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BACKGROUND
• DbC: Assertions = Types + Logical Formulae 

int foobar(int i)

• Type signature

int foobar(int i){
      pre: {i>10}
      post: {0< result < 1000}
}

• Assertion

• Building systems on the basis of precise contracts

• restrain defensive programming

• provide robustness Bertrand Meyer
Applying “Design by Contract”
In Computer (IEEE), 25, 1992



CHALLENGES

• Distributed Setting (asynchronous message passing)

• The responsibilities are spread among the participants

• Participants have different views of the contract, e.g., the 
condition of an interaction is

• a post-condition for the sender

• a pre-condition for the receiver

• what about third parties?

Can we extend this framework to communications 
and concurrency? 



Multiparty Session Types

Process Process Process
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Seller → Buyer : k1(Int).
Buyer → Bank : k2(Int)
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k1?(Int).k2!(Int)

Kohei Honda, Nobuko Yoshida and Marco Carbone
Multyparty Asynchronous Session Types (POPL 2008)



OUTLINE
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• A global type is used as a type signature describing the 
interactions of a multiparty session

•  Each abstract action is annotated with a predicate



OUTLINE

• Consistency of the global specification is checked
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OUTLINE

• The global assertion is projected onto each endpoint 
preserving consistency
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OUTLINE

• Each process is validated against its (one or more) 
local specification(s)
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• Key points: effective well-assertedness, projection, validation*

• The proof system is sound and relatively complete

*validation is effective up to the underlying logic
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Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida
A Theory of DbC for Multiparty Distributed Interactions (CONCUR 2010)

STATIC VALIDATION
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Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Denielou, Kohei Honda, Nobuko Yoshida
Distributed Monitoring for Multiparty Session Enforcement 
http://www.eecs.qmul.ac.uk/~tcchen/monitoring_sessions.html

• From recent collaboration with Ocean Observation Initiative (OOI)  
on large scale distributed systems 

• Unsafe endpoints in multiple administrative domains.

• Use previous theory to achieve runtime enforcement 

RUNTIME VALIDATION

http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/


GLOBAL ASSERTIONS
Buyer Seller

int

quit

ok
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int

Buyer → Seller : k1(Int).
Seller → Buyer : k2{quit : End,

ok : Buyer → Bank : k3(Int).
Bank → Seller : k4(Int)

}



Buyer Seller

o : int

quit
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p : int

a : int

GLOBAL ASSERTIONS

Buyer → Bank : k3(p : Int).
Bank → Seller : k4(a : Int)

}

Buyer → Seller : k1(o : Int).
Seller → Buyer : k2{quit : End,

ok :

each interaction 
introduces an 

interaction variable



Buyer Seller

o : int

quit

ok

Bank

br
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ch

p : int

a : int

A1 

A2 

A3 

A4

GLOBAL ASSERTIONS

Buyer → Seller : k1(o : Int){A1}.
Seller → Buyer : k2{{A2} quit : End,

{true} ok : Buyer → Bank : k3(p : Int){A3}.
Bank → Seller : k4(a : Int){A4}

}

A1 = (o ≥ 100) 
A2 = (o < 1000)
A3 = (o = p)
A4 = (true)

predicates



CONSISTENCY CHECK
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When is a global assertion well designed?



HISTORY  SENSITIVITY

Carol cannot 
guarantee z>u since she 

does not know u

✘

Alice → Bob : (u : Int){true}.
Bob → Carol : (v : Int){v > u}.
Carol → Alice : (z : Int){z > v}

✔

“an interaction predicate can only contain those
interaction variables that are known to its sender”

Alice → Bob : (u : Int){true}.
Bob → Carol : (v : Int){true}.
Carol → Alice : (z : Int){z > u}

Alice Bob Carol
u u

v v



TEMPORAL SATISFIABILITY

Had Alice 
chosen v=11, 

Carol could not find 
a value for z s.t. 
z<11 and z>10

✘

“a process can always find a valid forward path at 
each interaction point until it meets the end”

Alice → Bob : (v : Int){v > 10}.
Bob → Alice : (z : Int){z < v ∧ z > 10}.

✔ Alice → Bob : (v : Int){v > 12}.
Bob → Alice : (z : Int){z < v ∧ z > 10}.

• Well-assertedness = History Seisitivity + Temporal Satisfiability

• is decidable (as long as the logic is)

• we provide design-time checker



PROJECT
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How to project obligations and guarantees 
onto the endpoints?



ENDPOINT  ASSERTIONS
Global assertions Endpoint assertions

p → p� : k(v : S){A}.G
p → p� : k{{Ai}li : Gi}i∈I

µt�e�(v : S){A}.G
t�e�
G,G�

End

k!(v : S){A}; T
k?(v : S){A}; T
k ⊕ {{Ai}li : T i}i∈I

k&{{Ai}li : T i}i∈I

µt�e�(v : S){A}.T
t�e�
End



PROJECTIONS

• We want to give stronger preconditions to prevent defensive programming

• We do not reveal the exact values exchanged between third parties

✔

• A too naive projection on Instrument:

k2?(c2 : Command){c2 = c1}

User → Agent : k1(c1 : Command){c1 �= switch− off}.
Agent → Instrument : k2(c2 : Command){c2 = c1}

✘

k2?(c2 : Command){∃c1.(c1 �= switch− off) ∧ (c2 = c1)}



STATIC VALIDATION
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How to ensure that a process satisfies a 
contract expressed as an assertion?



