●

200 600 1000

20
40

60
80

serve I−W

● ● ● ● ●
●

● ● ● ●

● ● ● ● ●
●

● ● ● ●

200 600 1000

20
40

60
80

serve I−A

● ● ● ● ●
●

● ● ● ●

● ● ● ● ●
● ● ● ● ●

200 600 1000

20
40

60
80

serve I−C

● ● ● ● ●●
● ● ● ●

● ● ● ● ●
● ● ● ● ●

●

●

●

●

Supervised R1
Supervised R2
Supervised unreduced
Unsupervised R1
Unsupervised R2
Unsupervised unreduced

Figure 6.3.1: Accuracy plots matrix for every configuration (rows) and for each ambiguous
word (columns). Each plot reports accuracy % (y-axis) against SVD dimensions
kept (x-axis). Solid lines and dotted lines represent supervised and unsupervised
experiments, respectively. Lines with black points represent R1 projections and
those with white points, R2 projections. The bold, grey constant lines represent
unreduced vector results for both supervised (solid) and unsupervised (dotted).

152

7 Word matrix consolidation as a

dimensionality reduction method

Section 3.4 (p. 78) explored Singular Value Decomposition (SVD) and its use as a technique
for dimensionality reduction within Latent Semantic Analysis. That section also studied how
SVD is able to discover latent (hidden) meaning in the Vector Space Model while at at the same
time reducing noise. Word-sense disambiguation (WSD) as well as word-sense discrimination
(WSDisc) methods employ context vectors, which are high-dimensional objects that represent
the instance of an ambiguous word. Two types of context vectors are commonly used: Word
Space direct (first-order) context vectors (c1) and indirect (second-order) context vectors (c2).
c1 vectors count direct co-occurrences of the target word with other words in the vocabulary
whilst c2 vectors represent instances of the target word by counting the words that the words
occurring in the target word’s context tend to co-occur with elsewhere in the corpus (Schütze,
1998; Purandare and Pedersen, 2004).

SVD can be applied to the word matrix or to a matrix consisting of context vectors of either
order. However, the usage of SVD presents the user with some empirical decisions that need
to be made such as the optimal number of dimensions to keep during the dimensionality
reduction process, which usually varies with the target word being discriminated. Also, the
way it works is not transparent or intuitive, leaving researchers to experiment with it largely
by trial and error.

Section 4.1 (p. 108) makes the case that the word matrix W ∈ Rm×n used in the compu-
tation of indirect context vectors could be used as an alternative method of dimensionality
reduction if n < m. This chapter presents a dimensionality reduction method based on this
insight which aims to be more intuitive than SVD. In other words, we present a method to
convert a c1(κ) ∈ Rm vector via a W ∈ Rm×n matrix of lower dimensionality (n < m), into a
c2(κ) ∈ Rn vector of lower dimensionality based on a more intuitive criterion for reduction.

In this chapter, a W matrix of lower dimensionality is obtained by consolidating together
dimensions of words that are statistically associated. Roughly speaking, this method first
constructs a W ∈ Rm×m matrix. Then it carries out hypothesis tests of word association based
on the log-likelihood ratio score between each pair of words represented in the W matrix
(Dunning, 1993). The dimensions of those words which the hypothesis test determines to
be strongly associated are merged into one dimension by summing those dimensions’ column
vectors together. Any given dimension can be associated and therefore merged with zero, one
or more dimensions. This merging procedure reduces the number of dimensions in the final

153

Statistical word matrix Word matrix consolidation as a dimensionality reduction method

Table 7.1.1: Sample contingency table – n11counts the number of times word W1 and word
W2 co-occur, n12 the number of times W1 occurs without co-occurring with
W2, etc.

W2 ¬W2
W1 n11 n12

¬W1 n21 n22

consolidated word matrix. The intuition behind this method is that words that are statistically
associated tend to form collocations, i.e. pair of words that co-occur more often than what
pure chance would allow.

7.1 Statistical word matrix

Definition 3.5.1 (p. 96) describes a word matrix W co-occurrence frequency between words
pairs. As mentioned in Section 3.2 (p. 67) vectors (and matrices) used in vector space mod-
els often employ alternative feature functions based on different weighting schemes and to
highlight the relevance of some features over the others. One such common alternative fea-
ture function is the log-likelihood ratio (Dunning, 1993), which measures how statistically
significant the co-occurrence association of a word pair is. The motivation behind using log-
likelihood scores comes from an interpretation of the values of each cell as the degree of as-
sociation between the two words represented by the cell. Since this degree of association is
based on the co-occurrence of both words, it can be taken as a measure of the strength of
their syntagmatic association. Log-likelihood ratios capture better this degree of association
than frequency alone. In addition, these type of features have been used in word matrices
before. For example, Purandare and Pedersen (2004) constructed such word matrices with
log-likelihood scores as features in their word-sense discrimination experiments.

If a co-occurrence is not statistically significant (i.e. the two words co-occur by chance),
then the log-likelihood score should follow the χ2 distribution with one degree of freedom
(ν = 1); if, on the contrary, the co-occurrence is significant (i.e. the two words co-occur
more often than what would be expected by chance), then the log-likelihood score does not
follow such a χ2

ν=1 distribution. Equation (7.1.1) shows the formula for computing the log-
likelihood score:

G2 = 2
∑

ij

nij log
nij

mij
(7.1.1)

Where nij are the observed values from the co-occurrence contingency table (see e.g. Table
7.1.1) and mij the expected values calculated from the marginals of such a contingency table
(Purandare, 2004, pp. 35–48).

154

Word matrix consolidation as a dimensionality reduction method Statistical word matrix

The raw frequency word matrix can be converted to a log-likelihood word matrix by ap-
plying the following formulas to compute the observed values for each entry wij in the matrix
and then applying Equation (7.1.1):

n(wij)
11 = wij (7.1.2)

n(wij)
12 = (

∑
j

wij)− n(wij)
11 (7.1.3)

n(wij)
21 = (

∑
i

wij)− n(wij)
11 (7.1.4)

n(wij)
22 = (

∑
ij

wij)− n(wij)
11 − n(wij)

12 − n(wij)
21 (7.1.5)

We call such a log-likelihood matrix L and each entry lij. If the original W ∈ Rm×m, then L

continues to be a symmetric matrix, L ∈ Rm×m. We can use L exactly in the same way we use
W, which is what Purandare and Pedersen (2004) do, but we can also go a bit further with
the statistical significance tests.

The numbers in L tells us how strongly associated two words are, regardless of their fre-
quency. So, they are less biased numbers than the raw frequency counts in W. But in some
circumstances we might just be interested in knowing whether two words are statistically as-
sociated or not. The task of determining whether the co-occurrence is statistically associated
takes the shape of a χ2 hypothesis test of independence (Manning and Schütze, 1999, Sec.
5.3.4), in which the null hypothesis is that the two words are independent (occurring by
chance). The null hypothesis is accepted if the computed log-likelihood score falls on or be-
low the χ2

ν=1 critical value at a determined p-value. For example, very frequently a p-value of
0.05 is used. This p-value of 0.05 can be interpreted as guaranteeing with 95% confidence
that the hypothesis is being correctly accepted or rejected. In other words, we are 95% certain
that the hypothesis test gives us the correct answer. At a p-value of 0.05 the χ2

ν=1 critical value
is 3.841. So, if we obtain a log-likelihood score less or equal than this critical value, we accept
the null hypothesis that the two words are occurring by chance, and if it is more than this
value, we reject the null hypothesis that the two words are occurring by chance. We can use
the outcome of this hypothesis test as binary features hij of a matrix H. If we accept the null
hypothesis (chance occurrence) for word wij then we set the hij entry in H to 0. If the null
hypothesis is rejected (no chance occurrence) for word wij then we set a the corresponding
entry in H to 1. H is also a symmetric matrix (H ∈ Rm×m) and again, we could easily employ
H instead of L or W in the computation of indirect context vectors via Definition 4.1.1 (p.
109):

cW(κ) = WTc1(κ) (7.1.6)

cL(κ) = LTc1(κ) (7.1.7)

cH(κ) = HTc1(κ) (7.1.8)

155

Reduction by consolidation Word matrix consolidation as a dimensionality reduction method

Algorithm 7.1 Word Matrix dimension consolidation
Input: W of size f1 × f1, H of size f1 × f1
Output: Ŵ: a version of W in which columns of significantly associated words (as encoded by L) have been aggregated (summed) into
single columns.
Begin

1. Ŵ is initially empty (we will append columns to it as we go along)
2. Initialise map to an empty set. map is a hash that maps W columns to Ŵ columns.
3. ŵ(c)

1 ← (w(r)
1)T (i.e. add transpose of first row vector w(r)

1 in W as first column vector of Ŵ).
4. Add mapping 1→ 1 to map.
5. Initialise: i← 2; ı̂← 2
6. For row vector h(r)i :

6.1. If hj = 0 ∀hj ∈ h(r)i for j < i, then: (i.e. if the first i− 1 elements of vector h(r)i are 0).
6.1.1. ŵ(c)

ı̂ ← (w(r)
i)T

6.1.2. Add mapping i→ ı̂ to map.
6.1.3. ı̂← ı̂+ 1

6.2. Otherwise:
6.2.1. jf ← min{j|hj ̸= 0} (i.e. jf is the first non-zero dimension in h(r)i)
6.2.2. ȷ̂f ← map(jf)

6.2.3. ŵ(c)
ȷ̂f
← ŵ(c)

ȷ̂f
+ (w(r)

i)T

6.2.4. Add mapping i→ ȷ̂f to map.
6.3. i← i + 1

7. End for

End

In the consolidation algorithm considered in the following section, the matrix H is used to
identify associated words whose dimensions can be consolidated into one.

7.2 Reduction by consolidation

In this section we propose an algorithm that consolidates dimensions of word pairs that occur
more often than by chance. The algorithm takes as input the unreduced W matrix and its
corresponding H matrix. It starts by initialising the output object Ŵ to an empty matrix and
an intermediary object map which keeps track of whichW dimensions have been consolidated
to which Ŵ dimensions. Let w(r)

i and w(c)
j be the ith and jth row vector and column vector,

respectively, of W and, similarly, let ŵ(r)
i and ŵ(c)

j have the same analogous relationship with
Ŵ, as well as h(r)i and h(c)j withH. Then, step 3 takes the transpose of the first row vector ofW,
(w(r)

1)T, and makes it the first column of Ŵ, ŵ(c)
1 . Notice that both W and H are symmetric

matrices. The algorithm then proceeds to process the rest of the rows in both H and W.
Notice there are two counters in the algorithm: i, which keeps track of the current row/column
in W and H, and ı̂, used to track the next column to append to Ŵ. Step 6.1 tests whether
all the dimensions before the diagonal in the current row vector h(r)i are zero. If so, then the
word represented by the ith dimension in the matrix is not statistically associated with any word
represented by a lower dimension, and therefore that dimension is copied as is to Ŵ as a new
dimension (step 6.1.1). Alternatively, if there is at least a non-zero in a dimension before the
diagonal, then the word represented by the the ith dimension in the matrix is indeed statistically
associated with a word represented by a lower dimension. In this case, the ith dimension in W is
consolidated (through addition) with the lowermost statistically associated dimension in Ŵ, i.e.

156

Word matrix consolidation as a dimensionality reduction method Experiments and conclusions

the left-most non-zero dimension (steps 6.2.1 and 6.2.3).
Notice that the consolidated matrix produced by this algorithm still contains features that

represent frequencies (or rather sums of frequencies). Therefore, it is still possible to transform
these summed frequencies into log-likelihood scores or even hypothesis test result features as
described previously. Notice as well that because the algorithm seeks to consolidate higher
dimensions into lower dimensions, the result of the consolidation and the number of final
dimensions will vary depending on how dimensions are ordered in W and H. The number of
words that any given word is associated to can vary greatly. Placing words that are associated
to many words in the lower dimensions will produce smaller consolidated matrices conflating
much information into a few dimensions, possibly at the expense of losing discrimination
potential. Conversely, placing those highly associated words in the upper dimensions will
still compress the dimensionality, but to a lower degree. For the purposes of this chapter, we
would like to propose four simple, straightforward dimension ordering techniques depending
on the number of associations that a word has: 1. Ascending order (words with few asso-
ciations occupy the lower dimensions and words with many associations occupy the higher
dimensions), 2. Descending order (reverse of 1), 3. Distance from the median number of
associations in ascending order and 4. Distance from the mean in ascending order. We also
propose two additional ordering techniques: 5. Word frequency in descending order and
6. Inverse Document Frequency (IDF)1 in ascending order. IDF could potentially be an
interesting way of ordering features because words that appear across many contexts might be
associated with many words but will tend to have low IDF and therefore be placed in the up-
per dimensions, limiting the way in which other words can be consolidated into them. These
particular sorting criteria are being developed and tested in this thesis and to the best of the
author’s knowledge, they have not been used for this purpose before.

7.3 Experiments and conclusions

Supervised WSD experiments and unsupervised WSDisc experiments were carried out using
the HILS dataset (Sec. 5.1, p. 136). Each ambiguous word subcorpus was randomly split
into a training portion (60%) and a test portion (40%). To increase robustness, this splitting
was done four times and experiments were carried out on each splitting and then the results
averaged.

For the supervised WSD experiments, a simple Rocchio classifier based on cosine simil-
arity was trained. Evaluation was performed via sense classification on the test portion. For
the unsupervised WSDisc experiments, a K-Means clusterer based on cosine similarity was
trained. We evaluate by computing accuracy scores of every cluster-to-gold standard sense
mapping of test vectors and report the maximum score as the overall accuracy score. For
further robustness, each K-Means exercise was run 30 times.

