
Syntactic Control of Interference for Concurrent
Separation Logic

Uday S. Reddy1

1School of Computer Science
University of Birmingham

Concurrency Workshop, Dublin, Apr 2011

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 1 / 34

Outline

1 Motivation

2 Background on Syntactic Control of Interference

3 Example

4 The formalism

5 Concurrent Separation Logic

6 Comparisons

7 Conclusion

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 2 / 34

Concurrent Programming

Concurrent programming requires a tight control over resources
Be clear about what resources are being used by each process
Ensure that these resources are disjoint as far as possible
Devise suitable protocols for sharing resources when necessary

Concurrent Separation Logic does all of these very well for heap
locations.
But it brushes under the carpet the very same issues for variables.
This work is an attempt to change that.

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 3 / 34

How are variables different?

Variables are syntactic symbols.
It should be possible to control their usage in the formulation of
“syntax”.
Variables participate in expressions, which represent read-only
uses of the resources.
Need to make this convenient.

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 4 / 34

Concurrent Separation Logic
Parallel composition

{P1} C1 {Q1} {P2} C2 {Q2}

{P1 ? P2} C1 ‖ C2 {Q1 ?Q2}
Owicki-Gries:

if no variable free in Pi or Qi is changed in Cj (j 6= i).
if a variable x is changed in a process Ci , it cannot appear in Cj
(j 6= i) unless it belongs to a resource.
if a variable x belongs to a resource, it cannot appear in a parallel
process except in a critical section for r .

Brookes:
free(Pi ,Qi) ∩writes(C2) = free(P2,Q2) ∩writes(C1) = ∅
(free(C1) ∩writes(C2)) ∪ (free(C2) ∩writes(C1)) ⊆ owned(Γ)
where Γ lists all the resources in the context

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 5 / 34

Concurrent Separation Logic
Parallel composition

{P1} C1 {Q1} {P2} C2 {Q2}

{P1 ? P2} C1 ‖ C2 {Q1 ?Q2}
Owicki-Gries:

if no variable free in Pi or Qi is changed in Cj (j 6= i).
if a variable x is changed in a process Ci , it cannot appear in Cj
(j 6= i) unless it belongs to a resource.
if a variable x belongs to a resource, it cannot appear in a parallel
process except in a critical section for r .

Brookes:
free(Pi ,Qi) ∩writes(C2) = free(P2,Q2) ∩writes(C1) = ∅
(free(C1) ∩writes(C2)) ∪ (free(C2) ∩writes(C1)) ⊆ owned(Γ)
where Γ lists all the resources in the context

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 5 / 34

Concurrent Separation Logic
Parallel composition

{P1} C1 {Q1} {P2} C2 {Q2}

{P1 ? P2} C1 ‖ C2 {Q1 ?Q2}
Owicki-Gries:

if no variable free in Pi or Qi is changed in Cj (j 6= i).
if a variable x is changed in a process Ci , it cannot appear in Cj
(j 6= i) unless it belongs to a resource.
if a variable x belongs to a resource, it cannot appear in a parallel
process except in a critical section for r .

Brookes:
free(Pi ,Qi) ∩writes(C2) = free(P2,Q2) ∩writes(C1) = ∅
(free(C1) ∩writes(C2)) ∪ (free(C2) ∩writes(C1)) ⊆ owned(Γ)
where Γ lists all the resources in the context

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 5 / 34

Concurrent Separation Logic
Parallel composition

{P1} C1 {Q1} {P2} C2 {Q2}

{P1 ? P2} C1 ‖ C2 {Q1 ?Q2}
Owicki-Gries:

if no variable free in Pi or Qi is changed in Cj (j 6= i).
if a variable x is changed in a process Ci , it cannot appear in Cj
(j 6= i) unless it belongs to a resource.
if a variable x belongs to a resource, it cannot appear in a parallel
process except in a critical section for r .

Brookes:
free(Pi ,Qi) ∩writes(C2) = free(P2,Q2) ∩writes(C1) = ∅
(free(C1) ∩writes(C2)) ∪ (free(C2) ∩writes(C1)) ⊆ owned(Γ)
where Γ lists all the resources in the context

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 5 / 34

Concurrent Separation Logic
Parallel composition

{P1} C1 {Q1} {P2} C2 {Q2}

{P1 ? P2} C1 ‖ C2 {Q1 ?Q2}
Owicki-Gries:

if no variable free in Pi or Qi is changed in Cj (j 6= i).
if a variable x is changed in a process Ci , it cannot appear in Cj
(j 6= i) unless it belongs to a resource.
if a variable x belongs to a resource, it cannot appear in a parallel
process except in a critical section for r .

