DDbC for multiparty
distributed interactions:
static & dynamic validation

Laura Bocchi, University of Leicester
Tzu-Chun Chen, University of London
Pierre-Malo Denielou, Imperial College .ondon
Kohei Honda, University of London

Emilio Tuosto, University of Leicester

Nobuko Yoshida, Imperial College L.ondon

BACKGROUND

e DbC: Assertions = Types + Logical Formulae

e Type signature
int foobar(int 1)

e Assertion
int foobar(int 1)/{
pre: {1>10}
post: {0< result < 1000}
¥

e Building systems on the basis of precise contracts

o restrain defensive programming

Bertrand Meyer

e provide robustness

:—‘- Applying “Design by Contract”
vl I Computer (IEEE), 25, 1992

CHALLENGES

Can we extend this framework to communications
and concurrency?

o Distributed Setting (asynchronous message passing)
e The responsibilities are spread among the participants

o Participants have different views of the contract, e.g., the
condition of an interaction is

e a post-condition for the sender
e a pre-condition for the receiver

o what about third parties?

Multiparty Session Types

Global Seller — Buyer : k1 (Int).
Buyer — Bank : ko (Int)

Buyer
k1?(Int).ko!(Int)

Process & Process § Process

=——/'4 Kohei Honda, Nobuko Yoshida and Marco Carbone
\7/ Multyparty Asynchronous Session Types (POPL 2008)

OUTLINE

Global assert Global
Type Assertion

o A global type is used as a type signature describing the
interactions of a multiparty session

o Each abstract action is annotated with a predicate

OUTLINE

Global Global
Type Assertion

Well-Asserted
Global Assertion

o Consistency of the global specification is checked

OUTLINE

Global Global

Type Assertion

Well-Asserted
check Endpoint Assertion

Well-Asserted

: Well-Asserted
Global Assertion

Endpoint Assertion

project Well-Asserted
Endpoint Assertion

e The global assertion is projected onto each endpoint
preserving consistency

OUTLINE

validate

Global Global

Type Assertion
Well-Asserted

check Endpoint Assertion

Well-Asserted

: Well-Asserted
Global Assertion

Endpoint Assertion

project Well-Asserted
Endpoint Assertion

e Each process is validated against its (one or more)
local specification(s)

STATIC VALIDATION

(design-time)
Global assert Global validate
Type Assertion

Well-Asserted)2
check Endpoint Assertion /

Well-Asserted

, Well-Asserted P
Global Assertion 2

Endpoint Assertion

project Well-Asserted P,
Endpoint Assertion

A Theory of DbC for Multiparty Distributed Interactions (CONCUR 2010)

e Key points: effective well-assertedness, projection, validation*

e The proof system is sound and relatively complete

*validation is effective up to the underlying logic

RUNTIME VALIDATION

(run-time)

Global Global validate
Type Assertion

Well-Asserted
check Endpoint Assertion

Well-Asserted
Global Assertion

Well-Asserted
Endpoint Assertion

project Well-Asserted
Endpoint Assertion

Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Denielou, Kohei Honda, Nobuko Yoshida

Distributed Monitoring for Multiparty Session Enforcement
.//www.eecs.qmul.ac.uk/” tecchen/monitoring sessions.html

e From recent collaboration with Ocean Observation Initiative (OOI)
on large scale distributed systems

o Unsafe endpoints in multiple administrative domains.

e Use previous theory to achieve runtime enforcement

http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/

GLOBAL ASSERTIONS

| Buxer | Seller | Bank |
t P
Mmitriter quit SEEE SR {
c
(&)
C
L
0
CTERESR AL k L3
t S
¢ t

Buyer — Seller : kq(Int).
Seller — Buyer : ko{quit : End,
ok : Buyer — Bank : k3(Int).
Bank — Seller : k4(Int)
;

GLOBAL ASSERTIONS

‘ Buxer ' ‘ Seller i ‘ Bank b

each interaction
introduces an

interaction variable

Buyer — Seller : ki(o: Int).
Seller — Buyer : ko{quit : End,
ok : Buyer — Bank : k3(p : Int).
Bank — Seller : k4(a : Int)
}

GLOBAL ASSERTIONS

| Buxer | | Seller | | Bank |

_ predicates

Al = (o = 100)
e quit §EEIEEET T t A2 = (o < 1000)
5 A3 = (o = p)

= A4 = (true)

a
e E1T2 L Ok [EERasETtis

p :int : == g
< a:int]

Buyer — Seller : ki(o: Int){A4}.
Seller — Buyer : ko{{ A5} quit : End,
{true} ok : Buyer — Bank : k3(p : Int){As}.
Bank — Seller : k4(a : Int){ A4}
h

CONSISTENCY CHECK

Global = Global
Type Assertion

check

Well-Asserted
Global Assertion

When is a global assertion well designed?