1For the purposes of this chapter, we take a word window as the interpretation of document in IDF.

157

Experiments and conclusions Word matrix consolidation as a dimensionality reduction method

0 2000 4000 6000 8000

30
40

50
60

70
80

Dimensions

●
● ● ● ●

●●

● ● ● ●
●

●

● ● ● ● ●

hard

●

●

●

SVD C1
SVD C2 F
SVD C2 LL
SVD C2 H
Cons F
Cons LL
Cons H

0 1000 2000 3000 4000 5000

30
40

50
60

70
80

Dimensions

● ● ● ● ● ●

●

● ● ● ● ●

●
● ● ● ● ●

interest

0 2000 6000 10000

30
40

50
60

70
80

Dimensions

●
● ● ● ● ●

●

●
● ● ● ●

●
● ● ● ● ●

line

0 2000 6000 10000

30
40

50
60

70
80

Dimensions

●● ● ● ● ●
●

● ● ● ●
●

●
●

● ● ●
●

serve

0 2000 4000 6000 8000

30
40

50
60

70
80

Dimensions

●

●
● ● ●

●

● ● ● ●
●

●

●

● ●
●

● ●

hard

0 1000 2000 3000 4000 5000

30
40

50
60

70
80

Dimensions

● ● ● ● ● ●
● ● ● ● ● ●● ● ● ● ● ●

interest

0 2000 6000 10000

30
40

50
60

70
80

Dimensions

●● ● ● ● ●
●

●
● ● ●

●

●
●

● ● ● ●

line

0 2000 6000 10000

30
40

50
60

70
80

Dimensions

●●
● ● ● ●

● ● ● ● ● ●●●
● ● ● ●

serve

Figure 7.3.1: SVD and consolidation summary – The top of the graph shows supervised ex-
periment results for ambiguous words (hard, interest, line and serve) whilst the
bottom of the graph shows unsupervised experiment results for the same set of
ambiguous words. The Y axis in all plots represents Accuracy whilst the X axis
represents number of dimensions kept. The legend inside the supervised-hard
plot applies to all plots.

For these experiments, SVD-reduced c1 vectors were created. Also, reduced c2 vectors were
produced via SVD-reduced and consolidation-reduced word matrices. For all experiments
word windows of size 20 centred at the target word (i.e. 10 words to the left and 10 words to
the right) were used. All SVD reductions were performed using the R1 projection (Sec. 3.4.2,
p. 81).

Figure 7.3.1 plots the results of these consolidation experiment combinations. Since dif-
ferent ordering techniques yield different word matrices and different compression ratios, we
decided to plot these together in the figure. For example, ‘Cons F’ represents results of c2 vec-
tors constructed from consolidated word matrices that employ frequency features (LL stands
for log-likelihood and H for binary hypothesis test results features). Each ordering technique
mentioned in Section 7.2 achieves the following average degree of dimensionality reduction:
frequency and descending order: 99.6%, mean: 86.7%, median: 71.97%, IDF: 67.1%, as-
cending order: 66.9%. For all lines depicted in the figure, the point at the far right represents
the result obtained without performing any reduction.

From the figure we can see that for supervised experiments the best performer for three
words is SVD for c1 vectors, with consolidation based on hypothesis test features closely fol-
lowing it. For hard, however, the best result was provided by consolidation with log-likelihood

158

Word matrix consolidation as a dimensionality reduction method Experiments and conclusions

features using IDF/ascending order (around 3000 dimensions). In the unsupervised case,
scores performed very similarly for three words. For hard, there was a strong preference
for consolidation with frequency features using frequency/descending order (extreme left).
Around the dimensions obtained by the median and IDF/ascending order, the results for the
consolidation techniques are slightly better or the same as for SVD. While more extensive
experimentation is needed (i.e. by using dataset with more words like those used in recent Se-
mEval competitions as well as employing other clustering algorithms), it seems that the word
matrix dimension consolidation technique can be a good alternative to SVD in unsupervised
WSDisc. An advantage of the consolidation method over SVD is that an arbitrary number of
dimensions does not need to be specified in advance by the user. Instead, the user specifies a
dimension ordering criterion, which in turn controls the degree of dimensionality reduction.
As a rule of thumb, it seems that those ordering criteria that perform compressions of round
67% are safe options, especially for supervised experiments.

This chapter has shown that the computation of c2 vectors can be seen as a matrix transform-
ation involving a multiplication of c1 vectors by a word matrix, with the potential to reduce
the dimensionality of the resulting c2 vectors. As a secondary contribution, this chapter also
introduces a new type of word matrix features: binary hypothesis test results.

This work can be extended in many different ways. For example, by using weighting
schemes during consolidation. But since the matrix by which c1 vectors are multiplied can
be any arbitrary matrix, it could be possible to select a suitable matrix that uses features other
than word co-occurrence statistics.

159

Experiments and conclusions Word matrix consolidation as a dimensionality reduction method

160

8 Measuring MWE compositionality via

Word Space

Sinclair (1991, ch. 8) advances two principles in which meaning arises from language: an
open-choice principle and an idiom principle (see Section 2.2.5, p. 52). The open-choice
principle states that after a single word is completed in a stream of text or speech, there is a
vast amount of possible words that can follow that word, and the only condition restricting
exactly which words are admissible is grammaticalness. The idiom principle, on the other
hand, states that a language user has at his or her disposal a vast set of pre-constructed phrases
that can be used as whole units, even if these phrases could be separated and analysed into
smaller constituent units or even individual words. Sinclair argues that in normal language
use, it seems that speakers tend to strike a balance between the two principles, with some bias
towards recycling pre-constructed phrases1. Possible motivations for this phrase re-use could
lie in economy of effort or the quick nature of real-time conversation, or perhaps simply
because similar situations tend to recur in life. As it was studied in Section 2.1.2 (p. 33)
the notion of recurring multi-word phrases is termed collocation in the linguistics literature,
which in the computational linguistics / natural language processing literature, the termmulti-

word expression is often used instead.
As noted in Section 2.1.2, it seems that there are no hard rules to determine what consti-

tutes a collocation other than statistical significance and near co-occurrence and of course,
human intuition. In fact, most computational studies on collocations rely on probabilistic
criteria to automatically identify collocations in corpora (see e.g. Church and Hanks (1990);
Church et al. (1991) and Manning and Schütze (1999, ch. 5)). However, a naïve frequentist
analysis could lead to labelling frequent, uninteresting word combinations such as in the as
collocations. And even if stop words are filtered out, frequent and purely compositional word
combinations could be captured as a collocation. As mentioned in Section 2.1.2 (p. 33), Ben-
son (1989) puts forward a lexicographical approach for determining whether a frequent word
combination is a collocation by listing as lexical units in a dictionary only those collocations
with peculiar semantics and avoiding any free, trivial and unnecessary word combinations.
For example, the following adjectives should not be considered collocates of evidence: ab-
solute, additional, certain, considerable, conspicuous, gratifying, hopeful, even if they frequently
modify this noun. This is because they form normal and literal “adjective plus noun” combin-

1He notes however that in certain traditions, such as in poetry, there will be a bias towards originality and
therefore to the open-choice principle.

161

DISCO 2011 Shared Task Measuring MWE compositionality via Word Space

ations that any learner or speaker of English could determine by just applying this grammar
rule without recurring to any external knowledge. Benson mentions that collocations are not
only frequent word combinations but arbitrary and frequent word combinations.

From a computational perspective, it is important to detect and handle this arbitrariness
in a number of applications. For example, a machine translation engine should be able to
translate the French prendre une décision as make a decision and not literally as *take a decision.

Because of the importance of handling non-literal collocations correctly, the non-compositionality
feature is usually regarded as the most important characteristic of a collocation. And so the
early work on statistical word association (Church and Hanks, 1990; Church et al., 1991)
has been extended to detect non-compositional collocations (Lin, 1999; Bu and Zhu, 2010).
But some efforts have been made in applying the Vector Space Model in the detection of
compositionality (Schone and Jurafsky, 2001; Baldwin et al., 2003; Bannard et al., 2003). It
was soon realised that it was difficult to categorically distinguish every collocation as either
compositional or non-compositional, and that instead shades or degrees of compositional-
ity should be considered for a given collocation (Bannard et al., 2003; Katz and Giesbrecht,
2006). For example, while it is clear that red herring is completely non-compositional and
orange juice is very much compositional, heavy smoker lies somewhere in between: it does de-
scribe a type of smoker, one who smokes too much but not an overweight one. So, we could
say that heavy smoker has some sort of medium-to-low compositionality but it is by no means
fully non-compositional. In Section 2.1.2 red light was given as a collocation example that,
depending on meaning or use, will have a different compositionality degree. It is clear that
in Example (2.1.2) (p. 36) red light is clearly compositional since it literally describes light
that is red in colour. Whilst (2.1.3) describes a scenario in which a light that is red in colour
is involved, it can be argued that red light has acquired the more abstract meaning of a traffic
control device signalling the car to stop. This usage involves some literal usage (the signal
is in the form of a light that is red in colour) but it also carries other meanings associated to
traffic conventions as well as electronic devices designed to enforce these conventions in actual
streets. Since (2.1.4) involves decoding a metaphor by exploiting additional knowledge (i.e. a
notion of traffic conventions mapped into a business situation), this usage of red light exhibits
very low compositionality.

The remainder of this chapter describes our research in measuring the degree of compos-
itionality of collocations (Maldonado-Guerra and Emms, 2011) and our participation in
the shared task at the 2011 Workshop on Distributional Semantics and Compositionality
(Biemann and Giesbrecht, 2011).

8.1 DISCO 2011 Shared Task

This section describes the shared task and evaluation methods whilst Section 8.2 describes the
system and methods implemented and Section 8.4 gives details about the performance of the
system.

162

Measuring MWE compositionality via Word Space DISCO 2011 Shared Task

The shared task at the 2011 Workshop on Distributional Semantics and Compositionality
(DISCO) (Biemann and Giesbrecht, 2011) was the first attempt at creating a common pub-
licly available dataset and evaluation framework for the measurement of compositionality of
multi-word expressions2.

8.1.1 The multi-word expressions

The organisers of the shared task provided a list of multi-word expressions (MWEs), all of them
bigrams, in German (303 MWEs) and in English (349 MWEs) and a copy of the German
and English WaCky corpora (Baroni et al., 2009) each having a size between 1 and 2 billion
tokens. Two versions of each corpus were provided: a raw, plain-text version of the corpus
and a tokenised, part-of-speech-tagged (POS-tagged) and lemmatised version.

In order to obtain gold-standard compositionality scores for these MWEs, each MWE was
judged for compositionality in a scale between 0 and 10 by a human annotator, with 0 being
fully non-compositional and 10 being fully compositional. Human annotators were able to
see the MWE used in a sample sentence. There are at most 5 sample sentences per MWE,
and each sample sentence-MWE combination is judged for compositionality by at most 4
human annotators3. This gives a total of at most 20 compositionality scores per MWE. The
average of these 20 judgements for an MWE was multiplied by 100 and used as the overall
compositionality judgement for that MWE.

These overall compositionality judgements are termed the numerical human judgements or
the numerical scores and submitted systems were evaluated based on the average difference
between their numerical compositionality outputs and these numerical human judgements.
However, since some applications could benefit more from a less fine-grained classification
of MWEs into a low compositionality category, medium compositionality category and a high
compositionality category, these numerical scores were converted into what the shared task or-
ganisers call coarse-grained compositionality labels or bins. Organisers categorised MWEs based
on their numerical score into these three categories by applying the following rules: MWEs
with numerical judgements in the range 0-25 were deemed to be in the low compositionality
bin, MWEs with judgements between 38 and 62 fell into the medium compositionality bin,
whilst MWEs in the 75-100 range were assigned to the high compositionality category. Any
MWEs that fell in the 26-37 and 62-74 ranges were not categorised and were excluded from
the coarse-grained evaluation of systems. Systems were expected to classify each MWE into
a high, medium or low category and they were evaluated using a precision score against the
organiser’s categorisation.

The ∼300 MWEs per language were randomly split into a development set and a test set

2Details on the shared task, results, datasets and evaluation scripts are available at http://disco2011.fzi.de/
and
http://aclweb.org/aclwiki/index.php?title=DISCo_2011_shared_task_data:_Compositionality_judgments_%28Repository%29

3A small number of sample sentences were removed because annotators expressed they did not provide useful
context and a few judgements given by some annotators were deemed invalid by the shared task organisers
for various reasons.

163

DISCO 2011 Shared Task Measuring MWE compositionality via Word Space

Table 8.1.1: Distribution of MWEs between the development (train and validation) set and
the test set. The right-hand side of the table shows the distribution of the MWEs
selected for the coarse-grained evaluation (MWEs with numeric scores near the
borders around the low-medium and medium-high borders were removed)

All MWEs Selected for coarse-grained eval
Language EN DE EN DE

Train 140 40.11% 119 39.27% 107 34.85% 98 36.30%
Validation 35 10.03% 35 11.55% 26 8.47% 23 8.52%

Test 174 49.86% 149 49.17% 174 56.68% 149 55.19%
TOTAL 349 303 307 270

in an approximately 50%-50% manner. The development set was further divided into a 80%
training and 20% validation subsets. The development set was provided to participants early
in the competition in order to develop and fine tune their systems or to perform any training
that was deemed to be necessary. The test set was provided to participants only during the last
week of the competition and the official evaluation scores was based on the system’s output
(both numerical and coarse-grained) of this test set. The numerical and coarse-grained human
judgements on the test set were withheld by the organisers during the competition and were
not made available until some time after the end of the competition. Table 8.1.1 details how
MWEs are actually distributed across the the development and the test sets, highlighting the
slight difference in distribution in the MWEs selected for coarse-grained evaluation.