Brookes:
free(Pi ,Qi) ∩writes(C2) = free(P2,Q2) ∩writes(C1) = ∅
(free(C1) ∩writes(C2)) ∪ (free(C2) ∩writes(C1)) ⊆ owned(Γ)
where Γ lists all the resources in the context

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 5 / 34

Concurrent Separation Logic (contd)

Γ ` {P ? Rr ∧ B} C {Q ? Rr}

Γ, r(X) : Rr ` {P}with r when B do C od {Q}
CRIT

Owicki-Gries:
No variable free in P or Q is changed in any “other process”.

The reference to “other processes” makes this rule non-compositional.
Brookes:

r 6∈ dom(Γ)

X ∩ owned(Γ) = ∅
free(Ri) ∩ owned(Γ) = ∅
free(P,Q) ∩ X = ∅

These conditions are compositional. But they are not enough!

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 6 / 34

Concurrent Separation Logic (contd)

Γ ` {P ? Rr ∧ B} C {Q ? Rr}

Γ, r(X) : Rr ` {P}with r when B do C od {Q}
CRIT

Owicki-Gries:
No variable free in P or Q is changed in any “other process”.

The reference to “other processes” makes this rule non-compositional.
Brookes:

r 6∈ dom(Γ)

X ∩ owned(Γ) = ∅
free(Ri) ∩ owned(Γ) = ∅
free(P,Q) ∩ X = ∅

These conditions are compositional. But they are not enough!

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 6 / 34

Concurrent Separation Logic (contd)

Γ ` {P ? Rr ∧ B} C {Q ? Rr}

Γ, r(X) : Rr ` {P}with r when B do C od {Q}
CRIT

Owicki-Gries:
No variable free in P or Q is changed in any “other process”.

The reference to “other processes” makes this rule non-compositional.
Brookes:

r 6∈ dom(Γ)

X ∩ owned(Γ) = ∅
free(Ri) ∩ owned(Γ) = ∅
free(P,Q) ∩ X = ∅

These conditions are compositional. But they are not enough!

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 6 / 34

Concurrent Separation Logic (contd)

Γ ` {P ? Rr ∧ B} C {Q ? Rr}

Γ, r(X) : Rr ` {P}with r when B do C od {Q}
CRIT

Owicki-Gries:
No variable free in P or Q is changed in any “other process”.

The reference to “other processes” makes this rule non-compositional.
Brookes:

r 6∈ dom(Γ)

X ∩ owned(Γ) = ∅
free(Ri) ∩ owned(Γ) = ∅
free(P,Q) ∩ X = ∅

These conditions are compositional. But they are not enough!

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 6 / 34

Concurrent Separation Logic (contd)

Γ ` {P ? Rr ∧ B} C {Q ? Rr}

Γ, r(X) : Rr ` {P}with r when B do C od {Q}
CRIT

Owicki-Gries:
No variable free in P or Q is changed in any “other process”.

The reference to “other processes” makes this rule non-compositional.
Brookes:

r 6∈ dom(Γ)

X ∩ owned(Γ) = ∅
free(Ri) ∩ owned(Γ) = ∅
free(P,Q) ∩ X = ∅

These conditions are compositional. But they are not enough!

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 6 / 34

Syntactic Control of Interference

[Reynolds 1978]
Two terms

T1 T2

are deemed to interfere:
if any free variable actively used in one term is used in the other
term (as a free variable again).
The two terms can share passively used free variables.
Procedure call: F (A)

local declarations: let x = A in B
Parallel composition: C1 ‖ C2

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 7 / 34

Further work on SCI

[O’Hearn 1991] Linear logic and interference control, CTCS
[O’Hearn 1993] A model for syntactic control of interference, MSCS
[Reddy 1996] Global state considered unnecessary: An introduction to
object-based semantics, J. LSP
[O’Hearn, Power, Takeyama, Tennent 1995] Syntactic control of
interference Revisited, MFPS
[McCusker, 2007] Categorical models of syntactic control of
interference revisited, revisited, LMSJCM
[McCusker, 2010] A graph model for imperative computation, LMCS
[Ghica, Murawski, Ong] Syntactic control of concurrency, TCS
[Ghica 2007] Geometry of synthesis: A structured approach to VLSI
design, POPL.

