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A lot has been written recently about the IPSec standard.1,2 It is
criticized for being overly complex, partially because of allowing
too many ways of accomplishing essentially the same thing. Most

of the debate focuses on why there are so many options, for example,
authentication header (AH)3 and encapsulation security payload (ESP)4

data packet encodings, and tunnel versus transport modes. In this article
we focus on the Internet Key Exchange (IKE)5 mechanism, which has not
been as thoroughly studied beyond its cryptographic properties.6 We focus
on the properties of the standard as it stands today, and give suggestions
for improvement. In order to be comprehensible, we do not describe all
the fields in all the messages, but rather simplify it down to the essence
needed for our analysis.

BACKGROUND
IPSec is the Internet Engineering Task Force (IETF) proposed standard for
“layer 3 real-time communication security.” In a real-time security system
an initiator, say Alice, initiates communication with a responder system, say
Bob. They authenticate to each other by proving knowledge of some secret,
and then establish a secret key for the protection (integrity and/or privacy)
of the remainder of the session. We use the term “real-time” to distinguish
it from a system such as secure e-mail, in which Alice can create an encrypt-
ed, signed message for Bob without interacting with Bob.

IPSec can be thought of as a protocol that operates “on top” of IP (layer
3) but “below” layer 4 (TCP or UDP or any other potential layer 4 protocol),
meaning that it encrypts each data packet independently of all others and if
packets are lost or delayed, layer 4 (the software that requests retransmission
of lost packets) sees only validated information. There are other real-time
communication protocols that operate in other layers. For example, secure
sockets layer (SSL)7 operates above layer 4 so an entire stream is encrypted
rather than individual packets, and it is the job of TCP to break the stream
into individual packets and to make sure that they all arrive, in order, before
presenting them to SSL at the other end. An argument for operating above
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layer 4 is that security can be deployed without
changes to the operating system (typically all the lay-
ers up to and including layer 4 are implemented in
the kernel). A problem with operating above TCP is
that TCP will, by definition, not be participating in
the cryptography and will have no way of knowing
whether a particular packet is cryptographically
valid. If an active attacker injects a TCP packet with
a valid sequence number, the TCP implementation
at the receiver will acknowledge the packet, and pass
it up to SSL. SSL will detect the data as invalid, but
it’s now too late, since there is no way for SSL to
inform TCP that the data that TCP had accepted
was invalid. If the cryptographically valid packet
arrives with a sequence number that TCP has already
acknowledged, TCP will discard it as a duplicate and
SSL will never receive it. As a result, a single “rogue”
packet can cause a connection to break.

In contrast, IPSec is not vulnerable to this form of
active attack, since IPSec will be able to recognize and
discard invalid packets and TCP will only receive
valid data. Although IPSec is a technically superior
solution, SSL was widely deployed much earlier, part-
ly because it did not depend on kernel changes, and
because IPSec emerged from the standards process so
late. As a result, IPSec may wind up not being
deployed in many situations where it would be
appropriate, because SSL will be “good enough.”

The two main pieces of IPSec are the data packet
encodings (AH and ESP) and the key exchange por-
tion (IKE). IKE uses some key associated with the
parties, such as a preshared secret key or individuals’
public keys to authenticate and establish a session key.
After the exchange, the remainder of the session is
cryptographically protected with the session key.

The design of IPSec took place within the
IETF’s IPSec working group over a long period of
time with many contributors. Some of its features
are best understood in the context of how the
design evolved. It began as two relatively simple
proposals called Photuris8 and SKIP.9 When the
proponents of the competing protocols failed to
reach agreement, ISAKMP,10 a general-purpose
syntax in which many different protocols could be
encoded, was agreed to in order to make progress.
At around the same time, a third more complex
protocol attempting to combine the advantages of
the two protocols was proposed called Oakley.11

Finally, a document originally titled “ISAKMP/
Oakley Resolution Document” evolved into what
is now known as IKE.5

There has been significant debate about the
necessity for AH, which provides only integrity

protection, since ESP can provide integrity protec-
tion or encryption or both. The integrity protec-
tion provided by AH extends to portions of the IP
header, whereas ESP’s integrity protection is only
of the payload. The opponents of AH argue that it
is unnecessary to protect the IP header, and if it
were necessary, could be provided by tunnel mode.
The debate has been heated and the issues are com-
plex.1 Although we believe that AH is unnecessary,
we will focus on the IKE portion of IPSec rather
than rehashing those issues here.