There were three part of speech combination types for the MWEs provided in the shared
task: adjective + noun (e.g. big fish), subject (noun) + verb (e.g. client wants) and verb + object
(noun) (e.g. improve access).

8.1.2 Evaluation of systems’ output

As previously mentioned, a system’s output is evaluated only on its ability of measuring the
compositionality of the test set’s MWEs. Performance scores are computed for the numerical
task and for the coarse task as follows.

The performance score of a system in the numerical task is measured as the average dif-
ference between the numerical gold-standard human judgement and the system’s numerical
compositionality output scores. If G is the set of numerical gold-standard human judgements
for all MWEs and if S is the system’s numerical compositionality output scores for all MWEs,
then the system’s score in the numerical task is NUMSCORE and is computed as:

NUMSCORE(S,G) =
1
N

N∑
i=1

|gi − si| (8.1.1)

Where gi is the gold-standard score for the i-th MWE, si is the system score for the i-th

164

Measuring MWE compositionality via Word Space DISCO 2011 Shared Task

MWE and N is the size of G. If the system does not provide a value for one or more si,
the scoring script automatically assumes a value of 50 for that si. Since NUMSCORE is an
average difference score, the lower the value, the better the performance. A score of 0 would
be a perfect score.

For the coarse-grained task a precision score is used. If S and G are, respectively, the system’s
and gold-standard coarse labels for all MWEs, then the system’s score in the coarse-grained
task is COARSE and is computed as:

COARSE(S,G) =
1
N

N∑
i=1

1 gi = si

0 otherwise
(8.1.2)

Where gi is the gold-standard label category (low, medium or high) for the i-th MWE, si is
the system label category for the i-th MWE and N is the size of G. If a system does not report
a label for an MWE, a value of medium is assumed for that MWE. Since this is a precision
score, the higher the value, the better. A score of 1 would be a perfect score.

As previously mentioned, evaluations were performed on all MWEs in the test set and over-
all numerical task and coarse-grained task evaluation scores were provided on them. In addi-
tion, MWEs were scored by part-of-speech combination type (ADJ+N, V+SUBJ, V+OBJ).

In addition to these scores, the organisers also computed the Spearman’s rho and Kendall’s
tau correlation values on the numerical compositionality scores.

8.1.3 Issues regarding the human judgements

An issue with this method of averaging compositionality judgements for an MWE used in
different sentences is that it conflates different senses or usages of the MWE that potentially
have different degrees of compositionality. This concern can be verified from the shared task
data itself. Sentences (8.1.4), (8.1.3) and (8.1.5) are actual samples from the English WaCky
corpus used as context in the manual compositionality annotation of heavy metal :

(8.1.3) Current projects Emissions of mercury (Hg) and other heavy metals from volcanoes.

(8.1.4) On the north shore is a large fort, which has a formidable battery of heavy metal,
over which a strong guard is mounted every day.4

(8.1.5) Heavy metal supergroup Velvet Revolver continue to struggle in the UK with their
new single ‘Fall To Pieces’.

In the 0-100 scale, the average human compositionality judgement for heavy metal in (8.1.3)
was 87.5. A possible explanation for this high compositionality assessment might be due to
the categorisation of mercury as a heavy metal in Chemistry and/or to its popular percep-
tion as a metal that is heavy in mass/weight, i.e. literally “a heavy metal”. In (8.1.4), heavy

4This sentence is part of a description of the fort in a (now closed) prison in Liverpool. The full text of the
article can be retrieved from http://www.genuki.org.uk/big/eng/LAN/Gazetteer/L.htm

165

Methodology Measuring MWE compositionality via Word Space

metal received a medium compositionality evaluation of 67.5. In this sentence, the meaning
of battery is “the platform or fortified work, on or within which artillery is mounted (some-
times including the guns or mortars there mounted)”5. Despite the sentence describing a
platform made literally of a metal that is heavy, it only achieved a medium compositionality
score, possibly due to the rather obscure or specialised military sense of battery. Perhaps if the
annotators had been more familiar with the sense of the word or if more context had been
provided, a higher compositionality score might have been assigned for heavy metal in this
sentence. By contrast, it was clear for annotators that the music-related sense of heavy metal
as used in (8.1.5) is of low compositionality since they assigned it an average judgement of
20.

The overall average of these three distinct senses or usages of heavy metal would be 58.3, a
medium compositionality judgement6. It is easy to see that considering this average as a single
gold-standard score for every occurrence of the MWE is a very strong weakness in the shared
task evaluation method. If usages of an MWE are both highly compositional and highly non-
compositional and if sample sentences are equally distributed across these usages, the com-
positionality score would tend to be around 50. Since it has been observed that polysemous
words usually have skewed sense distributions (McCarthy et al., 2004)7, it is reasonable to
assume that a polysemous MWE will also have a skewed sense or usage distribution. There-
fore, an overall average of human judgements based on sentences drawn from a sufficiently big
random sample of a corpus could be seen as a weighted human judgement giving more weight
to more frequent senses or usages of the MWE than rarer senses or usages. Unfortunately, as
it has been mentioned previously, the sample taken from the corpus was an extremely small 5
sentences per MWE, making the obtained average an unrealistic representation of the overall
sense/usage distribution for an MWE.

Nevertheless, configuration 3 of the system submitted to the competition (p. 169) assumes
that the golden-standard score is indeed a weighted average of compositionality scores, with
a bias towards the most frequent senses, and thus attempts to detect whether an MWE has
different senses and attempts to construct a weighted compositionality score from the senses
it detected.

8.2 Methodology

This section describes the compositionality measurement methods we developed for the DISCO
shared task. One source of inspiration for the methods used by our system for measuring com-
positionality is the work of McCarthy et al. (2003), who measured the similarity between a

5Oxford English Dictionary Online. Entry for battery, sense 5. http://www.oed.com
6The overall average for the five sentences annotated (that include the three here presented) was 52.5, a medium

compositionality score.
7Some senses of a word are much more frequent than other senses. As an example, contrast the very frequent

electrical meaning of battery (as in ‘this radio takes AA batteries’) vs. its much rarer military sense illustrated
by (8.1.4).

166

Measuring MWE compositionality via Word Space Preliminary definitions

phrasal verb (a main verb and a preposition like blow up) and its main verb (blow) by compar-
ing the words that are closely semantically related to each, and use this similarity as an indic-
ator of compositionality. However, our method is more similar to that of Katz and Giesbrecht
(2006), who exploited the same intuition but in a different manner. First, they built “true”
type vectors for all MWEs and a corresponding estimated “composed” type vector for each
candidate MWE. This candidate composed type vector is the sum of the MWE’s constituent
words, essentially a vector compositionality method (Guevara, 2011). They argue that these
composed vectors estimate the type vector of the MWE in compositional usages. A cosine
value between this composed vector and the true MWE vector is interpreted as an estimate
of the MWE compositionality: if the value is high (i.e. if there is little difference between
the composed and true vectors), they conclude that the MWE is compositional, otherwise
they conclude it is non-compositional since the contexts of the composed and true vectors
are different. They obtained relatively good results in their test corpus and a set of German
MWEs.

The method presented here also uses the cosine measure as a proxy for compositionality
grading. However, it does not compute any vector estimates. Instead, it computes cosine
similarities directly between the MWE vector and each of the constituent’s word vectors in
three different configurations, all of which are defined in Section 8.3. Our system can be
regarded as fully unsupervised as it does not employ any parsers in its processing or any external
data other than the corpus and a candidate collocation list. Within the setting of the DISCO
shared task, this candidate collocation list was compiled by the organisers and provided to
participants. In an application scenario, this list could be automatically extracted from a
corpus.

8.3 Preliminary definitions

All sliding windows for the word vectors and context vectors used are of length l = 20,
centred at the target word or target bigram. The feature vocabulary Vm (vector dimensions)
for all vectors is set to the top m = 2, 000 most frequent content words in the corpus (i.e.
stop words are excluded). Although definitions in Section 3.5 (p. 95) are for types and tokens
of individual words, they can be extended to multi-word expressions in various ways. Since
the DISCO shared task only considers bigrams, we have extended the distributional vectors
for bigrams only as follows: for any bigram type τ υ, its tokens are taken to be occurrences of
the sequence κγλ, where κ is the token realising τ (i.e. τ = type(κ)), γ can be any sequence
of intervening words of length t, 0 ≤ t ≤ 3, and λ is the token realising υ (i.e. υ = type(λ)).
In sum, κγλ is a token of τ υ. In this way, the definitions of direct (first-order) and indirect
(second-order) context vectors, as well as word vectors, can be carried over to multi-word
expressions.

We assume that each collocation (bigram) provided has a node (headword) and a collocate
(modifier). Given a bigram we assign a node and a collocate role to each of its constituent

167

Preliminary definitions Measuring MWE compositionality via Word Space

Table 8.3.1: Node/collocate assignment by part of speech combination in collocation
POS Combination Node Collocate
Adjective + Noun Noun Adjective

Subject (noun) +Verb Verb Subject
Verb + Object (noun) Verb Object

words based on the part of speech of these words. As previously mentioned, MWEs were
provided in three different part of speech combinations: adjective + noun, subject (noun) +
verb and verb + object (noun). Table 8.3.1 describes how the node/collocate assignment was
performed based on this.

The system implements three methods. These three methods are implemented via three
configurations detailed as follows:

Configuration 1 Given a collocation candidate τ υ, assuming that τ is the collocate and υ
is the node, the following objects are built from a corpus:

1. A word vector for the collocation candidate, following the extension described above:
w(τ υ)

2. A word vector for the collocate: w(τ)

3. A word vector for the node: w(υ)

Then, configuration 1 measures the compositionality of the collocation candidate as the av-
erage of two cosine similarity measures: the measure between the collocation candidate word
vector w(τ υ) and the collocate word vector w(τ), and the measure between the collocation
word vector and the node vector w(υ).

c1 =
1
2

[
cos (w(τ υ),w(τ))
+ cos (w(τ υ),w(υ))

]
(8.3.1)

Configuration 2 The second configuration of our system compares the occurrences of the
node υ when accompanied by the collocate τ forming the collocation candidate τ υ separately,
with the occurrences of the τ appearing outside the vicinity of υ (i.e. not forming τ υ). If
coll(κ, τ) is a binary function that returns 1 if a specific token κ forms a collocation with τ
(i.e. whether in the vicinity of κ there is a token instance of τ) and 0 otherwise, let

wτ (υ) =
∑

∀κ:type(κ)=υ

c1(κ) coll(κ, τ) (8.3.2)

be the word vector computed from all the occurrences of the node υ that form a collocation
with τ and conversely, let

168

Measuring MWE compositionality via Word Space Preliminary definitions

wτ (υ) =
∑

∀κ:type(κ)=υ

c1(κ) (1 − coll(κ, τ)) (8.3.3)

be the word vector representing the occurrences of υ not occurring in the vicinity of τ . In
this configuration, the compositionality score is then computed by

c2 = cos
(
wτ (υ),wτ (υ)

)
(8.3.4)

The intuition behind this configuration is that if the node tends to co-occur with more or
less the same words in both cases (producing a high cosine score), then the meaning of the
node is similar regardless of whether the collocation’s collocate is present or not, implying a
high degree of compositionality. If on the other hand, the node co-occurs with somewhat
differing words in the two cases (a low cosine score), then we assume that the presence of the
collocation’s collocate is markedly changing the meaning of the node, implying a low degree
of compositionality.

Configuration 3

This configuration attempts to address the issue of polysemy in collocation candidates as exem-
plified with the case of red light. A clustering technique as used in word-sense discrimination
is employed in order to exploit semantic differences that may naturally emerge from each
context in which the collocation candidate and its constituents are used.

In word-sense discrimination and induction, clustering is used to group occurrences of a
target word according to its sense or usage in context as it is expected that each cluster will
represent a different sense or usage of the target word. However, since within the setting of
the DISCO shared task, the contexts that human annotators referred to when judging the
compositionality of the collocations were not provided, our system employs a workaround
that uses a weighted average when measuring compositionality. This workaround is explained
in what follows.

In this configuration, the system first builds word vectors for the 20,000 most frequent
words in the corpus (see Eq. 3.5.6 on page 101), and then uses these to compute the second-
order context vectors for each occurrence of the collocation and its constituents in the corpus
(3.5.7). After context vectors for all occurrences have been computed, they are clustered using
CLUTO’s repeated bisections algorithm8. The vectors are clustered across a small number K
of clusters (we employed K = 4). The expectation was that each cluster will represent a
different contextual usage of the collocation, its node and its collocate. Figure 8.3.1 depicts
how a context vector space could be partitioned with K = 4.

The system then for each cluster k builds the word vectors wk(τ υ), wk(τ), and wk(υ)

for the collocation candidate, its node and its collocate, from the contexts grouped within
the cluster k. The compositionality measure for the third configuration is then basically a

8http://glaros.dtc.umn.edu/gkhome/views/cluto/

169

Results and conclusion Measuring MWE compositionality via Word Space

c2(τ) c2(υ) c2(τ)

c2(τ υ)c2(τ)
c2(τ υ)

c2(υ)

c2(υ)

c2(τ)
c2(τ υ)

c2(τ) c2(τ)

c2(υ) c2(τ υ)

Figure 8.3.1: Conceptual depiction of a clustered second-order context vector space.

weighted average over the clusters of the c1 score using each cluster, that is:

c3 =
K∑

k=1

∥Ck∥
2N

[
cos (wk(τ υ),wk(τ))

+ cos (wk(τ υ),wk(υ))

]
(8.3.5)

where ∥Ck∥ is the number of contexts in cluster Ck and N is the total number of contexts
across all clusters.