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 8 / 34

Further work on SCI (contd)

Bunched typing arose from an effort combine SCI with regular
function application:
[O’Hearn 2003] On bunched typing, JFP
BI arose from viewing these type systems as logics:
[Pym, O’Hearn 1999] The logic of bunched implications, BSL
Separation Logic uses BI as its assertion logic.
However: Remarkably, SCI has never been used to structure
programming logics, which was its original motivation!

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 9 / 34

O’Hearn’s formulation of SCI
(inspired by Linear Logic)

The contexts are combined multiplicatively.

Σ1 ` F : τ1 → τ2 Σ2 ` A : τ1

Σ1,Σ2 ` F (A) : τ2

Σ1 ` A : τ1 Σ2, x : τ1 ` B : τ2

Σ1,Σ2 ` let x = A in B : τ2

Σ1 ` C1 Comm Σ2 ` C2 Comm

Σ1,Σ2 ` C1 ‖ C2

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 10 / 34

SCI Revisited
deals with passive uses

Add a separate zone of passively used free variables:

Σ1 | Π ` F : τ1 → τ2 Σ2 | Π ` A : τ1

Σ1,Σ2 | Π ` F (A) : τ2

Σ1 | Π ` A : τ1 Σ2, x : τ1 | Π ` B : τ2

Σ1,Σ2 | Π ` let x = A in B : τ2

Σ1 | Π ` C1 Comm Σ2 | Π ` C2 Comm

Σ1,Σ2 | Π ` C1 ‖ C2

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 11 / 34

SCI Revisited (contd)

Normal free variables can be regarded as passively used free
variables in limited contexts:

Σ, x : τ | Π ` E Exp

Σ | x : τ,Π ` E Exp

However, once a free variable is marked as passive, it cannot be used
actively any more.
Fractional permissions to the rescue!

we can annotate passively used variables with fractional
permissions, and
combine permissions to recover the whole (active) variable again.

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 12 / 34

Example

{x = 0}
resource r(x) {true} in begin

with r do with r do
x := x+1; || x := x+1;

od od
end
{x = 2}

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 13 / 34

Example (with auxiliary variables)

a := 0; b := 0;
resource r(x, a, b) {x = a + b} in begin
{a = 0} {b = 0}
with r do with r do

x := x+1; || x := x+1;
a := 1 b := 1

od od
{a = 1} {b = 1}

end
{x = a + b ? a = 1 ? b = 1}
{x = 2}

Question: How can we use a and b outside critical regions?

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 14 / 34

Example (with permissions)

a := 0; b := 0;
resource r(x1,a

1
2 ,b

1
2) {x = a + b} in begin

// owns a
1
2 // owns b

1
2

{a = 0} {b = 0}
with r do with r do

x := x+1; || x := x+1;
a := 1 b := 1

od od
{a = 1} {b = 1}

end

Since the left process keeps a
1
2 permission, there is no way that any

“other process” can modify a. (Similarly for b.)

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 15 / 34

Permission algebra

[Boyland], [Bornat et al.]
A partial commutative semigroup (P,⊕,>).

cancellative: x ⊕ y = x ⊕ y ′ =⇒ y = y ′.
totality: >⊕ x is undefined.
no unit: x ⊕ y 6= x .
divisibility: ∀x . ∃y1, y2. x = y1 ⊕ y2.

Example: real interval (0,1] with addition as ⊕ and 1 as >.

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 16 / 34

Well-formedness judgements

xp1
1 , . . . , xpn

n ` E Exp
xp1

1 , . . . , xpn
n ` P Assert

Variable contexts (Σ)
The same variable can have multiple occurrences in Σ:

xpi1 , . . . , xpik

But the permissions should be combinable:

pi1 ⊕ · · · ⊕ pik defined

E.g., x1, y
1
2 , x

1
2 ` · · · is illegal.

