
DbC for multiparty
distributed interactions:

static & dynamic validation

Laura Bocchi, University of Leicester
Tzu-Chun Chen, University of London
Pierre-Malo Denielou, Imperial College London
Kohei Honda, University of London
Emilio Tuosto, University of Leicester
Nobuko Yoshida, Imperial College London

BACKGROUND
• DbC: Assertions = Types + Logical Formulae

int foobar(int i)

• Type signature

int foobar(int i){
 pre: {i>10}
 post: {0< result < 1000}
}

• Assertion

• Building systems on the basis of precise contracts

• restrain defensive programming

• provide robustness Bertrand Meyer
Applying “Design by Contract”
In Computer (IEEE), 25, 1992

CHALLENGES

• Distributed Setting (asynchronous message passing)

• The responsibilities are spread among the participants

• Participants have different views of the contract, e.g., the
condition of an interaction is

• a post-condition for the sender

• a pre-condition for the receiver

• what about third parties?

Can we extend this framework to communications
and concurrency?

Multiparty Session Types

Process Process Process

Global
Type

Seller → Buyer : k1(Int).
Buyer → Bank : k2(Int)

Local
Type

Local
Type

Local
Type

Buyer
k1?(Int).k2!(Int)

Kohei Honda, Nobuko Yoshida and Marco Carbone
Multyparty Asynchronous Session Types (POPL 2008)

OUTLINE

Global
Type

Global
Assertion

assert

• A global type is used as a type signature describing the
interactions of a multiparty session

• Each abstract action is annotated with a predicate

OUTLINE

• Consistency of the global specification is checked

check

Well-Asserted
Global Assertion

Global
Type

Global
Assertion

assert

OUTLINE

• The global assertion is projected onto each endpoint
preserving consistency

project

check

Global
Type

Global
Assertion

assert

Well-Asserted
Endpoint Assertion

Well-Asserted
Endpoint Assertion

Well-Asserted
Endpoint Assertion

Well-Asserted
Global Assertion

OUTLINE

• Each process is validated against its (one or more)
local specification(s)

P1

P2

P3

validate

project

Well-Asserted
Endpoint Assertion

Well-Asserted
Endpoint Assertion

check

Well-Asserted
Global Assertion

Global
Type

Global
Assertion

assert

Well-Asserted
Endpoint Assertion

• Key points: effective well-assertedness, projection, validation*

• The proof system is sound and relatively complete

*validation is effective up to the underlying logic

P1

P2

P3

(design-time)
validate

project

Well-Asserted
Endpoint Assertion

Well-Asserted
Endpoint Assertion

check

Well-Asserted
Global Assertion

Global
Type

Global
Assertion

assert

Well-Asserted
Endpoint Assertion

Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida
A Theory of DbC for Multiparty Distributed Interactions (CONCUR 2010)

STATIC VALIDATION

P1

P2

P3

(run-time)
validate

project

Well-Asserted
Endpoint Assertion

Well-Asserted
Endpoint Assertion

check

Well-Asserted
Global Assertion

Global
Type

Global
Assertion

assert

Well-Asserted
Endpoint Assertion

Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Denielou, Kohei Honda, Nobuko Yoshida
Distributed Monitoring for Multiparty Session Enforcement
http://www.eecs.qmul.ac.uk/~tcchen/monitoring_sessions.html

• From recent collaboration with Ocean Observation Initiative (OOI)
on large scale distributed systems

• Unsafe endpoints in multiple administrative domains.

• Use previous theory to achieve runtime enforcement

RUNTIME VALIDATION

http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/

GLOBAL ASSERTIONS
Buyer Seller

int

quit

ok

Bank

br
an
ch

int

int

Buyer → Seller : k1(Int).
Seller → Buyer : k2{quit : End,

ok : Buyer → Bank : k3(Int).
Bank → Seller : k4(Int)

}

Buyer Seller

o : int

quit

ok

Bank

br
an

ch

p : int

a : int

GLOBAL ASSERTIONS

Buyer → Bank : k3(p : Int).
Bank → Seller : k4(a : Int)