For all three configurations, the value reported as the numeric compositionality score was
the corresponding value obtained from (8.3.1), (8.3.4) or (8.3.5), multiplied by 100. Each
configuration’s numeric scores ci were binned into the three coarse compositionality classes by
comparing them with the configuration’s maximum value through (8.3.6).

coarse(ci) =

high if 2

3max ≤ ci

medium if 1
3max < ci <

2
3max

low if ci ≤ 1
3max

(8.3.6)

8.4 Results and conclusion

Table 8.4.1 shows the evaluation results for the three system configurations and two baselines.
The left-hand side of the table shows the average difference between the gold-standard nu-
meric score and each configuration’s numeric score. The right-hand side reports the precision
on binning the numeric scores into the coarse classes. Evaluation scores are reported on all
collocations and on the collocation subtypes separately. Row R is the baseline suggested by
the workshop organisers, assigning random numeric scores, in turn binned into the coarse
categories. Row A shows the performance of a constant output baseline, assigning all colloc-
ations the mean gold-standard numeric score from the training set: 66.45, and then applying
the binning strategy (8.3.6) to this – which always assigns the coarse category high.

The first thing to note from this table is that configurations 1 and 2 generally outperform
configuration 3, both on the mean difference and coarse scores. Configuration 1 slightly
outperforms configuration 2 on the mean numeric difference scores, whilst configuration 2

170

Measuring MWE compositionality via Word Space Results and conclusion

Table 8.4.1: Evaluation results of the three system configurations and two baselines on the test
dataset. Best system scores on each grammatical subtype highlighted in bold.

C Average differences (numeric) Precision (coarse)
ALL A-N S-V V-O ALL A-N S-V V-O

1 17.95 18.56 20.80 15.58 53.4 63.5 19.2 62.5
2 18.35 19.62 20.20 15.73 54.2 63.5 19.2 65.0
3 25.59 24.16 32.04 23.73 44.9 40.4 42.3 52.5
R 32.82 34.57 29.83 32.34 29.7 28.8 30.0 30.8
A 16.86 17.73 15.54 16.52 58.5 65.4 34.6 65.0

Table 8.4.2: Some corpus statistics: the number of matched collocations per subtype
(Instances) and the average number of intervening words per subtype (Avg in-
tervening).

A-N S-V V-O
Instances 177254 11092 121317

Avg intervening 0.0684 0.3867 0.4612

is very close to and slightly better than configuration 1 on the coarse precision scores. The
exception is that configuration 3 was the best performer on the coarse precision scoring for
the S-V subtype.

The R baseline is outperformed by configurations 1, 2 and 3; roughly speaking where 1 and
2 outperform R by d, configuration 3 outperforms R by around d/2. The A baseline generally
outperforms all our system configurations. It seems to be also a quite competitive baseline for
other systems participating in the shared task (see Tables 8.4.3 and 8.4.4).

The other trend apparent from the table is that performance on the V-O and A-N subtypes
tends to exceed that on the the S-V subtype.

An examination of the gold standard test files shows that the distribution over the low, me-
dium and high categories is similar for bothV-O andA-N, in both cases close to 0.08/0.27/0.65,
with high covering nearly two-thirds of cases, whilst for S-V the distribution is quite differ-
ent: 0.0/0.654/0.346, with medium covering nearly two-thirds of cases. This is reflected in
the A baseline precision scores, as for each subtype these will necessarily be the proportion of
gold-standard high cases. This explains for example why the A baseline is much poorer on the
S-V cases (34.6) than on the other cases (65.0, 65.4).

Looking further into the differences between the three subtypes, Figure 8.4.1 shows the
gold standard numeric score distribution across the three collocation subtypes (Test GS), and
the corresponding distributions for scores from the system’s first configuration (Conf 1). This
shows in more detail the nature of the poorer performance on S-V, with the gold standard
having a peak around 50-60, and the system having a peak around 70-80. For the other
subtypes the contrast in the distributions seems broadly consistent with the mean numeric
difference scores of Table 8.4.1.

171

Results and conclusion Measuring MWE compositionality via Word Space

P
er

ce
nt

 o
f T

ot
al

0

10

20

30

0 20 40 60 80 100

A−N
Conf 1

S−V
Conf 1

0 20 40 60 80 100

V−O
Conf 1

A−N
Test GS

0 20 40 60 80 100

S−V
Test GS

0

10

20

30

V−O
Test GS

Figure 8.4.1: The distribution of the gold standard numeric score vs. the distribution of the
system’s first configuration numeric scores.

One can speculate on the reasons for the system’s poorer performance on the S-V subtype.
The system treats intervening words in a collocation in a particular way, namely by ignoring
them. This is one option, and another would be to include them as features counted in the vec-
tors. Table 8.4.2 shows the average intervening words in the occurrences of the collocations.
S-V and V-O are alike in this respect, both being much more likely to present intervening
words than collocations of the A-N subtype. So the explanation of the poorer performance
on S-V cannot lie there. Also because the average number of intervening words is low, we
believe it is unlikely that including them as features will impact performance significantly.

Table 8.4.2 also gives the number of matched collocations per subtype. The number for the
S-V collocations is an order of magnitude smaller than for the other subtypes. Although the
collocations supplied by the organisers are in their base form, the system attempts to match
them ‘as is’ in the unlemmatised version of the corpus. Whilst for A-N and V-O the base-form
sequences relatively frequently do double service as inflected forms, this is far less frequently
the case for the S-V sequences (e.g. user see (S-V) is far less common than make money (V-
O)). This much smaller number of occurrences for S-V cases, or the fact that they are drawn
from syntactically special contexts, may be a factor in the relatively poorer performance. This
perhaps is also a factor in the earlier noted fact that although configuration 3 was generally
outperformed, on the S-V subtype the reverse occurs.

The unlemmatised version of the corpus was used because initial experimentation with the
validation set produced slightly better results when employing raw words as features rather
than lemmas. A possibility for future work would be to to refer to lemmas for matching
collocations in the corpus, but to continue to use unlemmatised words as features.

In sum, the two simplest configurations of a totally unsupervised system yielded surprisingly
good results at measuring compositionality of collocations in raw corpora. In comparison with

172

Measuring MWE compositionality via Word Space Results and conclusion

Table 8.4.3: Numerical evaluation results for all systems in the DISCO 2011 Shared Task for
English (Biemann and Giesbrecht, 2011)

Numerical Responses ALL A-N S-V V-O
Number of phrases 174 77 35 62
0-response baseline 0 23.42 24.67 17.03 25.47
Random baseline 174 32.82 34.57 29.83 32.34
UCPH-simple.en 174 16.19 14.93 21.64 14.66
UoY: Exm-Best 169 16.51 15.19 15.72 18.6
UoY: Pro-Best 169 16.79 14.62 18.89 18.31
UoY: Exm 169 17.28 15.82 18.18 18.60

SCSS-TCD: conf1 174 17.95 18.56 20.80 15.58
SCSS-TCD: conf2 174 18.35 19.62 20.20 15.73

Duluth-1 174 21.22 19.35 26.71 20.45
JUCSE-1 174 22.67 25.32 17.71 22.16
JUCSE-2 174 22.94 25.69 17.51 22.60

SCSS-TCD: conf3 174 25.59 24.16 32.04 23.73
JUCSE-3 174 25.75 30.03 26.91 19.77
Duluth-2 174 27.93 37.45 17.74 21.85
Duluth-3 174 33.04 44.04 17.60 28.09

submission-ws 173 44.27 37.24 50.06 49.72
submission-pmi 96 - - 52.13 50.46
UNED-1: NN 77 - 17.02 - -
UNED-2: NN 77 - 17.18 - -
UNED-3: NN 77 - 17.29 - -

the other systems submitted to the competition, configuration 1 and configuration 2 ranked
in fifth and sixth places (out of 18 places), respectively, in the overall numeric evaluation.
In the overall coarse score evaluation, configuration 2 reached fifth place and configuration
1 sixth place. Our system performed best in the V-O subtype: configuration 1 and config-
uration 2 ranked second and third places, respectively, in the numeric evaluation, whilst in
the coarse evaluation, configuration 2 ranked first place with configuration 1 reaching a joint
second-place with another system. Configuration 3 reached 10th place in the numeric evalu-
ation and 9th place in the coarse evaluation. Tables 8.4.3 and 8.4.4 (adapted from Biemann
and Giesbrecht, 2011) show the numeric evaluation results and the coarse evaluation results,
respectively, for all systems in the competition. The SCSS-TCD systems correspond to the
three configurations described here.

173

Results and conclusion Measuring MWE compositionality via Word Space

Table 8.4.4: Coarse evaluation results for all systems in the DISCO 2011 Shared Task for
English (Biemann and Giesbrecht, 2011)

Coarse Responses ALL A-N S-V V-O
Number of phrases 118 52 26 40
0-response baseline 0 0.356 0.288 0.654 0.250
Random baseline 118 0.297 0.288 0.308 0.300

Duluth-1 118 0.585 0.654 0.385 0.625
UoY: Exm-Best 114 0.576 0.692 0.500 0.475
UoY: Pro-Best 114 0.567 0.731 0.346 0.500
UoY: Exm 114 0.542 0.692 0.346 0.475

SCSS-TCD: conf2 118 0.542 0.635 0.192 0.650
SCSS-TCD: conf1 118 0.534 0.640 0.192 0.625

JUCSE-3 118 0.475 0.442 0.346 0.600
JUCSE-2 118 0.458 0.481 0.462 0.425

SCSS-TCD: conf3 118 0.449 0.404 0.423 0.525
JUCSE-1 118 0.441 0.442 0.462 0.425

submission-ws 117 0.373 0.346 0.269 0.475
UCPH-simple.en 118 0.356 0.346 0.500 0.275

Duluth-2 118 0.322 0.173 0.346 0.500
Duluth-3 118 0.322 0.135 0.577 0.400

submission-pmi - - - 0.346 0.550
UNED-1-NN 52 - 0.289 - -
UNED-2-NN 52 - 0.404 - -
UNED-3-NN 52 - 0.327 - -

174

9 Conclusions and future work

Perhaps, the most fundamental contribution presented in this thesis is the observation that the
Word Space word matrix can be seen as a linear map that converts direct (first-order) context
vectors in Rm into indirect (second-order) context vectors in Rn (Def. 4.1.1, p. 109). Al-
though the operation described by this linear map is really equivalent to the sum or averaging
operations traditionally described in the literature (Def. 3.5.4, p. 101), it has the advantage of
making more transparent the application of SVD, and dimensionality reduction methods in
general, to Word Space (Def. 4.2.1, p. 112; Def. 4.2.5, p. 117). It is from this contribution
that all of the other theoretical contributions of the thesis emerge in one way or another. For
example, this linear transformation formulation makes the relationships between LSA and
Word Space presented in Chapter 4 more transparent and obvious. It also makes easier the
viability of the transformation itself as a method of dimensionality reduction in its own right
(Chapter 7), and helps understand how the different components of Word Space fit together
(Chapter 3).

Chapters 5, 6, 7 and 8 test some of these theoretical insights in actual empirical settings.
These chapters confirmed some of the expectations of the earlier chapters but sometimes
provided surprising results, like the difference in performance between the two types of SVD
projections for supervised and unsupervised experiments or the slightly bigger than expected
difference in performance between LSA and Word Space context vectors.

This thesis lifts the veil of mysticism covering SVD in many computational lexical semantics
works by showing that LSA and Word Space have some clear relationships. Researchers have
intuitively acknowledged a link between the two models, with some making simplistic as-
sumptions regarding this link. This is the first time these assumptions are tested and we show
that whilst there is indeed a clear link between the two models, their relationship is not as
straightforward as one might initially think. In addition, the experimental results reflect this
non-trivial relationship between the models, indicating that success, or lack thereof, in one
model is not necessarily indicative of the other model’s performance. However, given that
the relationship between the two models is clearly known, it is possible to use a system im-
plementing one model in order to make representations in the other model by modifying the
values appropriately in the system’s matrices. These findings have wider implications in areas
where semantic vectors are used: there are potentially many works that repeat experiments
already published simply because there is a lack of transparency in the literature regarding the
methods of semantic vector construction used. Works such as the present one and that of
Dinu et al. (2012) show the potential for simplifying and clarifying the methods used in the

175

Summary of contributions Conclusions and future work

field.
This chapter presents in a summarised form each of the key contributions made by this

thesis, and provides future avenues to expand on these contributions.

9.1 Summary of contributions

The R1 vs. R2 projection contention in LSA The case was made that there are (at least)
two contending formulations of SVD projections in the LSA literature which we called R1 and
R2 (Secs. 3.4.2, p. 81 and 3.4.3, p. 86). It was argued that both projections do not preserve
cosine measures between vectors and that therefore must perform differently in actual WSX
experiments. And indeed, the experiments in Chapter 6 show very different performance
results for both projection types. In the analysis of both projections in Section 3.4.2 it was
mentioned that R1 projections were better representations than R2 projections, intuitively.
The experiments in Chapter 6 show that, depending on the actual kind of context/segment
vector used, the R2 projections can perform much worse than R1 projections or at least very
similarly, but never better, something congruent with our analytical predictions. However,
for several kind of vectors (notably LSA’s segment vectors, D-A-R2), R2 projections can per-
form surprisingly better than R1 projections. Unfortunately the vast majority of works in
the literature that employ LSA or SVD on Word Space do not specify exactly whether they
employ R1, R2 or even some other way, and in consequence some of their conclusions might
actually depend on the type of projection used.