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 17 / 34

Example rules of well-formednes

Σ, xp ` x Exp
Σ ` E1 Exp Σ ` E2 Exp

Σ ` E1 + E2 Exp

Σ ` E1 Exp Σ ` E2 Exp

Σ ` E1
p7−→ E2 Assert

Σ ` P1 Assert Σ ` P2 Assert

Σ ` P1 ? P2 Assert

Σ, x> ` P Assert

Σ ` ∃x .P Assert

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 18 / 34

Structural rules

Contraction rule:
Σ, xp, xq ` S
==========
Σ, xp⊕q ` S

Weakening (an admissible rule):

Σ ` S

Σ,Σ′ ` S

Substitution (an admissible rule)

Σ ` E Exp Σ, x> ` S

Σ ` S[E/x]

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 19 / 34

Well-formedness of commands

Σ | Γ ` C Comm

Σ is a variable context: xp1
1 , . . . , xpn

n
Γ is a resource context: r1(Σ1), . . . , rm(Σm)
For a legal context:

All the ri ’s are distinct.
Σ,Σ1, . . . ,Σm is legal.

Example: a
1
2 ,b

1
2 | r(x1,a

1
2 ,b

1
2) ` C1 ‖ C2 Comm

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 20 / 34

Example rules for commands

Σ | Γ ` E Exp

Σ | Γ ` (x := E) Comm
if x> ∈ Σ

Σ | Γ ` E1 Exp Σ | Γ ` E2 Exp

Σ | Γ ` ([E1] := E2) Comm

Σ | Γ ` C1 Comm Σ | Γ ` C2 Comm

Σ | Γ ` (C1; C2) Comm

Σ1 | Γ ` C1 Comm Σ2 | Γ ` C2 Comm

Σ1,Σ2 | Γ ` (C1 ‖ C2) Comm

There are no side conditions for the parallel rule!
A bit deceptive because Σ1,Σ2 should be legal.

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 21 / 34

An aside on natural deduction

A natural deduction starts with assumptions and applies rules to derive
conclusions:

A1 . . . An
...

...
S

For the sake of clarity on how the assumptions are handled, we write it
in sequent form:

A1, . . . ,An ` S

So the parallel rule is really saying:

Σ1 Σ2
...

...
C1 Comm C2 Comm

(C1 ‖ C2) Comm

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 22 / 34

Resources and critical regions

Σ | Γ, r(Σ0) ` C Comm

Σ,Σ0 | Γ ` (resource r(Σ0) in C) Comm

Σ,Σ0 ` B Exp Σ,Σ0 | Γ ` C Comm

Σ | Γ, r(Σ0) ` (with r when B do C od) Comm

The resource declaration slices off a part of the current variable
context (Σ0) and locks it up in the resource.
A critical region unlocks the resource’s context and provides it to
the body of with .

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 23 / 34

Programming logic with SCI

Σ | Γ ` {P} C {Q}

requires well-formedness:
Σ ` P Assert and Σ ` Q Assert.
Σ | Γ ` C Comm

For example:

a
1
2 ,b

1
2 | r(x1,a

1
2 ,b

1
2) ` {a = 0 ? b = 0} C1 ‖ C2 {a = 1 ? b = 1}

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 24 / 34

Examples of Logic rules

ASSIGN
Σ | Γ ` E Exp Σ | Γ ` P Assert

Σ | Γ ` {P[E/x]} x := E {P}
if x> ∈ Σ

FRAME
Σ | Γ ` {P} C {Q} Σ′ | Γ ` R Assert

Σ,Σ′ | Γ ` {P ? R} C {Q ? R}

PAR
Σ1 | Γ ` {P1} C1 {Q1} Σ2 | Γ ` {P2} C2 {Q2}

Σ1,Σ2 | Γ ` {P1 ? P2} C1 ‖ C2 {Q1 ?Q2}

In FRAME, the well-formedness of Σ,Σ′ is equivalent to the
O’Hearn et al. side condition “C does not modify free(R).”
In PAR, the well-formedness of Σ1,Σ2 is equivalent to the
Owicki-Gries side condition “Ci does not modify free(Pj ,Qj) (for
j 6= i).”