}

Buyer → Seller : k1(o : Int).
Seller → Buyer : k2{quit : End,

ok :

each interaction
introduces an

interaction variable

Buyer Seller

o : int

quit

ok

Bank

br
an

ch

p : int

a : int

A1

A2

A3

A4

GLOBAL ASSERTIONS

Buyer → Seller : k1(o : Int){A1}.
Seller → Buyer : k2{{A2} quit : End,

{true} ok : Buyer → Bank : k3(p : Int){A3}.
Bank → Seller : k4(a : Int){A4}

}

A1 = (o ≥ 100)
A2 = (o < 1000)
A3 = (o = p)
A4 = (true)

predicates

CONSISTENCY CHECK

check

Well-Asserted
Global Assertion

Global
Type

Global
Assertion

assert

When is a global assertion well designed?

HISTORY SENSITIVITY

Carol cannot
guarantee z>u since she

does not know u

✘

Alice → Bob : (u : Int){true}.
Bob → Carol : (v : Int){v > u}.
Carol → Alice : (z : Int){z > v}

✔

“an interaction predicate can only contain those
interaction variables that are known to its sender”

Alice → Bob : (u : Int){true}.
Bob → Carol : (v : Int){true}.
Carol → Alice : (z : Int){z > u}

Alice Bob Carol
u u

v v

TEMPORAL SATISFIABILITY

Had Alice
chosen v=11,

Carol could not find
a value for z s.t.
z<11 and z>10

✘

“a process can always find a valid forward path at
each interaction point until it meets the end”

Alice → Bob : (v : Int){v > 10}.
Bob → Alice : (z : Int){z < v ∧ z > 10}.

✔ Alice → Bob : (v : Int){v > 12}.
Bob → Alice : (z : Int){z < v ∧ z > 10}.

• Well-assertedness = History Seisitivity + Temporal Satisfiability

• is decidable (as long as the logic is)

• we provide design-time checker

PROJECT

project

check

Global
Type

Global
Assertion

assert

Well-Asserted
Endpoint Assertion

Well-Asserted
Endpoint Assertion

Well-Asserted
Endpoint Assertion

Well-Asserted
Global Assertion

How to project obligations and guarantees
onto the endpoints?

ENDPOINT ASSERTIONS
Global assertions Endpoint assertions

p → p� : k(v : S){A}.G
p → p� : k{{Ai}li : Gi}i∈I

µt�e�(v : S){A}.G
t�e�
G,G�

End

k!(v : S){A}; T
k?(v : S){A}; T
k ⊕ {{Ai}li : T i}i∈I

k&{{Ai}li : T i}i∈I

µt�e�(v : S){A}.T
t�e�
End

PROJECTIONS

• We want to give stronger preconditions to prevent defensive programming

• We do not reveal the exact values exchanged between third parties

✔

• A too naive projection on Instrument:

k2?(c2 : Command){c2 = c1}

User → Agent : k1(c1 : Command){c1 �= switch− off}.
Agent → Instrument : k2(c2 : Command){c2 = c1}

✘

k2?(c2 : Command){∃c1.(c1 �= switch− off) ∧ (c2 = c1)}

STATIC VALIDATION

P1

P2

P3

(design-time)
validate

project

Well-Asserted
Endpoint Assertion

Well-Asserted
Endpoint Assertion

check

Well-Asserted
Global Assertion

Global
Type

Global
Assertion

assert

Well-Asserted
Endpoint Assertion

How to ensure that a process satisfies a
contract expressed as an assertion?

ASSERTED PROCESSES

errT notifies a violation in a receive/branch

errH notifies a violation in a send/select

Receive with no violation
s?(v){v ≥ 10};P | s : 10 · h̃ → P [10/v] | s : h̃

Receive with violation

s?(v){v ≥ 10};P | s : 1 · h̃ → errT | s : h̃

VALIDATION RULES
C ::= true | C ∧ A (assertion environment)

C;Γ � P �∆

Γ ::= ∅ | Γ,a:G | Γ,X:(v:S)L1@p1..Ln@pn (typing environment)

Δ ::= ∅ | Δ,s:T@p (assignment environment)~

~ ~

P is validated
against Δ and Γ

Theorem (Soundness of Validation Rules)
Let P be a closed program. Then Γ � P �∆ implies Γ |= P �∆

SOUNDNESS & COMPLETENESS

P conditionally simulates Δ and Γ
(the simulation only holds for valid inputs)

Theorem (Error Freedom)Let P be a closed program.
Suppose

1. Γ � P �∆,

2. P
�1..�n−−−→ P

� such that �Γ,∆� allows �1..�n.
Then P

� contains neither errH nor errT .