Expression of indirect context vectors as a linear transformation Chapter 4 intro-
duced an alternative computation of indirect (second-order) context vectors in Rn as a linear
transformation of direct (first-order) context vectors in Rm via a word matrix in Rm×n, i.e.
c2(κ) = cW(κ) = WTc1(κ). Effectively, such a word matrix maps vectors in Rm to Rn. This
alternative but equivalent formulation makes the relationship of indirect context vector con-
struction more akin to a method of dimensionality reduction (that is if n < m). It makes the
application of SVD to Word Space more transparent and natural: cR1(W)(κ) = ΣkUk

Tc1(κ)

and cR2(W)(κ) = Uk
Tc1(κ). Finally, in all of these equations, the matrix W can be substi-

tuted by either a matrix of direct (first-order) context vectors C, LSA’s word-segment matrix
A or any other suitable matrix. This is effectively a simple, transparent and general way of
producing indirect context vectors. A summary of the context vector configurations explored
in this thesis is given in Table 4.2.1 (p. 111).

The Word Space word matrix and the LSA word-segment matrix are approximations

of each other Despite the inherent differences between the unreduced Word Space word
matrix and the unreduced LSA word-segment matrix (i.e. the matrix in Salton’s original vec-
tor space model), in their respective reduced forms both matrices are very similar. This is
an indirect consequence of a similarity between unreduced LSA segment vectors and unre-

176

Conclusions and future work Summary of contributions

duced Word Space direct context vectors, i.e. dj = c1(κ) + g(κ) (Def. 3.5.2, p. 124). The
consequence of this is that A ≈ C, i.e. the matrices of segment vectors and direct context
vectors are approximate to each other. So, the unreduced and the SVD-reduced token vectors
produced by either matrix should be similar: D-A-* ≈ D-C-* and I-A-* ≈ I-C-*.

But the relationship given by 3.5.2 translates into the more complicated relationship between
the unreduced Word Space word matrix W and the unreduced LSA word-segment matrix A:
AAT = W+ F (Conj. 4.3.2, p. 125). But if W is symmetric, then the SVD of A is similar to
the SVD of W, a consequence of Theorem 4.3.1 (p. 131). This implies that the SVD-reduced
versions of indirect token vectors derived from A, C and W should also be similar: I-A-R1/2
≈ I-C-R1/2 ≈ I-W-R1/2.

The performance of all of these token vector representations were tested in WSX experi-
ments. These experiments showed that whilst the difference between both models boils down
to a very small difference in counting between the two models, it can cause the models to
either keep their difference in performance negligible (I-A-* vs. I-C-*) or diverge to a point
in which the difference offsets performance considerably (all other combinations), depending
on how the LSA or Word Space objects are actually employed.

Given the common ways in which LSA and Word Space are actually employed (namely, D-
A-*, D-C-* and I-W-*), this offset in performance of means-based word-sense disambiguation
and discrimination experiments will depend on the actual token representation configuration
chosen. Finally, it was found that whilst SVD can help when LSA direct context vectors
are used, the overall best results were obtained with the standard application of Word Space
(D-C-UR “first-order” and I-W-UR “second order” vectors) without using SVD.

Systematic comparisons of Word Space direct and indirect token representations

The geometric properties of parallelism and angular spread were compared for sense vectors
derived from direct and indirect Word Space context vectors.

By studying the parallelism property of actual direct and indirect sense vectors using the
same features, it was found that direct and indirect sense vectors are not approximations of
each other. The implication of this is that it is no possible to predict the performance of one
vector type based on the performance of the other in actual WSX experiments.

The angular spread property showed that direct sense vectors are more spread than indir-
ect sense vectors, implying that direct context vectors will potentially perform better than
indirect context vectors in means-based WSX experiments. On actual supervised word-sense
disambiguation experiments, it was shown that direct context vectors performed considerably
better than indirect context vectors, largely following the predictions from the angular spread
analysis. The interpretation of this is that the better angular spread of direct context vectors
outweighs the semantic benefits (such as finding similarities between related contexts that do
not use the same words) that indirect context vectors bring in. However, in the unsupervised
word-sense discrimination experiments, the performance between direct and indirect context
vectors is quite comparable and well below the results observed in the supervised setting. The

177

Future work Conclusions and future work

interpretation in this case is that the semantic benefits provided by indirect context vectors are
perhaps playing a part in matching and sometimes beating the performance of direct vectors.
The fact that unsupervised scores fall well below supervised scores is not a surprise and is a
trend well documented in the literature.

Word matrix consolidation as a viable dimensionality reduction technique A method
for reducing the dimensionality of context vectors is proposed. This method is based on a con-
solidated word matrix in which the dimensions representing statistically associated word types
are merged together. An algorithm that merges less important dimensions into more import-
ant dimensions is proposed and several definitions of “dimension importance” are explored.
The proposed method is comparable in WSX performance to SVD.

Semantic similarity between word vectors can be used as a proxy to grade the com-

positionality of multi-word expressions Word vectors from Word Space are tested em-
pirically in a task designed to grade (measure) the compositionality (or degree of “literalness”)
of multi-word expressions (MWEs). Cosine similarity measures are taken between a word
vector representing the full MWE, and word vectors representing each of its individual mem-
ber words in order to measure the deviation in co-occurrence distribution between the MWE
and its individual members. It was found that this deviation in co-occurrence distributions
does correlate with human compositionality judgements of MWEs. The experiments were
performed on the 2011 DISCO Shared Task. Some issues with the way the gold standard hu-
man judgements were averaged were highlighted in this thesis. Namely, that these averages do
not take into account the proportions in which compositional and non-compositional usages
of the shared task MWEs are used in the corpus, producing a somewhat flawed gold standard.
An attempt to work around this issue was provided in the form of Configuration 3, a variation
of our method that clusters occurrences of MWEs and attempts to come up with a weighted
averaged compositionality score. Unfortunately, this attempt was largely unsuccessful and the
simpler Configurations 1 and 2 performed better.

9.2 Future work

Model comparisons in other tasks This thesis concentrated mostly on word-sense disam-
biguation and discrimination tasks with some limited attention to the automatic grading of
compositionality in multi-word expressions. Whilst these are all important tasks, there other
areas of lexical semantics where the vector space models studied in this thesis can be applied
and their performance compared. This will enable to draw more general, task-independent
conclusions for these models. Examples of tasks to consider are word clustering, TOEFL
synonym tests, word association prediction or semantic priming, terminology extraction and
terminology consistency checking, text classification and clustering, etc.

178

Conclusions and future work Future work

Geometric comparisons between LSA and Word Space Geometric experiments (par-
allelism and angular spread, Chapter 5) that directly compared sense vectors computed from
direct or indirect context vectors were conducted for Word Space. These same experiments
can be computed in the across the SVD-reduced Word Space and LSA token representations
(both direct and indirect).

Deeper performance analysis between the R1 and R2 projections Section 3.4.2 (p.
81) argued that R1 projections should be more appropriate than R2 projections for the type of
comparisons that we wanted to perform in WSX experiments in LSA and Word Space. Empir-
ically, it was found that for certain configurations, such as plain vanilla LSA (D-A-R1/2), R1

projections performed better than R2 projections in unsupervised word-sense discrimination
experiments, but on supervised word-sense disambiguation experiment the exact opposite was
the case (R2 projections performed better than R1 projections). In Section 6.3.1 (p. 149), it
was hypothesised that perhaps R2 projections have a noise reduction effect in the supervised
case that aids in classification, but perhaps hinders the generalisations needed to successfully
cluster in an unsupervised manner. More analysis is warranted in this area. For example, addi-
tional angular spread experiments (like the ones already proposed), as well as experimentation
in other natural language processing tasks could shed some light to this question.

Performance of direct vs. indirectWord Space token spaces based on corpus size In
Section 5.5 (p. 143) a comparison was made between the direct vs. indirect WSX benchmarks
performed by Purandare and Pedersen (2004) and Maldonado-Guerra and Emms (2012)
(contained in Chapter 5) where it was argued that Purandare and Pedersen did not perform
their benchmark based on minimal feature pairs and so their conclusions regarding the effect-
iveness of direct and indirect vectors as a function of corpus size (namely that direct vectors
perform better in large corpora whilst indirect vectors perform better in small corpora) could
instead be due to other factors (such as the actual features they used). It would be interesting
to repeat the experiments reported in Chapter 5 by varying the size of the corpora used. One
way could be by taking random samples of different sizes of the HILS and NYT datasets. In
addition, so far these experiments have focused on news texts. For future work, experiments
will also be run in corpora from several other domains.

Study alternative vector space models There are other popular vector space models that
were not studied in this thesis. For one, any vector space model that uses syntactic or deeper
linguistic features were not considered. But there are other “cousins” of Word Space and LSA
that deserve to be compared against in some of the frameworks presented in this thesis. These
include the Word Space version introduced in Schütze and Pedersen (1993) that considers
both syntagmatic and paradigmatic relations in a single word matrix, as well as the closely
related Hyperspace Analogue to Language (HAL) (Burgess and Lund, 1997, 2000), as well
as newer tensor-based representations (Turney and Pantel, 2010). It would be interesting, for

179

Future work Conclusions and future work

example, to use Schütze and Pedersen’s model to grade the compositionality of multi-word
expressions, and whether their sensitivity to syntagmatic and paradigmatic relations helps in
the task. Also, it will be interesting to substitute SVD with other methods of dimensionality
reduction such as Random Indexing (Moen et al., 2013) and Non-Negative Matrix Factor-
isation (Van De Cruys, 2008) in LSA and Word Space.

More fine-grained context definitions The introduction in Section 4.2.1 (p. 111) listed
three possible options for creating matrices of direct context vectors. In experimentation, only
one such option was explored, the one that was deemed more similar to LSA. However, it is
still interesting to investigate whether the other options, especially option 1 which provides
more redundant co-occurrence information, are able to produce better- or worse-performing
SVD spaces. For example, perhaps SVD is able to generalise better when it is given that
much information. Also, each token represented in option 1 is seen as a discrete, separate
feature from each other. But in reality, they could be grouped, somehow, into types but
without turning them into word vectors. It would be interesting if that information could be
exploited by SVD or other method of dimensionality reduction.

Hybrid direct and indirect vector clustering in a single experiment Indirect (second-
order) context vectors have not consistently produced significantly better results than direct
context vectors. The angular spread experiments in Chapter 5 showed that the differences
between different sense vectors constructed from indirect context vectors were quite small,
presumably making it difficult to tell different senses apart. At the same time, the generalisa-
tion performed by its second-order coverage does seem to help somewhat in clustering, even
if that same second-order characteristic is perhaps the cause for the low difference in angular
spread in sense vectors. A proposal would be to use some sort of hybrid clustering approach
based on K-Means in which second-order context vectors are used as the initial randomly se-
lected seeds, but similarity computation is performed using first-order context vectors. Also,
subsequent cluster centroids (sense vectors) are computed from first-order context vectors.
Means-based sense vectors generalise senses. So, in a way they themselves are second-order
vectors, hence the idea of using second-order context vectors as the initial randomly-selected
centroids. But as the algorithm progresses, perhaps it is better to concentrate on the first-order
context vectors. First-order context vectors are never compared between each other, they are
only compared against the “second-order” sense vectors. So, their perceived weaknesses of
sparsity or lack of semantic sensitivity to semantically related contexts that use different words
is perhaps not completely warranted.

A related experiment to try out is to use clustering algorithms based on k-neighbours tech-
niques. Since they involve pairwise comparisons between individual context vectors, it is
likely that second-order context vectors fare better than first-order context vectors in those
clustering techniques that do rely on pairwise comparisons.

180

Conclusions and future work Future work

Linear transformations as methods of vector composition The word vectors produced
by LSA and Word Space represent singleton words. There is a growing interest in methods
that allow the combination of such individual word vectors to represent larger textual units
such as phrases and perhaps even full sentences. These methods are known as compositional
distributional semantics models (Mitchell and Lapata, 2008). The two most basic methods
of vector composition are vector addition, i.e. summing two word vectors u+ v in a manner
not unlike that used to compute indirect (second-order) context vectors, and pairwise vector
multiplication, i.e. u ⊙ v = [u1v1, . . . , unvn]. Variations on these two basic methods exist,
some of which are documented by Guevara (2011). These methods could be easily expressed
in terms of the linear transformations presented in Chapter 4. For example, the pairwise vector
multiplication can be more conventionally expressed by the matrix multiplication u×diag(v)
where diag(v) is a function returning a diagonal matrix with the elements of vector v along
its diagonal and zeroes everywhere else. Some of the other variations of vector composition
could find expression as a linear transformation, too. It is hoped that this alternative expression
reveals additional useful properties, just like it did for Word Space in this thesis. Besides, there
are works that are starting to find a connection between models of vector composition and
methods of dimensionality reduction, such as Non-Negative Matrix Factorisation (Van de
Cruys et al., 2013).