TRANSPARENT TO
APPLICATIONS?
Because IPSec is implemented at layer 3, it is pos-
sible to deploy it within an operating system with-
out changing the applications. However, the secu-
rity gained by implementing IPSec without
changing the applications is not as strong as many
people assume.

Implementing IPSec without changing the appli-
cation has the same effect as putting firewalls
between the two systems and implementing IPSec
between the firewalls. It accomplishes the following:

■ It causes the traffic on the path between the two
firewalls to be encrypted, hiding it from eaves-
droppers.

■ As with firewalls, IPSec can access a policy data-
base that specifies which IP addresses are
allowed to talk to which other IP addresses.

■ Some applications do authentication based on
IP addresses, and the IP address from which
information is received is passed up to the
application. With IPSec, this form of authen-
tication can become much more secure because
one of the types of endpoint identifiers IPSec
can authenticate is an IP address, making it
impossible for a node that does not know the
key associated with that IP address to imper-
sonate the source.

What IPSec (with the current API and an unmod-
ified application) does not accomplish for the appli-
cation is authentication of anything other than IP
addresses. Most principals would have some iden-
tity such as a name, and be allowed to access the
network from a variety of IP addresses. In these
cases, the most likely scenario for IPSec operation is
that IPSec would do its highly secure and expen-
sive authentication, establishing a security associa-
tion to some name, but would have no way of
telling the application who is on the other side. The
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application would have to depend on existing
mechanisms, most likely a name and password, to
determine who it is talking to. IPSec is still of value
in this scenario, since the name and password will
be encrypted when transmitted.

An unmodified application would also not be
able to detect whether the connection was protect-
ed by IPSec or not, and so would be subject to a
“configuration attack” where IPSec is turned off
and the application continues to run unprotected.

To take full advantage of IPSec, applications will
have to change. The API has to change in order to pass
identities other than IP addresses, and the applications
have to change to make use of this information.

IKE PHASES
The IKE exchange consists of two phases. The
phase 1 exchange assumes each of the two parties
involved in the exchange has an identity (name) by
which the other side knows them, and associated
with that identity is some sort of secret that can be
verified by the other side. This secret might be a
preshared secret key or the private portion of a key
pair. Phase 1 does mutual authentication based on
that secret, and establishes a session key used to
protect the remainder of the session.

The phase 1 exchange happens once (and before
any phase 2 exchanges), and allows subsequent setup
of multiple phase 2 connections between the same
pair of nodes. The phase 2 exchange relies on the ses-
sion key established in phase 1 to do mutual authen-
tication and establish a phase 2 session key used to
protect all the data in the phase 2 security association.

It would certainly be simpler and cheaper to just
set up a security association in a single exchange, and
do away with the phases. The argument on the other
side is that the phase 1 exchange is expensive, but the
phase 2 exchanges can then be less expensive because
they can utilize the session key created out of the
phase 1 exchange. So if you anticipate many such
exchanges, you can save processing by breaking setup
into an expensive phase 1 and many cheap phase 2s.
This reasoning only makes sense if there will be mul-
tiple phase 2 setups inside the same phase 1
exchange. Why would there be multiple exchanges
between the same pair of nodes? Here are the tradi-
tional arguments in favor of having two phases:

■ It is a good idea to change keys periodically. You
can do key rollover of a phase 2 connection by
doing another phase 2 connection setup, which
would be cheaper than restarting the phase 1
connection setup.

■ You can set up multiple connections with dif-
ferent security properties, such as integrity-only,
encryption with a short (insecure, snooper-
friendly) key, or encryption with a strong key.

■ You can set up multiple connections between
two nodes because the connections are applica-
tion-to-application, and you’d like each applica-
tion to use its own key, perhaps so that the IPSec
layer can give the key to the application. A vul-
nerability is described in Bellovin12 if the same
key is used for multiple connections, assuming
these connections are not utilizing integrity pro-
tection (that is, they are only using encryption).

We argue against each of these points:

■ If you want perfect forward secrecy when you do
a key rollover, then the phase 2 exchange is not
significantly cheaper than doing another phase
1 exchange. If you are simply rekeying, either to
limit the amount of data encrypted with a single
key, or to prevent replay after the sequence num-
ber wraps around, then a protocol designed
specifically for rekeying would be simpler and
less expensive than the IKE phase 2 exchange.