Theorem (Completeness of Validation Rules)
For each closed visible program P , if Γ |= P �∆ then Γ � P �∆

RUNTIME VALIDATION

P3

P1

P2

(design-time)
validate

project

Well-Asserted
Endpoint Assertion

Well-Asserted
Endpoint Assertion

check

Well-Asserted
Global Assertion

Global
Type

Global
Assertion

assert

Well-Asserted
Endpoint Assertion

t
r
u
s
t
e
d

e
n
v
i
r
o
n
m
e
n
t

• Error Freedom guarantees absence of violations if
ALL processes are validated

• What about systems with unsafe endpoints?

(run-time)
monitor

Monitoring!

OOI (Ocean Observation Initiative)
• Enabling environmental science observatories with persistent and

interactive capabilities

• OOI cyberinfrastructure (OOI CI) based on loosely coupled
distributed services and agents (e.g., seafloor instruments, on-shore
research stations) communicating through a common messaging
infrastructure.

• Systems are large scale, distributed, multi-organizational

• Applications built form application-level protocols

• Need for global safety ensurance by local validation
with possibly unsafe endpoints

OOI (Ocean Observatories Initiaitve)
http://www.oceanleadership.org/programs-and-
partnerships/ocean-observing/ooi/

http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/

User Register

 xint : InterfaceId

more(xcom : Command)

Agent

μt<xn>(y)

reject(xe : ErrorData)

Instrument

 xn : Int

 xp : Priority

accept()

 yr : Response

 xr : Response

quit()
t<y-1>

A2

A5A

A4

A = (y ≥ 0)
 A2 = (xn > 0)

 A4 = (xp = high ⊃ xe ≠ busy)
 A5 = (y > 0 ∧ xcom ≠ switch-off)

more(ycom : Command)

quit()

⊕
⊕

INSTRUMENT COMMAND

THE ARCHITECTURE

Process
P2

Process
P3

Process
P1 Principal 2

Principal 3

Principal 1

Monitor

Monitor

Monitors [Buyer]
Transport

s

s [Seller]

s [Bank]

T = Buyer!k(o : Int){o ≥ 100}.T �

P = sk!�80�(o).P � | s[Buyer] : ∅

P1 = P � | s[Buyer] : �Buyer, Seller, �80��

−→τ

P2 = P �[80/o] | s[Buyer] : ∅

−→ s[Buyer, Seller]�80�

Process P1 Monitor
M = s[Buyer]• : T−→τ
M = s[Buyer]• : T−→ s[Buyer, Seller]�80�

PROPERTIES

• Local/global conformance: a monitored process
well- behaves and coherence is preserved in a network

• Local/global transparency: monitors do not alter
well-behaved interactions

• Session fidelity: the interactions of a network are
step-by-step conform to the corresponding global types

PROPERTIES

Theorem (Local Conformance)M |= M[P] for all M and P

Theorem (Global Conformance)N
�−→g N � with N coherent

implies N � is coherent

Theorem (Local Transparency)If M |= M◦[P] then
M |= M◦[P] ∼ M[P]

Theorem (Global Transparency)Suppose N is coherent and locally
conformant. Then N ∼ erase(N)

Theorem (Session Fidelity)If E � N and N
�−→g N �

then E �−→g E � such that E � � N �

CONCLUSIONS
• We enabled DbC for distributed interactions trough the

elaboration of MPSTs with logic formulae

• Local validation of global safety

• Sound+relatively complete validation system

• Effectiveness

• Local enforcement of global safety with unsafe
endpoints

• Prototype: framework for interoperable processes
(Scala, Java, OCaml)

• Efficiency

Runtime

Design time

RELATED WORK

RELATED WORK