An analysis of relation types captured by SVD spaces in LSA and Word Space We
reviewed some of the theory regarding syntagmatic and paradigmatic relations and how these
are captured by the unreduced versions of A and W, respectively. However, the degree to
which each relation is represented by the SVD-reduced spaces in these models (especially in
Word Space) remains largely unexplored. This could be researched by performing experiments
in tasks that depend more on one type of relation than the other, like some of the experiments
performed by Sahlgren (2006) and Utsumi (2010).

Further alternative methods of dimensionality reduction based on a word matrix

Chapter 7 offered a way of dimensionality reduction based on the word matrix. Rather than
using the obvious method of selecting n word dimensions as column features, it attempted to
merge words together that were syntagmatically associated. Whilst the results were promising,
this particular method of reducing dimensions is not necessarily the best. It could perhaps be
more promising to merge paradigmatically related dimensions, i.e. by clustering them with
each cluster representing a dimension in the new reduced space. Each word would then be
mapped to one or two dimensions, i.e. the dimension(s) of the cluster whose word vector
belong to. Different clustering techniques could be used, from graph methods, soft clustering
techniques like Expectation-Maximisation to more traditional hard-clustering methods like
K-Means. And the degree of association of a word vector to a cluster could be used as the
dimension’s weight.

181

Future work Conclusions and future work

182

Bibliography

Agirre, E. and Edmonds, P., editors (2005). Word Sense Disambiguation: Algorithms and
Applications. Springer.

Agirre, E. and Edmonds, P. (2007). Word Sense Disambiguation: Algorithms and Applications.
Springer.

Agirre, E. and Stevenson, M. (2007). Knowledge Sources for WSD. In Agirre, E. and Ed-
monds, P., editors, Word Sense Disambiguation: Algorithms and Applications, pages 217–
251. Springer.

Anton, H. and Rorres, C. (2000). Elementary Linear Algebra: applications version. John Wiley
& Sons, 8th edition.

Austin, J. L. (1962). How to do things with words. Clarendon Press, Oxford.

Baldinger, K. (1980). Semantic Theory. Blackwell, Oxford.

Baldwin, T., Bannard, C., Tanaka, T., and Widdows, D. (2003). An Empirical Model of
Multiword Expression Decomposability. In Proceedingsof the ACL-2003 Workshop on Mul-
tiword Expressions: Analysis, Acquisition and Treatment, pages 89–96, Sapporo.

Banerjee, S. and Pedersen, T. (2003). The Design, Implementation, and Use of the Ngram
Statistics Package. In Proceedings of the Fourth International Conference on Intelligent Text
Processing and Computational Linguistics, Mexico City.

Bannard, C., Baldwin, T., and Lascarides, A. (2003). A Statistical Approach to the Semantics
of Verb-Particles. In Proceedings of the ACL-SIGLEX Workshop on Multiword Expressions:
Analysis, Acquisition and Treatment, number 1, pages 65–72, Sapporo.

Baroni, M., Bernardini, S., Ferraresi, A., and Zanchetta, E. (2009). The WaCky wide web:
a collection of very large linguistically processed web-crawled corpora. Language Resources
and Evaluation, 43(3):209–226.

Bartell, B. T., Cottrell, G. W., and K., B. R. (1992). Latent Semantic Indexing is an Optimal
Scaling Special Case of Multidimensional Scaling. In Proceedings of the 15th annual inter-
national ACM SIGIR conference on research and development in information retrieval, pages
161–167, Copenhagen.

183

Bibliography Bibliography

Benson, M. (1989). The Structure of the Collocational Dictionary. International Journal of
Lexicography, 2(1):1–14.

Berry, M. W. (1992). Large sparse singular value computations. International Journal of
Supercomputer Applications, 6(1):13–49.

Berry, M. W., Dumais, S. T., and O’Brien, G. W. (1995). Using Linear Algebra for Intelligent
Information Retrieval. SIAM Review, 37(4):573–595.

Biemann, C. and Giesbrecht, E. (2011). Distributional Semantics and Compositionality
2011: Shared Task Description and Results. In Proceedings of the Distributional Semantics
and Compositionality workshop (DISCo 2011) in conjunction with ACL 2011, Portland, OR.

Boleda, G., Padó, S., and Utt, J. (2012). Regular polysemy: A distributional model. In
Proceedings of the First Joint Conference on Lexical and Computational Semantics (*SEM),
pages 151–160, Montreal.

Bond, F. (2005). Translating the Untranslatable: A Solution to the Problem of Generating English
Determiners. CSLI Publications, Stanford, CA.

Bruce, R. and Wiebe, J. (1994). Word-Sense Disambiguation using Decomposable Models.
In Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics,
pages 139–146, Las Cruces, NM.

Bu, F. and Zhu, X. (2010). Measuring the Non-compositionality of Multiword Expres-
sions. In Proceedings of the 23rd International Conference on Computational Linguistics (Col-
ing 2010), number August, pages 116–124, Beijing.

Budanitsky, A. and Hirst, G. (2001). Semantic distance in WordNet : An experimental ,
application-oriented evaluation of five measures. In Proceedings of the Workshop on WordNet
and Other Lexical Resources, Second Meeting of the North American Chapter of the Association
for Computational Linguistics (NAACL-2001), Pittsburgh, PA.

Buitelaar, P., Alexandersson, J., Jaeger, T., Lesch, S., Pfleger, N., Raileanu, D., Von der Berg,
T., Klöckner, K., Neis, H., and Schlarb, H. (2001). An Unsupervised Semantic Tagger
Applied to German. In Proceedings of the Conference on Recent Advances in Natural Language
Processing, pages 52–57, Tzigov Chark.

Buitelaar, P., Magnini, B., Strapparava, C., and Vossen, P. (2007). Domain-Specific WSD. In
Word Sense Disambiguation: Algorithms and Applications, pages 275–298. Springer.

Bullinaria, J. A. and Levy, J. P. (2007). Extracting semantic representations from word co-
occurrence statistics: a computational study. Behaviour research methods, 39(3):510–26.

Burgess, C. and Lund, K. (1997). Modelling Parsing Constraints with High-dimensional
Context Space. Language and Cognitive Processes, 12(2):177–210.

184

Bibliography Bibliography

Burgess, C. and Lund, K. (2000). The Dynamics of Meaning in Memory. In Dietrich, E. and
Markman, A., editors, Cognitive Dynamics: Conceptual Representational Change in Humans
and Machines, pages 117–156. Lawrence Erlbaum.

Carpuat, M. and Wu, D. (2007). Improving statistical machine translation using word sense
disambiguation. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, number June, pages
61–72, Prague.

Carreras, X. and Màrquez, L. (2004). Introduction to the CoNLL-2004 Shared Task: Se-
mantic Role Labeling. In Proceedings of the Eighth Conference on Computational Natural
Language learning, pages 89–97, Boston, MA.

Charoenporn, T., Kruengkrai, C., Theeramunkong, T., and Sornlertlamvanich, V. (2007). An
EM-Based Approach for Mining Word Senses from Corpora. IEICE TRANSACTIONS on
Information and Systems, 90(4):775–782.

Chomsky, N. (1972). Language and mind. Harcourt Brace Jovanovich, New York, NY.

Church, K., Gale, W., Hanks, P., and Hindle, D. (1991). Using statistics in lexical analysis.
In Zernik, U., editor, Lexical acquisition: exploiting on-line resources to build a lexicon, pages
115–164. Lawrence Erlbaum, Hillsdale, NJ.

Church, K. W. and Hanks, P. (1990). Word association norms, mutual information, and
lexicography. Computational Linguistics, 16(1):22–29.

Cohen, T. and Widdows, D. (2009). Empirical distributional semantics: methods and bio-
medical applications. Journal of Biomedical Informatics, 42(2):390–405.

Cowie, A. P. (1988). Stable and creative aspects of vocabulary use. In Carter, R. and McCarthy,
M., editors, Vocabulary and language teaching. Longman, London.

Davidson, D. (1967). Truth and Meaning. Synthese, 17(3):304–323.

de Marneffe, M.-C., Archambeau, C., Dupont, P., and Verleysen, M. (2005). Local Vector-
based Models for Sense Discrimination. In Proceedings of the 6th International Workshop on
Computational Semantics.

de Marneffe, M.-C. and Dupont, P. (2004). Comparative study of statistical word sense
discrimination techniques. In Actes des 7es Journées internationales d’Analyse statistique des
Données Textuelles (JADT 2004).

de Saussure, F. (1916). Cours de linguistique générale. Édition critique préparée par Tullio de
Mauro (1967, 1995). Payot, Paris.

185

Bibliography Bibliography

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990).
Indexing by latent semantic analysis. Journal of the American Society for Information Science,
41(6):391–407.

Dinu, G., Thater, S., and Laue, S. (2012). A comparison of models of word meaning in con-
text. In 2012 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 611–615, Montréal.

Dumais, S. T., Letsche, T. A., Littman, M. L., and Landauer, T. K. (1997). Automatic Cross-
Language Retrieval Using Latent Semantic Indexing. In Proceedings of the AAAI Spring
Symposium on Cross-Language Text and Speech Retrieval, pages 115–132, Stanford, CA.

Dunning, T. (1993). Accurate Methods for the Statistics of Surprise and Coincidence. Com-
putational Linguistics, 19(1):61–74.

Emms, M. and Maldonado-Guerra, A. (2013). Latent Ambiguity in Latent Semantic Ana-
lysis? In Proceedings of the 2nd International Conference on Pattern Recognition Applications
and Methods, pages 115–120, Barcelona.

Erk, K. (2007). A Simple, Similarity-based Model for Selectional Preferences. In Proceedings
of the 45th Annual Meeting of the Association of Computational Linguistics, pages 216–223,
Prague.

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA.

Fillmore, C. J. (1982). Frame semantics. In The Linguistic Society of Korea, editor, Linguistics
in the Morning Calm: Selected Papers from SICOL-1981, pages 111–137. Hanshin, Seoul.

Firth, J. R. (1951). Modes of meaning. In Papers in Linguistics 1934-1951, pages 190–215.
Oxford University Press, Oxford.

Firth, J. R. (1957). A synopsis of linguistic theory 1930-1955. In Studies in Linguistic Analysis,
pp. 1-32. Oxford: Philological Society. Reprinted in F.R. Palmer (ed.), Selected Papers of J.R.
Firth 1952-1959, pages 1–32. Longman, London.

Foltz, P. W., Laham, D., and Landauer, T. K. (1999). The intelligent essay assessor: Applic-
ations to educational technology. Interactive Multimedia Electronic Journal of Computer-
Enhanced Learning, 1(2).

Fowler, H. N. (1921). Plato in Twelve Volumes, Vol. 12. Hardvard University Press, Cam-
bridge, MA.

Furnas, G. W., Deerwester, S., Dumais, S. T., Landauer, T. K., Harshman, R. A., Streeter,
L. A., and Lochbaum, K. E. (1988). Information Retrieval using a Singular Value Decom-
position Model of Latent Semantic Structure. In Proceedings of the 11th Anual International

186

Bibliography Bibliography

ACM Conference on Research and Development in Information Retrieval (SIGIR), pages 465–
480, Grenoble.

Gaustad, T. (2001). Statistical corpus-based word sense disambiguation: Pseudowords vs. real
ambiguous words. In Companion Volume to the Proceedings of the 39th Annual Meeting of
the Association for Computational Linguistics (ACL/EACL 2001) - Proceedings of the Student
Research Workshop, pages 61–66, Toulouse.

Geeraerts, D. (2010). Theories of lexical semantics. Oxford University Press, Oxford.

Goddard, C. and Wierzbicka, A., editors (2002). Meaning and Universal Grammar: Theory
and Empirical Findings. Benjamins, Amsterdam.

Golub, G. H. and Van Loan, C. F. (1989). Matrix computations. Johns Hopkins University
Press, Baltimore, MD, 2nd edition.

Gong, Y. and Liu, X. (2001). Generic text summarization using relevance measure and latent
semantic analysis. In Proceedings of the 24th annual international ACM SIGIR conference on
research and development in information retrieval, pages 19–25, New Orleans, LA.

Guevara, E. (2011). Computing Semantic Compositionality in Distributional Semantics. In
Bos, J. and Pulman, S., editors, Proceedings of the Ninth International Conference on Compu-
tational Semantics (IWCS 2011), pages 135–144, Oxford. Association for Computational
Linguistics.

Guthrie, J. A., Guthrie, L., Wilks, Y., and Aidinejad, H. (1991). Subject-dependent co-
occurrence and word sense disambiguation. In Proceedings of the 29th Annual Meeting of
the Association for Computational Linguistics, pages 146–152, Berkeley, CA.

Halliday, M. A. K. (1961). Categories of the theory of grammar. Word, 17(3):241–292.

Harris, Z. S. (1954). Distributional structure. Word, 10(2-3):146–162.

Hovy, E., Navigli, R., and Ponzetto, S. P. (2013). Collaboratively built semi-structured con-
tent and Artificial Intelligence: The story so far. Artificial Intelligence, 194:2–27.

Ide, N. and Véronis, J. (1998). Introduction to the Special Issue on Word Sense Disambigu-
ation: The State of the Art. Computational Linguistics, 24(1):1–40.

Katz, G. and Giesbrecht, E. (2006). Automatic Identification of Non-Compositional Multi-
Word Expressions using Latent Semantic Analysis. In Proceedings of the Workshop on Mul-
tiword Expressions: Identifying and Exploiting Underlying Properties, pages 12–19, Sydney.

Katz, J. J. and Fodor, J. A. (1963). The Structure of a Semantic Theory. Language, 39(2):170–
210.

187

Bibliography Bibliography

Kilgarriff, A. (1997). I don’t believe in word senses. Computers and the Humanities, (31):91–
113.