■ It would be logical to use the strongest protec-
tion needed by any of the traffic for all the traf-
fic rather than having separate security associa-
tions in order to give weaker protection to some
traffic. There might be some legal or perfor-
mance reasons to want to use different protec-
tion for different forms of traffic, but we claim
that this will be a relatively rare case that we need
not optimize. A cleaner method of doing this
would be to have completely different security
associations rather than multiple security asso-
ciations loosely linked together with the same
phase 1 security association.

■ Wanting to have each application have a separate
key also seems likely to be a rare case, and in that
case, setting up a totally unrelated security asso-
ciation for each application would suffice. In
some cases, different applications (or different
users) use different identities to authenticate. In
that case they would need to have separate Phase
1 security associations anyway.

■ The vulnerability addressed in Bellovin12 is real-
ly an argument for never using encryption with-
out integrity protection, rather than an argument
for using different keys for different applications.

In this article we concentrate on phase 1 of IKE.
Aside from arguably being unnecessary, we did not
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find any problems with the security or functional-
ity of IKE’s phase 2.

OVERVIEW OF IKE’S PHASE 1
There are eight variants of phase 1 of IKE. This is
because there are three types of keys (preshared, pub-
lic encryption keys, and public signature keys), and
additionally there are two versions of protocols based
on public encryption keys, one of which is intend-
ed to replace the other, but the first must still be doc-
umented for backward compatibility. Thus there are
four “types” of keys (preshared secret key, old-style
public encryption key, new-style public encryption
key, and public signature key). And for each type of
key there are two types of phase 1 exchange: “main”
and “aggressive.” The main mode has six messages
and is intended to provide additional functionality,
such as hiding endpoint identifiers, whereas the
aggressive mode has only three messages. The vari-
ants have surprisingly different characteristics.

In main mode there are three pairs of messages. In
the first pair Alice sends a “cookie” (see following sec-
tion) and requested cryptographic algorithms, and
Bob responds with his cookie value and the crypto-
graphic algorithms he will agree to. The second pair
of messages consists of a Diffie-Hellman exchange.
In the third pair of messages, which are encrypted
with the Diffie-Hellman value agreed upon in the
second pair of messages, each side reveals its identity
and proves it knows the relevant secret (for example,
private key or pre-shared secret key). In aggressive
mode there are only three messages. The first two
messages consist of a Diffie-Hellman exchange to
establish a session key, and in the second and third
messages each side proves they know both the Diffie-
Hellman value and their secret.

COOKIES
Stateless cookies were originally proposed in Pho-
turis.8 The motivation is as follows: Bob has finite
memory and computation capacity. An attacker
could mount a “denial of service” attack against Bob
by sending fake connection requests from random
IP addresses and using up Bob’s memory for con-
nections in progress and computation power for
cryptography. While the attacker could never get
Bob to do anything wrong, she could prevent Bob
from servicing requests from legitimate users. To
prevent this, Bob will not keep any state nor do any
significant computation unless the connect request
is accompanied by a number, known as a “cookie,”
that consists of some function of the IP address
from which the connection is made and a secret

known only to Bob. In order to connect to Bob,
Alice makes an initial request for a cookie. After
responding with the cookie, Bob does not need to
remember anything about the connect request.
Then, when Alice contacts Bob again with a valid
cookie, Bob will keep the state and do the process-
ing necessary to authenticate Alice and create a secu-
rity association. By only accepting connection
requests with valid cookies, Bob can be assured that
they come from nodes that can receive data at the
address from which they claim to be sending.

If Bob had enough memory to hold the maxi-
mum number of connect requests that could possi-
bly arrive within the time window before he could
time them out and delete the state for the uncom-
pleted connection, stateless cookies would not be
necessary. And although stateless cookies are prob-
ably necessary, one could argue that they’re not suf-
ficient, since they don’t protect against an attacker,
Trudy, launching packets from IP addresses at
which she can receive responses. But cookies almost
certainly make it easier to trace where the attacks are
coming from, since Trudy’s attack will only work if
she can receive at the IP address she is claiming to
be sending from. Even if it can’t be traced down to
the exact node so a person or faulty node could be
blamed and disconnected from the net, Bob or a
firewall can be configured to drop packets from the
entire set of IP addresses Trudy can receive.

Oakley11 allowed the cookies to be optional. If Bob
was not being attacked and therefore had sufficient
resources, he could accept connection requests with-
out cookies. A round-trip delay and two messages
could be saved. In Photuris the cookie (and the extra
two messages) was always required. The idea behind
the Oakley stateless cookies is shown in Figure 1.

