
Shared-memory concurrency,
out there in the world

Peter Sewell

University of Cambridge

joint work with

Jade Alglave, Mark Batty, Peter Boehm, Suresh Jagannathan, Luc Maranget,
Magnus Myreen, Scott Owens, Tom Ridge, Susmit Sarkar, Jaroslav Ševčík,

Viktor Vafeiadis, Derek Williams, Francesco Zappa Nardelli

Cambridge, INRIA, Purdue, MPI-SWS, IBM

Dublin Concurrency Workshop, 14-15 April 2011

– p. 1

The Golden Age, 1945–1959

Processor

Memory

– p. 2

Sequentially Consistent (SC) Shared Memory

Thread Thread

Shared Memory

Multiple threads, but memory is still an array of values, or a
sequentially consistent (SC) shared memory:

“the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, and the operations of each
individual processor appear in this sequence in the
order specified by its program”.

Leslie Lamport, 1979

– p. 3

Open Problem: Observational Congruence for SC

Simple case: pure-interleaving, finite executions, parallel
contexts, final-state observation

Locations x, y, z ∈ L Values v ∈ {0, 1} States s : L→ {0, 1}

Actions a ::= Rxv | Wxv | τ

Take threads P in some while-language, or receptive LTSs

Take parallel composition P | Q to be free interleaving, and the
obvious SC semantics for a process with a store 〈P, s〉.

Define the final states fs(P, s0) = {s | ∃Q. 〈P, s0〉 →
∗ 〈Q, s〉 6→}

Define an observational preorder:

P 6c P ′ iff ∀s0, Q. fs(P |Q, s0) ⊆ fs(P ′|Q, s0)
– p. 4

Open Problem: Observational Congruence for SC

Problem: give a ‘good’ characterisation of 6c or =c.

Some reads are ‘irrelevant’:

Rx0.Wzv + Rx1.Wzv =c Wzv

Some ‘write non-stuttering’ is unobservable:

Wx1.Wx1 + Wx1 =c Wx1.Wx1

Read and write values are interrelated:

Wy1 =c Ry0.Wy1 + Ry1

(c.f. Brookes 96, but there a program can atomically check all
locations)

– p. 5

Living in an Ideal World

Such a sequentially consistent shared memory is taken for
granted, by almost all

programming language semantics

program logics

concurrency verification tools

programmers

– p. 6

False, since 1972
IBM System 370/158MP

And in x86, ARM, POWER, Itanium, Sparc

And in C, C++, Java, ...

And moreover, most of those specs are seriously flawed

– p. 7

This Talk

Mainstream shared-memory concurrency, in multiprocessors
and programming languages

...just a flavour, by example

Cuts across CS: hardware, compiler optimisations, concurrent algorithms,
programming languages, loose specification and semantics, verification,
pragmatic and commercial issues

– p. 8

x86

Intel/AMD/VIA

– p. 9

The Typical TSO Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find x86 code like this.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

What final states are allowed?

In SC: What are the possible sequential orders?

– p. 10

The Typical TSO Example
Conclusion:

0,1 and 1,1 and 1,0 can happen, but 0,0 is impossible

– p. 11

The Typical TSO Example
Conclusion:

0,1 and 1,1 and 1,0 can happen, but 0,0 is impossible

In fact, in the real world, experimentally:
we observe 0,0 every 630/100 000 runs
(on an Intel Core Duo x86)

(and so Dekker’s algorithm will fail)

– p. 11

Our x86-TSO model

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

– p. 12

Our x86-TSO model

Unambiguous (in HOL4)

Sound w.r.t. experimentally observable behaviour

Easy to understand (abstract machine)

Consistent with what we know of vendors intentions

Consistent with expert-programmer reasoning

Reason about it:

Equivalence between abstract machine and axiomatic
model

TRF theory, correctness of locks

correctness of compilation to x86-TSO

– p. 12

Architecture?
Hardware manufacturers document architectures:

Intel 64 and IA-32 Architectures Software Developer’s Manual
AMD64 Architecture Programmer’s Manual
Power ISA specification
ARM Architecture Reference Manual

loose specifications,

claimed to cover a wide range of past and future
processor implementations.

– p. 13

Fundamental Problem

Architecture texts: informal prose attempts at subtle loose
specifications

Fundamental problem: prose specifications cannot be used

to test programs against, or

to test processor implementations, or

to prove properties of either, or even

to communicate precisely.

In a real sense, the architectures don’t exist

– p. 14

POWER and ARM

IBM PowerG5, Power 5, Power 6, Power 7
ARM Cortex A9,...

– p. 15

Ubiquitous Multiprocessors, 2010–

Better performance/watt
– p. 16

More Relaxed than TSO

(to scale, e.g. to 1024 h/w threads, and for power efficiency)

Test SB : Allowed

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

po po

rf rf

Test WRC : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
po

rf
po

rf

Test MP : Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

Test IRIW : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
po

rf
po

rf rf

Use dependencies and various barriers to enforce ordering.