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 25 / 34

Examples of Logic rules (contd)

CRIT rule for critical regions:

Σ ` P Assert Σ ` Q Assert
Σ,Σ0 ` B Exp Σ,Σ0 | Γ ` {P ? R ∧ B} C {Q ? R}
Σ | Γ, r(Σ0) : R ` {P}with r when B do C od {Q}

Since P and Q are well-formed in the context Σ, it is obvious that no
“other process” can modify the variables in Σ.
However, “this process” can modify them, because Σ is part of the
context for C.
Thus, we have a compositional formulation of the Owicki-Gries side
conditions.

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 26 / 34

Comparison with Owicki-Gries-O’Hearn system

All Owicki-Gries-O’Hearn proof outlines can be transformed to our
system.
Every resource declaraion

resource r(x1, . . . , xn) in C

must be annotated with permissions for the owned variables.
1 If x occurs only inside critical regions:

if it is modified there, annotate it as x1.
if it is not modified there, annotate it with a possibly partial
permisison p.

2 If x occurs outside critical regions, it can only do so in a single
process and it must be passively used.

Annote the resource with xp (for some partial permision p).
Give the process xp′

(where p ⊕ p′ = >).

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 27 / 34

Comparision with Brookes’s system

Brookes allows every resource to deal with two sets of variables:

resource r(x1, . . . , xn) : R in C

owned(r) = {x1, . . . , xn}
free(R) is the set of free variables in the resource invariant, which
can include more variables than owned(r).

Example: resource r(x) : {x = a + b} in C1 ‖ C2
Rewrite the resource declaration as:

resource r(x>1 , . . . , x
>
n , y

p1
1 , . . . , ypm

m) : R in C

Variables in owned(r) are fully owned by the resource.
The additional variables in free(R) are partially owned by the
resource.

However not all Brookes’s proof outlines can be translated.
Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 28 / 34

Unsoundness in Brookes’s rules
[Ian Wehrman]

x := a;
resource r(x) {x = a} in
begin
{true} {true}
with r do with r do

t := x || x := x+1;
od a := a+1
{t = a} od
with r do {true}

x := t
od
{true}

end
{x = a}

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 29 / 34

Comparison with “Variables as Resource” systems

[Parkinson et al.], [Brookes]
“Variable as resource” systems treat variable usage in assertions
instead of the syntax.
Our rules can be translated into “Variables as resource” logics.
(Hence, the latter are more general.)

Σ = (xp1
1 , . . . , xpn

n) OΣ ≡ ownp1(x1) ? · · · ? ownpn (xn)

Σ | Γ ` {P} C {Q} Γ ` {OΣ ∧ P} C {OΣ ∧Q}

But “Variables as resource” logics are strange in practice:
E = E is not universally true.
¬(E1 = E2) and E1 6= E2 are not the same thing.
Substitution is not always legal.
Program variables cannot be treated as logical variables.

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 30 / 34

Semantics

SCI is something like a type system.
So, we would expect it to streamline the denotational semantics,
and rule out unwanted behaviours.

Brookes’s action traces:

λ ::= δ | x = v | x := v | [l] = v | [l] := v | try(r) | acq(r) | rel(r) | abort

Actions are enabled in contexts, and may transform them.

Σ | Γ̃
x=v−→ Σ | Γ̃ iff xp ∈ Σ for some p

Σ | Γ̃
x :=v−→ Σ | Γ̃ iff x> ∈ norm(Σ)

Σ | Γ̃, r(Σ0)
acq(r)−→ Σ,Σ0 | Γ̃, [r(Σ0)]

Σ,Σ0 | Γ̃, [r(Σ0)]
rel(r)−→ Σ | Γ̃, r(Σ0)

Theorem: The trace set T of every command Σ | Γ ` C Comm
satisfies Σ | Γ

T−→ Σ | Γ.
Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 31 / 34

Summary

We have produced a clean, simple, compositional system of proof
rules for Concurrent Separation Logic.
The system is expressive, fitting somewhere between
Owicki-Gries-O’Hearn rules and “Variables as resource” rules.
It is sound and has a direct representation in the semantics.

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 32 / 34

Further work

Algorithms for parsing/type-checking.
Integration with type systems.
Extensions to procedures and objects.

Uday S. Reddy (Univ of Birmingham) SCI for Separation Logic Dublin 2011 33 / 34

	Motivation
	Background on Syntactic Control of Interference
	Example
	The formalism
	Concurrent Separation Logic
	Comparisons
	Conclusion
	Appendix