ASSERTED PROCESSES

errT notifies a violation in a receive/branch

errH notifies a violation in a send/select

Receive with no violation
s?(v){v ≥ 10};P | s : 10 · h̃ → P [10/v] | s : h̃

Receive with violation

s?(v){v ≥ 10};P | s : 1 · h̃ → errT | s : h̃



VALIDATION RULES
C ::= true | C ∧ A                (assertion environment)

C;Γ � P �∆

Γ ::= ∅ | Γ,a:G | Γ,X:(v:S)L1@p1..Ln@pn (typing environment)

Δ ::= ∅ | Δ,s:T@p                   (assignment environment)~

~ ~

P is validated 
against Δ and Γ



Theorem (Soundness of Validation Rules)
Let P be a closed program. Then Γ � P �∆ implies Γ |= P �∆

SOUNDNESS & COMPLETENESS

P conditionally simulates Δ and Γ
(the simulation only holds for valid inputs)

Theorem (Error Freedom)Let P be a closed program.
Suppose

1. Γ � P �∆,

2. P
�1..�n−−−→ P

� such that �Γ,∆� allows �1..�n.
Then P

� contains neither errH nor errT .

Theorem (Completeness of Validation Rules)
For each closed visible program P , if Γ |= P �∆ then Γ � P �∆



RUNTIME VALIDATION 
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• Error Freedom guarantees absence of violations if  
ALL processes are validated

• What about systems with unsafe endpoints? 

(run-time)
monitor

Monitoring!



OOI (Ocean Observation Initiative)
• Enabling environmental science observatories with persistent and 

interactive capabilities

•  OOI cyberinfrastructure (OOI CI) based on loosely coupled 
distributed services and agents (e.g., seafloor instruments, on-shore 
research stations) communicating through a common messaging 
infrastructure.

• Systems are large scale, distributed, multi-organizational

• Applications built form application-level protocols

• Need for global safety ensurance by local validation 
with possibly unsafe endpoints

OOI (Ocean Observatories Initiaitve) 
http://www.oceanleadership.org/programs-and-
partnerships/ocean-observing/ooi/

http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/


User Register

 xint : InterfaceId 

more(xcom : Command)

Agent

μt<xn>(y)

reject(xe : ErrorData)

Instrument

       xn : Int 

 xp : Priority

accept()

 yr : Response 

 xr : Response 

quit()
t<y-1>

A2

A5A

A4

A = (y ≥ 0)
 A2 = (xn > 0) 

 A4 = (xp = high ⊃ xe ≠ busy) 
 A5 = (y > 0  ∧ xcom ≠ switch-off) 

more(ycom : Command)

quit()

⊕
⊕

INSTRUMENT COMMAND



THE ARCHITECTURE

Process
P2

Process
P3

Process
P1 Principal 2

Principal 3

Principal 1

Monitor

Monitor

Monitors [Buyer]
Transport

s 

s [Seller]

s [Bank]

T = Buyer!k(o : Int){o ≥ 100}.T �

P = sk!�80�(o).P � | s[Buyer] : ∅

P1 = P � | s[Buyer] : �Buyer, Seller, �80��

−→τ

P2 = P �[80/o] | s[Buyer] : ∅

−→ s[Buyer, Seller]�80�

Process P1 Monitor
M = s[Buyer]• : T−→τ
M = s[Buyer]• : T−→ s[Buyer, Seller]�80�



PROPERTIES

• Local/global conformance: a monitored process 
well- behaves and coherence is preserved in a network

• Local/global transparency: monitors do not alter 
well-behaved interactions 

• Session fidelity: the interactions of a network are 
step-by-step conform to the corresponding global types



PROPERTIES

Theorem (Local Conformance)M |= M[P ] for all M and P

Theorem (Global Conformance)N
�−→g N � with N coherent

implies N � is coherent

Theorem (Local Transparency)If M |= M◦[P ] then
M |= M◦[P ] ∼ M[P ]

Theorem (Global Transparency)Suppose N is coherent and locally
conformant. Then N ∼ erase(N)

Theorem (Session Fidelity)If E � N and N
�−→g N �

then E �−→g E � such that E � � N �



CONCLUSIONS
• We enabled DbC for distributed interactions trough the 

elaboration of MPSTs with logic formulae

• Local validation of global safety 

• Sound+relatively complete validation system

• Effectiveness

• Local enforcement of global safety with unsafe 
endpoints

• Prototype: framework for interoperable processes 
(Scala, Java, OCaml)

• Efficiency

Runtime

Design time
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