Kontostathis, A. and Pottenger, W. M. (2006). A Framework for Understanding Latent Se-
mantic Indexing (LSI) Performance. Information Processing and Management, 42(1):56–
73.

Landauer, T. K. (2007). LSA as a Theory of Meaning. In Landauer, T. K., McNamara, D. S.,
Dennis, S., and Kintsch, W., editors, Handbook of Latent Semantic Analysis, pages 3–34.
Routledge, New York, NY.

Landauer, T. K. and Dumais, S. T. (1997). A Solution to Plato’s Problem: The Latent Semantic
Analysis Theory of Acquisition, Induction, and Representation of Knowledge. Psychological
Review, 104(2):211–240.

Lawson, C. L. and Hanson, R. J. (1974). Solving least squares problems. Prentice-Hall, Engle-
wood Cliffs, N.J.

Leacock, C., Chodorow, M., and Miller, G. A. (1998). Using corpus statistics and WordNet
relations for sense identification. Computational Linguistics, 24(1):147–165.

Leacock, C., Towell, G., and Voorhees, E. (1993). Corpus-Based Statistical Sense Resolution.
In Proceedings of the ARPA Workshop on Human Language Technology, pages 260–265, San
Francisco, CA.

Lehrer, A. (1974). Semantic Fields and Lexical Structure. North-Holland, Amsterdam.

Lesk, M. (1986). Automatic Sense Disambiguation Using Machine Readable Dictionaries:
How to Tell a Pine Cone from an Ice Cream Cone. In Proceedings of the 1986 ACM
SIGDOC Conference, pages 24–26, Toronto.

Levin, B. (1993). English Verb Classes and Alterations. University of Chicago Press, Chicago,
IL.

Levin, E., Sharifi, M., and Ball, J. (2006). Evaluation of Utility of LSA for Word Sense
Discrimination. In Proceedings of the Human Language Technology Conference of the North
American Chapter of the ACL, Companion Volume: Short Papers, number 1998, pages 77–
80, New York, NY.

Lin, D. (1999). Automatic identification of non-compositional phrases. In Proceedings of
the 37th annual meeting of the Association for Computational Linguistics, pages 317–324,
Morristown, NJ, USA. Association for Computational Linguistics.

Lin, D. and Pantel, P. (2001). DIRT – Discovery of Inference Rules from Text. In Proceedings
of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 323–328,
San Francisco, CA.

188

Bibliography Bibliography

Lyons, J. (1963). Structural Semantics. Blackwell, Oxford.

Lyons, J. (1966). Firth’s theory of meaning. In Bazell, C., Catford, J., Halliday, M., and
Robins, R., editors, In Memory of J. R. Firth, pages 288–302. Longman, London.

Lyons, J. (1977). Semantics. Cambridge University Press, Cambridge.

Lyons, J. (1981). Language and linguistics. Cambridge University Press, Cambridge.

Maldonado-Guerra, A. and Emms, M. (2011). Measuring the compositionality of colloca-
tions via word co-occurrence vectors: Shared task system description. In Proceedings of the
Distributional Semantics and Compositionality workshop (DISCo 2011), Portland, OR.

Maldonado-Guerra, A. and Emms, M. (2012). First-order and second-order context repres-
entations: geometrical considerations and performance in word-sense disambiguation and
discrimination. In Actes des 11es Journées internationales d’Analyse statistique des Données
Textuelles (JADT 2012), pages 675–686, Liège.

Malinowski, B. (1935). Coral Gardens and their Magic: A study of the Methods of Tilling the
Soil and of Agricultural Rites in the Trobriand Islands. Volume II: The Language of Magic and
Gardening. Allen & Unwin, London.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval.
Cambridge University Press, New York, NY.

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural Language Pro-
cessing. MIT Press, Cambridge, MA.

Martin, D. I. and Berry, M. W. (2007). Mathematical foundations behind latent semantic
analysis. In Landauer, T. K., McNamara, D. S., Dennis, S., and Kintsch, W., editors,
Handbook of Latent Semantic Analysis, pages 35–55. Routledge, New York, NY.

Martinez, D. and Baldwin, T. (2011). Word sense disambiguation for event trigger word
detection in biomedicine. BMC bioinformatics, 12((Suppl 2):S4).

McCarthy, D., Keller, B., and Carroll, J. (2003). Detecting a continuum of composition-
ality in phrasal verbs. In Proceedings of the ACL 2003 workshop on Multiword expressions:
analysis, acquisition and treatment, Volume 18, pages 73–80, Sapporo. Association for Com-
putational Linguistics.

McCarthy, D., Koeling, R., Weeds, J., and Carroll, J. (2004). Finding predominant word
senses in untagged text. In Proceedings of the 42nd Annual Meeting on Association for Compu-
tational Linguistics, pages 577–583, Barcelona. Association for Computational Linguistics.

McIntosh, A. (1966). Patterns and ranges: Papers in general, descriptive and applied linguistics.
Longman, London.

189

Bibliography Bibliography

Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM,
38(11):39–41.

Miller, G. A. and Charles, W. G. (1991). Contextual correlates of semantic similarity. Lan-
guage and Cognitive Processes, 6(1):1–28.

Mitchell, J. and Lapata, M. (2008). Vector-based models of semantic composition. In Pro-
ceedings of ACL-08: HLT, number June, pages 236–244, Columbus, Ohio. Citeseer.

Moen, H., Marsi, E., and Gambäck, B. (2013). Towards Dynamic Word Sense Discrimin-
ation with Random Indexing. In Proceedings of the Workshop on Continuous Vector Space
Models and their Compositionality, number 2009, pages 83–90, Sofia.

Montague, R. (1974). Formal Philosophy: Selected Papers of Richard Montague. Yale University
Press, New Haven, CT.

Moro, A., Raganato, A., and Navigli, R. (2014). Entity Linking meets Word Sense Disam-
biguation: a Unified Approach. Transactions of the Association for Computational Linguistics,
2:231–244.

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal of
the Society of Industrial and Applied Mathematics, 5(1):32–38.

Navigli, R. (2009). Word sense disambiguation. ACM Computing Surveys, 41(2):1–69.

Navigli, R. and Crisafulli, G. (2010). Inducing Word Senses to Improve Web Search Result
Clustering. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pages 116–126, Cambridge, MA.

Navigli, R. and Ponzetto, S. P. (2012). BabelNet: The automatic construction, evaluation
and application of a wide-coverage multilingual semantic network. Artificial Intelligence,
193:217–250.

Ng, H. T. and Beng Lee, H. (1996). Integrating Multiple Knowledge Sources to Disambiguate
Word Sense: An Exemplar-Based Approach. In Proceedings of the 34th Annual Meeting of
the Association for Computational Linguistics, pages 40–47, Santa Cruz, Ca.

Och, F. J. (2002). Statistical Machine Translation : From Single-Word Models to Alignment
Templates. PhD thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen.

Ogden, C. K. and Richards, I. A. (1936). The Meaning of Meaning: A Study of the Influence of
Language upon Thought and of the Science of Symbolism. Routledge and Kegan Paul, London,
fourth edition.

Oh, J.-H. and Choi, K.-S. (2002). Word sense disambiguation using static and dynamic
sense vectors. In Proceedings of the 19th international conference on Computational linguistics,
volume 1, Taipei.

190

Bibliography Bibliography

Palmer, M., Ng, H. T., and Dang, H. T. (2007). Evaluation of WSD Systems. In Agirre, E.
and Edmonds, P., editors, Word Sense Disambiguation: Algorithms and Applications, pages
75–106. Springer.

Papadimitriou, C. H., Tamaki, H., Raghavan, P., and Vempala, S. (1998). Latent Semantic
Indexing: A Probabilistic Analysis. In Proceedings of the 17th ACM SIGACT-SIGMOD-
SIGART symposium on principles of database systems, pages 159–168, Seattle, WA.

Paul, H. (1920). Prinzipien der Sprachgeschichte. Halle, 5th edition.

Pecina, P. (2005). An extensive empirical study of collocation extraction methods. In Pro-
ceedings of the ACL Student Research Workshop, number June, pages 13–18, Ann Arbour,
Michigan. Association for Computational Linguistics.

Pedersen, T. (2007). Unsupervised Corpus-Based Methods for WSD. In Agirre, E. and
Edmonds, P., editors, Word Sense Disambiguation: Algorithms and Applications, chapter 6,
pages 133–166. Springer.

Pedersen, T. (2010). The effect of different context representations on word sense discrimin-
ation in biomedical texts. In Proceedings of the First ACM International Health Informatics
Symposium, pages 56–65, Arlington, VA. ACM Press.

Pedersen, T. and Bruce, R. (1997). Distinguishing word senses in untagged text. In Proceedings
of the Second Conference on Empirical Methods in Natural Language Processing, volume 2,
pages 197–207, Providence, RI.

Peirsman, Y., Heylen, K., and Geeraerts, D. (2008a). Size matters: tight and loose con-
text definitions in English word space models. In Proceedings of the ESSLLI Workshop on
Distributional Lexical Semantics, pages 34–41, Hamburg.

Peirsman, Y., Heylen, K., and Speelman, D. (2008b). Putting things in order. First and second
order context models for the calculation of semantic similarity. In Actes des 9es Journées
internationales d’Analyse statistique des Données Textuelles (JADT 2008), pages 907–916,
Lyon.

Pino, J. and Eskenazi, M. (2009). An Application of Latent Semantic Analysis to Word
Sense Discrimination for Words with Related and Unrelated Meanings. In Proceedings of
the NAACL HLT Workshop on Innovative Use of NLP for Building Educational Applications,
number June, pages 43–46, Boulder, CO.

Purandare, A. (2004). Unsupervised Word Sense Discrimination by Clustering Similar Contexts.
Msc thesis, University of Minnesota.

Purandare, A. and Pedersen, T. (2004). Word sense discrimination by clustering contexts
in vector and similarity spaces. In Proceedings of the Conference on Computational Natural
Language Learning, pages 41–48, Boston, MA.

191

Bibliography Bibliography

Rapp, R. (2003). Word sense discovery based on sense descriptor dissimilarity. In Proceedings
of the Ninth Machine Translation Summit, pages 315–322, New Orleans, LA.

Resnik, P. (2007). WSD in NLP Applications. In Word Sense Disambiguation: Algorithms and
Applications, pages 299–337. Springer.

Rosario, B. (2000). Latent Semantic Indexing: An overview. Technical report, University of
California at Berkeley.

Sag, I. A., Baldwin, T., Bond, F., Copestake, A., and Flickinger, D. (2002). Multiword
Expressions: A Pain in the Neck for NLP. Third International Conference on Computational
Linguistics and Intelligent Text Processing (Lecture Notes in computer Science), 2276:1–15.

Sagi, E., Kaufmann, S., and Clark, B. (2011). Tracing semantic change with Latent Semantic
Analysis. In Allan, K. and Robinson, J. A., editors, Current Methods in Historical Semantics,
pages 161–183. Mouton de Gruyter, Berlin.

Sahlgren, M. (2006). The Word-Space Model: Using distributional analysis to represent syntag-
matic and paradigmatic relations between words. Ph.d. thesis, Stockholm University.

Salton, G. (1971). The SMART Retrieval System–Experiments in Automatic Document Pro-
cessing. Prentice-Hall, Upper Saddle River, NJ.

Salton, G., Wong, A., and Yang, C.-S. (1975). A Vector Space Model for Automatic Indexing.
Communications of the ACM, 18(11):613–620.

Schone, P. and Jurafsky, D. (2001). Is knowledge-free induction of multiword unit dictionary
headwords a solved problem. In Proceedings of the 6th Conference on Empirical Methods in
Natural Language Processing (EMNLP 2001), pages 100–108, Pittsburgh, PA.

Schütze, H. (1992). Dimensions of meaning. Proceedings of the 1992 ACM/IEEE conference
on Supercomputing, pages 787–796.

Schütze, H. (1998). Automatic word sense discrimination. Computational Linguistics,
24(1):97–123.

Schütze, H. and Pedersen, J. (1993). A Vector Model for Syntagmatic and Paradigmatic Re-
latedness. In Making Sense of Words: Proceedings of the Conference, pages 104–113, Oxford.

Sebastiani, F. (2001). Machine Learning in Automated Text Categorization. ACM Computing
Surveys, 34(1):1–47.

Sinclair, J. (1966). Beginning the study of lexis. In Bazell, C., Catford, J., Halliday, M., and
Robins, R., editors, In Memory of J. R. Firth, pages 410–431. Longman, London.

Sinclair, J. (1991). Corpus, Concordance, Collocation. Oxford University Press, Oxford.

192

Bibliography Bibliography

Sinclair, J. (2004). Trust the Text: Language, Corpus and Discourse. Routledge, London.

Singleton, D. (2000). Language and the Lexicon: An Introduction. Arnold, London.

Spärck Jones, K. (1972). A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation, 28(1):11–21.

Stubbs, M. (2002). Words and Phrases: Corpus Studies of Lexical Semantics. Blackwell, Oxford.

Sugiyama, K. and Okumura, M. (2009). Semi-supervised Clustering for Word Instances
and Its Effect on Word Sense Disambiguation. In Gelbukh, A., editor, Proceedings of the
10th International Conference on Intelligent Text Processing and Computational Linguistics
(CICLing 2009), pages 266–279, Mexico City. Springer.

Trier, J. (1934). Das sprachliche Feld. Eine Auseinandersetzung. Neve Jahrbücher für Wis-
senschaft und Jugendbildung, (10):428–49.