– p. 17

Example: WRC+sync+addr

Test WRC+sync+addr : Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
sync

rf
addr

rf

(and many more subtle issues)

– p. 18

Our work

much experimental testing of actual h/w

much discussion with an IBM Power designer

automatic test generation

building model(s)

model exploration tools

Model is abstract microarchitecture

Explains all observed behaviour.

Matches intended architecture (intentionally looser than
current h/w).

– p. 19

Java

– p. 20

Relaxed Memory from Compiler Optimisations

Example: In x86-TSO, message passing should work as
expected:

Thread 1 Thread 2

data = 1

ready = 1 if (ready == 1)

print data

In TSO, the program should only print 1.

– p. 21

Relaxed Memory from Compiler Optimisations

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print data

In TSO, the program should only print 1.

Regardless of other reads.

– p. 21

Relaxed Memory from Compiler Optimisations

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print data

In TSO, the program should only print 1.

But common subexpression elimination (as in gcc -O1 and
CompCert) will rewrite

print data =⇒ print r1

– p. 21

Relaxed Memory from Compiler Optimisations

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print r1

In TSO, the program should only print 1.

But common subexpression elimination (as in gcc -O1 and
CompCert) will rewrite

print data =⇒ print r1

So the compiled program can print 0!

– p. 21

Broken Specs Again

C/C++ with Posix threads: unclear

JMM original: Broken (Pugh,...)

JMM 2005: Broken (Cenciarelli, Ševčík & Aspinall)

– p. 22

C++0x and C1X

– p. 23

DRF+catch-fire semantics

1. a program that has no races in any SC execution is
guaranteed to behave as if running in an SC semantics

2. other programs can behave in any way at all

Promoted by Hans Boehm & Sarita Adve

At the heart of proposed C++0x and C1X standards

Permits (pretty) arbitrary compiler optimisation and hardware
reordering between synchronisation operations

Downside: how do you know code is race-free? And
concurrent algorithms are often not.

– p. 24

The release-acquire idiom

// sender
x = ...
y.store(1,mo_release);

// receiver
while (0 == y.load(mo_acquire);
r = x;

a:Wna x=1

b:WREL y=1

c:RACQ y=1

d:Rna x=1

sb
sw

sb

– p. 25

More Details
Establishing precise and usable h/w models:

x86-TSO (CACM, Owens, Sarkar, Sewell, Zappa Nardelli, Myreen)

Power/ARM (PLDI 2011, Sarkar, Sewell, Alglave, Maranget, Williams)

Establishing precise and usable language models:

C++0x/C1X (POPL 2011, Batty, Owens, Sarkar, Sewell, Weber)

Reasoning about concurrent code:

x86-TSO TRF theory, locks etc. (ECOOP 2010, Owens)

Verified compilation:

CompCertTSO: from ClightTSO to x86-TSO
(POPL 2011, Ševčík, Vafeiadis, Zappa Nardelli, Jagannathan, Sewell)

from C++0x executions to x86-TSO executions
(in above, Owens)

soundness of optimisations in DRF (PLDI 2011, Ševčík)
– p. 26

Stepping back

Technical abstraction-design challenge:
balance usability from above vs implementability from below

(in some cases still don’t know good solutions, e.g. JMM)

Loose specification really bites

Deliberate lack of clarity — loose specification by vague
specification

Subtle concurrent behaviour — prose specs not up to it

Challenge for Concurrency Theory: Effective Reasoning

– p. 27

The End

Thanks to:
Jade Alglave, Mark Batty, Peter Boehm, Suresh Jagannathan, Luc Maranget,
Magnus Myreen, Scott Owens, Tom Ridge, Susmit Sarkar, Jaroslav Ševčík,

Viktor Vafeiadis, Derek Williams, Francesco Zappa Nardelli

– p. 28

	The Golden Age, 1945--1959
	Sequentially Consistent (SC) Shared Memory
	Open Problem: Observational Congruence for SC
	Open Problem: Observational Congruence for SC
	Living in an Ideal World
	{color {red}{False}}, since 1972
	This Talk
	The Typical TSO Example
	The Typical TSO Example
	The Typical TSO Example

	Our x86-TSO model
	Our x86-TSO model

	Architecture?
	Fundamental Problem
	Ubiquitous Multiprocessors, 2010--
	More Relaxed than TSO
	Example: WRC+sync+addr
	Our work
	Relaxed Memory from Compiler Optimisations
	Relaxed Memory from Compiler Optimisations
	Relaxed Memory from Compiler Optimisations
	Relaxed Memory from Compiler Optimisations

	Broken Specs Again
	DRF+catch-fire semantics
	The release-acquire idiom
	More Details
	Stepping back