Surprisingly, although IKE was designed years
after Photuris, and it has fields in the messages
named “cookies,” none of the IKE variants allows
Bob to be stateless. This was pointed out in Simp-
son.2 In the “main mode” variants, the cookie pro-
tects Bob from being forced to do a significant

Try again, sending cookie = C

connect request

Connect request, C

Alice Bob

Compute
C = f(IP, secret)

Verify
C = f(IP, secret)

Figure 1. Oakley stateless cookies.
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amount of computation. However, IKE requires
Bob to keep state from the first message, before he
knows whether the other side would be able to
return a cookie. It would be straightforward to add
two messages to IKE to allow for a stateless cook-
ie. In fact, we claim stateless cookies could have
been implemented in all of the variants of IKE
main mode without additional messages by repeat-
ing in message 3 the information in message 1.

HIDING ENDPOINT
IDENTIFIERS
One of the design goals of main mode was to be able
to hide the endpoint identifiers. The goal would be
to prevent an eavesdropper from learning who was
communicating (though the source and destination
IP addresses would always provide a hint). With
some key types it is difficult to design a protocol to
prevent an active attacker from learning the identi-
ty of one end or the other. In this case we’d argue it
would be better for the protocol to hide the initia-
tor’s identity rather than the responder’s (because
the responder is likely to be at a fixed IP address so
that it can be easily found while the initiator may
roam and arrive from a different IP address each
day). Keeping that in mind, we’ll summarize how
well the variants do at hiding endpoint identifiers.

In all of the aggressive mode variants, both end-
point identities are exposed, as would be expected.
Surprisingly, however, we noticed that the signa-

ture key variant of aggressive mode could have eas-
ily been modified, with no technical disadvantages,
to hide both endpoint identifiers from an eaves-
dropper, and the initiator’s identity even from an
active attacker! The relevant portion of that proto-
col is shown in Figure 2a.

The endpoint identifiers could have been hidden
by removing them from messages 1 and 2 and
including them, encrypted with the Diffie-Hellman
shared value gAB mod p, in messages 2 (Bob’s iden-
tifier) and 3 (Alice’s identifier). The modified
exchange would look like Figure 2b.

In the next sections we discuss how the main
mode protocols hide endpoint identifiers.

Public Signature Keys
In the public signature key main mode, Bob’s iden-
tity is hidden even from an active attacker, but
Alice’s identity is exposed to an active attacker
impersonating Bob’s address to Alice. The relevant
part of the protocol is shown in Figure 3.

An active attacker impersonating Bob’s address to
Alice will negotiate a Diffie-Hellman key with Alice
and discover her identity in message 5. The active
attacker will not be able to complete the protocol
since it will not be able to generate Bob’s signature
in message 6.

The protocol could be modified to hide Alice’s
identity instead of Bob’s from an active attacker.
This would be done by moving the information
from message 6 into message 4. This even com-
pletes the protocol in one fewer message. And as we
said earlier, it is probably in practice more impor-
tant to hide Alice’s identity than Bob’s.

Public Encryption Keys
In this variant both sides’ identities are protected
even against an active attacker. Although the pro-
tocol is much more complex, the main idea is that
the identities (as well as the Diffie-Hellman values
in the Diffie-Hellman exchange) are transmitted
encrypted with the other side’s public key, so they
will be hidden from anyone who doesn’t know the
other side’s public key.

Pre-Shared Key
In this variant, both endpoints’ identities are
revealed, even to an eavesdropper! The relevant part
of the protocol is shown in Figure 4. 

Since the endpoint identifiers are exchanged
encrypted, it would seem as though both endpoint
identifiers would be hidden. However, Bob has no
idea who he is talking to after message 4, and the

"Alice", Diffie-Hellman value (gA mod p)

msg1 and 2 signed by Alice

"Bob", gB mod p, msg 1 and 2 signed by Bob

Alice Bob

gA mod p

("Alice") encrypted with gAB mod p, msg 1 and 2 signed by Alice

gA mod p, msg 1 and 2 signed by Bob, ("Bob") encrypted with gAB mod p

Alice Bob

(a)

(b)

Figure 2. Signature key variant in aggressive mode: (a) current
exchange and (b) modified exchange.
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key with which messages 5 and 6 are encrypted is
a function of the pre-shared key between Alice and
Bob. So Bob can’t decrypt message 5, which reveals
Alice’s identity, unless he already knows, based on
messages 1-4, who he is talking to!