HISTORY SENGSITIVITY

“an interaction predicate can only contain those
interaction variables that are known to its sender”

Alice — Bob: (u: Int){true}. Alice Bob Carol
X Bob — Carol : (v: Int){true}. i i
Carol — Alice: (z: Int){z > u} i

Carol cannot
Alice — Bob: (u: Int){true}. GRSttt

does not know u
v/ Bob — Carol: (v: Int){v > u}.
Carol — Alice: (z: Int){z > v}

TEMPORAL SATISFIABILITY

*a process can always find a valid forward path at
each interaction point until it meets the end”

Alice — Bob : (v : Int){v > 10}.
Bob — Alice: (z:Int){z<v A z> 10}

Had Alice
v Alice — Bob: (v:Int){v > 12}. L e
Bobli—s Aliice!: (Z : Int){z < U A 2> 10}. Carol could not find
a value for z s.t.
z<11 and z>10

e Well-assertedness = History Seisitivity + Temporal Satisfiability
e is decidable (as long as the logic is)

e we provide design-time checker

PROJECT

Global Global
Type Assertion

Well-Asserted
check Endpoint Assertion

Well-Asserted

: Well-Asserted
Global Assertion

Endpoint Assertion

Well-Asserted
Endpoint Assertion

How to project obligations and guarantees
onto the endpoints?

ENDPOINT ASSERTIONGS

Global assertions Endpoint assertions
p—p :k(v:8){A}.G kKl(v:8){A}T
p—p k{{A;}; : Gitlier k?(v:S){A}LT
ut{ey(v:8){A}.G AR O
tie
gf g>’ k&{{Ai}tli : Titier
End utie)(v:S){ALT

t{e)

End

PROJECTIONS

User — Agent : ki(cl : Command){cl # switch — off}.
Agent — Instrument : ko(c2 : Command){c2 = cl}

e A too naive projection on Instrument:

X ko?(c2 : Command){c2 = cl}

« We want to give stronger preconditions to prevent defensive programming

e We do not reveal the exact values exchanged between third parties

STATIC VALIDATION

(design-time)
Global assert Global validate
Assertion

Type

Well-Asserted I)
check Endpoint Assertion 7

Well-Asserted

: Well-Asserted P
Global Assertion 2

Endpoint Assertion

project Well-Asserted P,
Endpoint Assertion

How to ensure that a process satisfies a
contract expressed as an assertion?

ASSERTED PROCESSES

Programs Run-time processes
P ::=a[2.n)(5).P request if ethen Pelse Q conditional Py 2 P

alp) (§).P accept sA{A}LP select (V§) Py
(va)P hide s> {{Aitli: Piticr branch s h
sl{e)(v){A}; P send P|Q parallel errH
s?7v){A}; P receive uX{et)(vs).P rec def errT
SIKEY(V){A ;P del-rw X{es) rec call

s?(V){A}; P del-cth 0 idle

errH notifies a violation in a send/select

errT notifies a violation in a receive/branch

Receive with no violation

s?(v){v > 10} P | s:10-h — P[10/v] | s: h
Receive with violation

s?(v){v>10};P|s:1-h—>errT|s:h

| VALIDATION RULES

::= true | CAA (assertion environment)

2:= O | r,a:C | r,X:(Gzé)Ll@pl..Ln@pn (typing environment)

= A,é:T@p (assignment environment)

C; P P D A P is validated

against A and r

CNA; T P > A,s: T Qp
C;I'Fsp?(v){A}; P A, 5:k?(v: S){A}T Qp

[Rev]

| CC Ale/o] CTFPle/] v A5 Tle/o]@p
L G TR sple)(v){A; P > A,5: kl(v: S){A};T Qp

[Snd]

SOUNDNESS & COMPLETENESS

Theorem (Soundness of Validation Rules)
Let P be a closed program. Then I' = P> A implies]' = P> A

.
.
.
.
.
.
.
.
.
*
.
L3
.
RS
3

Theorem (Completeness of Validation Rules)
For each closed visible program P, «f ' = P> A then ' - P> A

Theorem (Error Freedom)Let P be a closed program.

Suppose
I.TFPp A,

2. P 8 Pl osyuch that (I, A) allows £1..4,,.
Then P’ contains neither errH nor errl.

RUNTIME VALIDATION

(design-time)
assert Global validate

Assertion

Well-Asserted
check Endpoint Assertion

Well-Asserted

; Well-Asserted
Global Assertion

Endpoint Assertion

trusted environment

project Well-Asserted
Endpoint Assertion‘g\

(run-time)
monitor

e Error Freedom guarantees absence of violations if
ALL processes are validated

e What about systems with unsafe endpoints? Monitoring!