Turney, P. D. (2001). Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In
Proceedings of the 12th European Conference on Machine Learning, pages 491–502, Freiburg.

Turney, P. D. (2006). Similarity of Semantic Relations. Computational Linguistics, 32(3):379–
416.

Turney, P. D. and Pantel, P. (2010). From Frequency to Meaning: Vector Space Models of
Semantics. Journal of Artificial Intelligence Research, 37:141–188.

Utsumi, A. (2010). Exploring the Relationship between Semantic Spaces and Semantic Rela-
tions. In Proceedings of the 7th International Conference on Language Resources and Evaluation
(LREC 2010), pages 257–262, Valletta.

Utsumi, A. and Suzuki, D. (2006). Word Vectors and Two Kinds of Similarity. In Proceedings
of the 21st International Conference on Computational Linguistics and the 44th Annual Meet-
ing of the Association for Computational Linguistics (COLING/ACL 2006) Main Conference
Poster Sessions, pages 858–865, Sydney.

Van De Cruys, T. (2008). Using Three Way Data for Word Sense Discrimination. In Pro-
ceedings of the 22nd International Conference on Computational Linguistics (COLING 2008),
pages 929–936, Manchester.

Van de Cruys, T., Poibeau, T., and Korhonen, A. (2013). A Tensor-based Factorization
Model of Semantic Compositionality. In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 1142–1151, Atlanta, GA.

Van Gompel, M., Hendrickx, I., Van den Bosch, A., Lefever, E., and Hoste, V. (2014).
SemEval-2014 Task 5 : L2 Writing Assistant. In Proceedings of the 8th International Work-
shop on Semantic Evaluation (SemEval 2014), pages 36–44, Dublin.

193

Bibliography Bibliography

Véronis, J. (2004). HyperLex: lexical cartography for information retrieval. Computer Speech
and Language, 18(3):223–252.

Wang, T. and Hirst, G. (2010). Near-synonym Lexical Choice in Latent Semantic Space. In
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010),
number August, pages 1182–1190, Beijing.

Weaver, W. (1955). Translation. In Locke, W. N. and Booth, A. D., editors, Machine trans-
lation of languages: fourteen essays, pages 15–23. MIT Press, Cambridge, MA.

Weisgerber, L. (1954). Die Sprachfelder in der geistigen Erschließung der Welt. pages 34–49.
Westkulturverlag Anton Hain, Meisenheim/Glan.

Widdows, D. (2004). Geometry and Meaning. CSLI Publications, Stanford, CA.

Wittgenstein, L. (1968). Philosophical Investigations (Philosophische Untersuchungen). Black-
well, Oxford, 3rd edition.

Wolfe, M. B. W., Schreiner, M. E., Rehder, B., Laham, D., Foltz, P. W., Kintsch, W., and
Landauer, T. K. (1998). Learning from text: Matching readers and texts by Latent Semantic
Analysis. Discourse Processes, 25:309–336.

Yarowsky, D. (1992). Word-sense disambiguation using statistical models of Roget’s categor-
ies trained on large corpora. In Proceedings of the 14th International Conference on Com-
putational Linguistics (COLING), pages 454–460, Nantes. Association for Computational
Linguistics.

Yarowsky, D. (1993). One sense per collocation. In Proceedings of the workshop on Human
Language Technology, pages 266–271, Plainsboro, NJ. Morgan Kaufmann Publishers.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivalling supervised methods.
In Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics,
pages 189–196, Cambridge, MA.

Zelikovitz, S. and Hirsh, H. (2001). Using LSI for text classification in the presence of back-
ground text. In Proceedings of the tenth international conference on Information and knowledge
management (CIKM’01), pages 113–118, New York, NY. ACM Press.

194

Index

ambiguity, 15
angular spread, 26, 137–140, 177
antonymy, 45, 92, 105
arbitrariness of language, 39
attributional similarity, 51

bag of words, 21, 52, 57–69, 75
bigram, 36, 143, 146
British National Corpus, 104

closed-class word, see stop words
co-occurrence, 143, 161
collocate, 167
collocation, 33, 123, 161
collocations, 19, 65
componential analysis, 40
compositional distributional semantics, 123,

181
compositionality, 19, 58, 162

grading, 65–67, 161–173
conceptual field, 40
content word, 32
context, 17, 20, 77

situational, 20, 47
syntagmatic, 20, 46, 76

context vector, 77
cosine measure, 25, 66, 72, 76, 88, 93, 96,

98, 103, 116, 119, 129, 138, 139,
148, 157, 167

dampening, 73
decontextualisation, 44
diagonalisable matrix, 80

direct context vector, 23, 95, 97, 100, 111,
112, 135, 145

relationship with segment vector, 124
SVD projection, 111, 112

direct context vector matrix, 101, 111
dissimilarity function, see vector distance

function
distributional hypothesis, 21, 48, 49, 57,

135
strong, 50, 63
weak, 50, 62

distributional theory of meaning, see distri-
butional hypothesis

document, 21
document classification, 60, 68
document clustering, 60, 68
document matrix, 75
document search, 68
document vector, 70, 75
domain, 48
dot product, 62, 71

eigendecomposition, 79, 126
eigenvalue, 79
eigenvector, 79
empty word, see stop words
essay grading, 60
Euclidean distance, see L2-distance
Euclidean norm, see L2-norm
Expectation-Maximisation, 27, 181

feature function, 70

195

Index Index

first-order context vector, see direct context
vector

form word, see stop words
frequency (of a type or term), 71
frequency of a type or term, 69, 70, 99,

100, 103, 104
Frobenius norm, 81
full word, see content word
function word, see stop words

generativist semantics, 54
grammatical word, see stop words

higher-order co-occurrence, 79
HILS corpus, 98
historical linguistics, 37
homograph, 42
homonymy, 38, 42, 78
homophone, 42
hypernymy, 45, 78, 103, 105
Hyperspace Analogue to Language, 179
hyponymy, 40, 45, 78, 90, 92, 103, 105,

123

IDF, see inverse-document frequency
idiom principle, 53, 161
incompatibility, 45
index (in information retrieval), 69, 74
indirect context vector, 23, 95, 98, 115,

135, 145
via A as transform, 111, 118

SVD projection, 111, 119
via C as transform, 111, 114

SVD projection, 111, 115
via W as sum, 101
via W as transform, 109, 111, 115

SVD projection, 111, 117
via W as transform with norm. params.,

110
information bottleneck, 17, 62
information retrieval, 67

inner product, see dot product
inverse-document frequency, 74, 110

K-Means, 27, 121, 141, 148, 157, 180,
181

L1-norm, 72, 109
L2-distance, 73
L2-norm, 72, 73, 109
Latent Semantic Analysis, 22, 57, 62, 78–

95, 107, 122, 145, 153
Latent Semantic Indexing, see Latent Se-

mantic Analysis
Lesk Algorithm, 17
Lesk algorithm, 69
lexeme, 32
lexical field, 40, 44, 46
lexical field theory, 40
lexical word, see content word
lexicography, 35, 59
log-likelihood, 154

meaning relations, 52
meronymy, 45
multi-word expression, 33, 65, 161
multi-word unit, see multi-word expression
MWE, see multi-word expression

natural language processing, 19, 21, 33, 37,
50, 58–67, 75, 161, 179

New York Times corpus, 89, 136
ngram, 37
node, 167
noise reduction, 95

onomasiology, 44
open-choice principle, 53, 161
open-class word, see content word

paradigmatic relation, 45, 59
paradigmatic relations, 87, 92, 97, 103, 124,

181
paradigmatic space, 97, 102–106, 124

196

Index Index

parallelism, 26, 137–140, 177
Polysemy, 93
polysemy, 38, 42, 78, 87, 94, 145
pseudodocument, 68

R1 and R2 projections, 81–86, 93, 176
relational semantics, 42
relational similarity, 51
Rocchio, 27, 148, 157
Rocchio classifier, 140

SAT, 22, 60
second-order context vector, see indirect con-

text vector
segment, 21, 48, 77
segment vector, 70, 77, 111, 117, 147

relationship with direct context vector,
124

SVD projection, 82, 111, 117
semantic association, 51
semantic field, 46
semantic relatedness, 50
semantic relation, 44, 45
semantic role labelling, 60
semantic value, 45
semasiology, 44
semiotic triangle, 38, 39
sense relations, 52
sense vector, 102, 109
singular value, 80
Singular Value Decomposition, 22, 78–86,

97, 107, 109, 122, 145, 153
sliding word window, see word window
spread, see angular spread
stop words, 32, 74
Strong Contextual Hypothesis, see distri-

butional hypothesis, strong
structuralism, 39
SVD, see Singular Value Decomposition
symmetric matrix, 80
synonymy, 38, 45, 78, 92, 103, 105, 123

syntagma, 45, 46, 48, 76
syntagmatic relation, 45, 59
syntagmatic relations, 88, 92, 97, 103, 124,

181
syntagmatic space, 77, 88, 97, 102–106,

124

taxonomical similarity, 51
term-document matrix, see document mat-

rix
terminology, 33, 44, 59, 62
text segment, see segment
TF-IDF, see inverse-document frequency
TOEFL, 21, 60, 104, 178
trigram, 36
tuple, 69

unigram, 36, 146

vector, 69
vector distance function, 73
vector length, 69
vector magnitude, see vector length
vector norm, 72
vector similarity function, 71, 76, 103
vector space model, 21, 52, 61, 67–78, 135,

145

Wall Street Journal corpus, 137
Weak Contextual Hypothesis, see distribu-

tional hypothesis, weak
Web search, see document search
window, see word window
word, 31–37
word co-occurrence matrix, see word mat-

rix
word form, 32
word matrix, 22, 78, 96–97
word matrix consolidation, 24, 62, 65
word sense, 37–55
Word Space, 22, 57, 62, 78, 95–102, 107,

122, 145

197

Index Index

word token, 22, 32, 61, 64, 71, 77, 95, 97
word type, 21, 32, 64, 68, 71, 75, 81, 83,

88, 95–97, 101, 103, 123
word vector, 22, 76, 78, 96, 101

SVD projection (LSA), 83
SVD projection (Word Space C), 113

word window, 48
word-context matrix, see word-segment mat-

rix
word-document matrix, see word-segment

matrix, see document matrix
word-segment matrix, 21
word-sense disambiguation, 17, 51, 61–64,

69, 77, 123, 140–141, 153
word-sense discrimination, 18, 51, 64–65,

95, 102, 123, 135, 141–142, 153,
169

word-sense induction, see word-sense dis-
crimination, see word-sense discrim-
ination

WordNet, 61
WSX, 18, 58, 79, 97, 107, 112, 135, 145,

177

198

	Declaration
	Abstract
	Acknowledgements
	Typographical conventions
	Introduction
	Motivation
	Operationalising context computationally
	Research questions and thesis structure

	Linguistic Background
	What is a word?
	Word tokens and word types
	Multi-word expressions and collocations
	Ngrams

	What is a word sense?
	Structuralist lexical semantics
	Word senses and the role of context
	Characterising context
	The distributional hypothesis of lexical semantics
	Meaning beyond context

	Computational Background
	Natural language processing tasks
	WSX: Word-sense disambiguation, discrimination and induction
	Word-sense disambiguation
	Word-sense discrimination

	Measuring the compositionality of multi-word expressions

	The vector space model of information retrieval
	The VSM as a distributional lexical semantics model
	Latent Semantic Analysis
	SVD: the mathematical foundation of LSA
	Projecting word and segment vectors into the reduced space
	The R1 and R2 projections in the literature
	Semantic properties of LSA
	Semantic relations
	Polysemy
	Noise reduction

	Word Space
	The word matrix: representing word types
	Context vectors: representing word tokens

	Syntagmatic space and paradigmatic space

	Linear Transformations in Word Space and LSA
	W as a linear map
	Direct and indirect token representations
	Token representations via C
	D-C-UR: Unreduced direct context vectors
	D-C-R1/2: SVD-reduced direct context vectors
	I-C-UR: Unreduced indirect context vectors via C
	I-C-R1/2: SVD-reduced indirect context vectors via C

	Token representations via W
	I-W-UR: Unreduced indirect context vectors via W
	I-W-R1/2: SVD-reduced indirect context vectors via W

	Token representations via A
	D-A-UR: Unreduced segment vectors
	D-A-R1/2: SVD-reduced segment vectors
	I-A-UR: Unreduced indirect context vectors via A
	I-A-R1/2: SVD-reduced indirect context vectors via A

	A (toy) numerical comparison

	A comparison between LSA and Word Space
	A vs W: The difference and relationship between the unreduced spaces of LSA and Word Space
	Decomposition of W

	Summary

	WSX experiments: direct vs. indirect Word Space token spaces
	Corpora
	Geometric experiments
	Supervised disambiguation
	Unsupervised discrimination
	Comparisons and conclusions

	WSX experiments: unreduced vs. SVD-reduced token spaces
	Background
	Methodology
	Experimental results
	General observations
	Direct vectors: D-A vs. D-C
	Indirect vectors: I-W vs. I-A and I-C

	Conclusions

	Word matrix consolidation as a dimensionality reduction method
	Statistical word matrix
	Reduction by consolidation
	Experiments and conclusions

	Measuring MWE compositionality via Word Space
	DISCO 2011 Shared Task
	The multi-word expressions
	Evaluation of systems' output
	Issues regarding the human judgements

	Methodology
	Preliminary definitions
	Results and conclusion

	Conclusions and future work
	Summary of contributions
	Future work

	Bibliography
	Index