The IKE spec recognizes this property of the pro-
tocol, and specifies that in this mode the endpoint
identifiers have to be the IP addresses. In which case,
there’s no reason to include them in messages 5 and 6
since Bob (and an eavesdropper) already knows them!

Main mode with pre-shared keys, happens to be
the only required protocol. One of the reasons
you’d want to use IPSec is in the scenario in which
Alice, an employee traveling with her laptop, con-
nects into the corporate network from across the
Internet. IPSec with pre-shared keys would seem a
logical choice for implementing this scenario.
However, the protocol as designed is completely
useless for this scenario since by definition Alice’s
IP address will be unpredictable if she’s attaching
to the Internet from different locations.

It would be easy to fix the protocol. The fix is to
encrypt messages 5 and 6 with a key that is a func-
tion of the shared Diffie-Hellman value, and not
also a function of the preshared key. In this way an
active attacker who is acting as a “man in the mid-
dle” in the Diffie-Hellman exchange would be able
to discover the endpoint identifiers, but an eaves-
dropper would not. And more importantly than
whether the endpoint identifiers are hidden, it
allows use of true endpoint identifiers, such as the
employee’s name, rather than IP addresses. This
change would make this mode useful in the sce-
nario (travelling employee) in which it would be
most valuable.

NEGOTIATING SECURITY
PARAMETERS
IKE allows the two sides to negotiate which
encryption, hash, integrity protection, and Diffie-
Hellman parameters they will use. Alice makes a
proposal of a set of algorithms and Bob chooses.
Bob does not get to choose one from column A,
one from column B, one from column C, and one
from column D, so to speak. Instead Alice trans-
mits a set of complete proposals. While this is more
powerful in the sense that it can express the case
where Alice can only support certain combinations
of algorithms, it greatly expands the encoding in
the common case where Alice is capable of using
the algorithms in any combination. For instance,
if Alice can support three of each type of algorithm,
and would be happy with any combination, she’d

have to specify 81 (34) sets of choices to Bob in
order to tell Bob all the combinations she can sup-
port! Each choice takes 20 bytes to specify: 4 bytes
for a header and 4 bytes each for encryption, hash,
authentication, and Diffie-Hellman.

CONCLUSION
The main points covered in the article are:

■ By operating below layer 4, IPSec avoids the
problem of an active attacker fatally disrupting
a session by injecting a single rogue packet.
Solutions such as SSL, which operate above
TCP, are vulnerable to this threat.

■ Although IPSec can be deployed without
changes to applications, the power of IPSec
cannot be exploited until the API is changed to
inform applications of the endpoint identifier,
and applications are modified to use the infor-
mation in the modified API.

■ IKE is far too complex, and the specifications
are so difficult to understand that it has not got-
ten a thorough review; many of the properties
we point out were not known.

■ One major simplification of IKE would be to
remove the second phase.

■ IKE does not allow stateless cookies. We pro-

Parameter negotiation

Diffie-Hellman exchange, K = resulting D-H key

Endpoint identifiers exchanged, encrypted with
K2 = f(preshared key, K)

Alice Alice

Msgs 1, 2

Msgs 3, 4

Msgs 5, 6

Figure 4. Preshared key main mode.

Parameter negotiation

Diffie-Hellman exchange, K = resulting D-H key

("Alice", signature on previous info) encrypted with K

("Bob", signature on previous info) encrypted with K

Alice Alice

Msgs 1, 2

Msgs 3, 4

Msg  5

Msg  6

Figure 3. Public signature key main mode.
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pose modifying IKE by repeating in message 3
the information in message 1, allowing stateless
cookies without adding messages.

■ The encoding should be changed to allow
negotiating sets of independent choices of cryp-
tographic parameters, to avoid exponential
explosion.

■ In some modes it is only possible to hide one
endpoint’s identity. It is better to hide the ini-
tiator’s identity. In some modes IKE only hides
the responder’s identity.

■ The only mandated IKE key type, pre-shared
secret keys, forces the endpoint identifiers to be
the IP addresses in the packet. This makes this
mode useless for the case where a traveling em-
ployee wishes to log into the corporate network
using his laptop. We described how to modify
IKE to allow much more useful endpoint identi-
fiers, at no cost in security or performance. ■
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