OOI (Ocean Observation Initiative)

e Enabling environmental science observatories with persistent and
interactive capabilities

e OOI cyberinfrastructure (OOI CI) based on loosely coupled
distributed services and agents (e.g., seafloor instruments, on-shore
research stations) communicating through a common messaging
infrastructure.

e Systems are large scale, distributed, multi-organizational

o Applications built form application-level protocols

e Need for global safety ensurance by local validation
with possibly unsafe endpoints

http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/

INSTRUMENT COMMAND

| User \ ‘ Register \ I Agent \ ‘ Instrument \

Xint ; Interfaceld

xn: Int |A2] A=(y 2 0)
¢ A2 = (Xn > 0)
Xp : Priority - A4 = (xp = high > xe # busy)

A5=(y > 0 A Xcom # switch-off)
ut<xn>(y) [accept() -

@

more(Xcom : Command) ————»>
- more(ycom : Command) ¥

@ <4

Xr . Response @

yr : Response —

t<y-1> B

quit() >

<«4—— reject(xe : ErrorData)
|

THE ARCHITECTURE

s[Bank] Principal 3

Principal 1 Process
H P3
Process
Pr|nC|paI 2
P2

S[Seller]
T = Buyer!k(o : Int){o > 100} i

Process P1 Monitor

P = 5.!1(80)(0).P’ | s|Buyer] : () M = s|Buyer|® : T
lT lT

P, = P’ | s[Buyer] : (Buyer, Seller, (80)) M = s[Buyer|®*: T
\L s[Buyer, Seller](80) $ s|Buyer, Seller|(80)

P2 = P [80/0] ‘ S[Buyer] : @ v S, Ain/v} Ltrue, 7 ~pal{v:S){A}. !

. r 1@ . SP1P2|' e -/
//--".Pl_ 4 = l».//..s'_p.‘ o :n \'}

PROPERTIES

e Local/global conformance: a monitored process
well- behaves and coherence is preserved in a network

e Local/global transparency: monitors do not alter
well-behaved interactions

e Session fidelity: the interactions of a network are
step-by-step conform to the corresponding global types

PROPERTIES

Theorem (Local Conformance) M = M|P] for all M and P

Theorem (Global Conformance) N %ﬁg N’ with N coherent
implies N’ is coherent

Theorem (Local Transparency)If M = MP°|[P] then
M = M°|P] ~ M|P]

Theorem (Global Transparency)Suppose N is coherent and locally
conformant. Then N ~ erase(N)

Theorem (Session Fidelity)If £+ N and N Hgg N’
then & Hgg E" such that &' = N’

CONCLUSIONGS

e We enabled DbC for distributed interactions trough the
elaboration of MPSTs with logic formulae

e Local validation of global safety
o Sound+relatively complete validation system

o Effectiveness

o Local enforcement of global safety with unsafe
endpoints

e Prototype: framework for interoperable processes
(Scala, Java, OCaml)

o Efficiency

RELATED WORK

HML

® M. Berger, K. Honda, and N. Yoshida. Completeness and logical full abstraction for modal
logics for the typed pi-calculus. ICALP 2008

® M. Dam. Proof systems for pi-calculus logics. In Logic for Concurrency and
Synchronisation, Trends in Logic, 2003

Contracts

® L. Acciai and M. Borale. A type system for client progress in a service-oriented calculus. In
Concurrency, Graphs and Models, 2008

® M. Bravetti and G. Zavattaro. A foundational theory of contracts for multi-party service
composition. Fundamenta Informaticae, XX:1-28, 2008

® L. Caires and H. T. Vieira. Conversation types. ESOP 2009
® G. Castagna and L. Padovani. Contracts for mobile processes. CONCUR 2009

® K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. POPL 2008.

RELATED WORK

Assertions for functional programming

® S. Peyton Jones et al. Composing contracts: an adventure in financial engineering. ICFP 2000.

® D. Xu and S. Peyton Jones. Static contract checking for Haskell. POPL 2009

DBC

® P. Nienaltowski, B. Meyer, and J. S. Ostroff. Contracts for concurrency. Form. Asp. Comput.,
21(4):305—318, 20009.

Corresponding assertions, refinement/dependent types

® E. Bonelli, A. Compagnoni, and E. Gunter. Correspondence assertions for process
synchronization in concurrent communications. JFC, 15(2):219—247, 2005

® K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of security protocol code by
typing. POPL 2010.

® T. Freeman and F. Pfenning. Refinement types for ML. SIGPLAN Not., 26(6):268—-277, 1901.

® H.XiandF. Pfenning. Dependent types in practical programming. POPL 1999.

