
RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Verification of Lock-Free Algorithms
with RGITL

Gerhard Schellhorn
joint work with

Bogdan Tofan

Institute for Software and Systems Engineering
University of Augsburg

15.04.2011

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Outline

1 RGITL in KIV
Background: Interactive Theorem Proving with KIV
Interval Temporal Logic (ITL) and Programs
Proof Principles
Rely-Guarantee (RG)
Decomposition Theorems

2 Verification of Hazard Pointers
Lock-Free Algorithms
Hazard Pointers
Proof Sketch

3 Summary and Open Issues

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Outline

1 RGITL in KIV
Background: Interactive Theorem Proving with KIV
Interval Temporal Logic (ITL) and Programs
Proof Principles
Rely-Guarantee (RG)
Decomposition Theorems

2 Verification of Hazard Pointers
Lock-Free Algorithms
Hazard Pointers
Proof Sketch

3 Summary and Open Issues

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Background: Proving Sequential Programs with KIV

KIV is an interactive theorem prover based on

Structured algebraic specification
of data types with higher-order logic

Sequent calculus with proof trees

wp-calculus for ASMs and Java

Proof principle for sequential programs:
symbolic execution (+ induction) [Burstall 74]
(= incremental computation of
strongest postconditions for instructions)

Semantics (for a fixed algebra): s |= ϕ with
state s = valuation of variables

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Motivation

Define a logic where:

Arbitrary temporal properties can be proved

Native support for interleaved programs exists
(no encoding to transition systems)

Define a calculus where:

Proving contracts for sequential programs should not be
more difficult than before

Since interleaving generates many cases:
compositional reasoning (rely-guarantee) is supported

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Temporal Logic in KIV: Intervals

KIV implements a variant of Interval Temporal Logic
[Moszkowski]

Semantics based on Intervals I =
sequence of states (I(0), I′(0), I(1), I′(1), . . .)

I has finite (termination!) or infinite length

I alternates system steps (I(0),I′(0)), (I(1),I′(1)), . . .
with environment steps (I′(0),I(1)), (I′(1),I(2)), . . .
(similar to reactive sequences [deRoever 01])

Semantics of higher-order-formula ϕ uses
initial state I(0) only: I |= ϕ ⇔ I(0) |= ϕ

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Temporal Logic in KIV: Operators

Variables can be static or flexible

X, X′, X′′ denotes the value of flexible X in I(0), I′(0), I(1)

predicate p(X,X′) describes a system step (guarantee)

predicate q(X′,X′′) describes an environment step (rely)

Standard TL operators:
3, 2, until, A (for all paths),
◦ (strong next state), • (weak next state), last (termination)

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Programs in Temporal Logic

Programs α are formulas too:
I |= α ⇔ the system steps in I are possible steps of α

I |= [X := T]X,Y

⇔ I = (I(0), I′(0), I(1)) ∧ I′(0)(X) = I(0)(T) ∧ I′(0)(Y) = I(0)(Y)

Frame assumption [. . .]X,Y as in TLA [Lamport 94],
but no built-in stuttering

Programs: sequential (let, while, rec. procedures) +
α

f
β (interleaving), await C (block until C holds)

Typical goal: α ∧ E → P
“Executing α in environment E satisfies P”

Environment assumption 2 X′ = X′′:
the environment never changes variable X.

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Proof principle 1: Symbolic Execution

Symbolic execution = Step forwards through an interval

Advantage: no encoding of programs as transition systems
with program counters (as in Step, TLA or Model checking)
⇒ readable goals
Symbolic execution is done in two phases:

1 Unwind TL ops. and programs; split first step from the rest:

2 ϕ ≡ ϕ ∧ • 2 ϕ

[X := T ;α]X ,Y ≡ X ′ = T ∧ Y ′ = Y ∧ ◦ [α]X ,Y

2 Remove first step of interval (new static vars x0, x1):

p(x0, x1,X) ∧ ϕ

p(X ,X ′,X ′′) ∧ ◦ ϕ
step

p(x0, x0, x0)

p(X ,X ′,X ′′) ∧ last
last

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Proof principle 2: Compositional reasoning

Substitution principle:

α → A β → B A
f

B → C
α

f
β → C

abstract

possible, since interleaving (like other operators)
has compositional semantics

Program α satisfies guarantee G as long as rely R holds:
α → R(X ′,X ′′)

+
−→ G(X ,X ′)

where R +
−→ G ≡ ¬ (R until (¬ G))

Rely-Guarantee rules can be proved as theorems.

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Rely-Guarantee Theorem

Theorem

(1) pre ∧ COp1 → R1
+

−→ (G1 ∧ (last → post1))

(2) pre ∧ COp2 → R2
+

−→ (G2 ∧ (last → post2))
(3) G1 ∨ R → R2,G2 ∨ R → R1,G1 ∨ G2 → G
(4) reflexive(G1,G2), transitive(R1,R2)
(5) pre ∧ (R1 ∨ R2) → pre

then pre ∧ COp1‖COp2 → R +
−→ (G ∧ (last → post1 ∧ post2))

similar to [Xu,deRoever 97] (except cond. (5))

Their notation for (1): COp1 sat (pre, rely1, guar1, post1)

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Decomposition of Linearizability

Theorem (Bäumler et al. 09)
If for all 1 ≤ p, q ≤ n, p 6= q:

(1) COpp → Rp
+

−→ Gp

(2) Gp → Rq , reflexive(Gp), transitive(Rp), R → Rp

(3) COpp(CS) ∧ 2 (Rp ∧ Abs(CS) = AS ∧ Abs(CS′) = AS′)
→ skip∗;AOpp(AS); skip∗

then COp∗

1‖ . . . ‖COp∗

n ∧ 2 R → AOp∗

1‖ . . . ‖AOp∗

n‖skip∗

COpp is a concrete algorithm (procedure)
that implements an atomic operation AOpp

R is the global environment assumption

Linearizability expressed as special case of refinement

Most linearizable algorithms allow reduction
to two representative processes ⇒ reduction proved

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Decomposition of Lock-Freedom

Theorem (Tofan et al. 10)
If for all 0 ≤ p, q, p 6= q:

(1) COpp → Rp
+

−→ Gp

(2) Gp → Rq , reflexive(Gp), transitive(Rp), R → Rp

(3) reflexive(U), transitive(U), R → Rp ∧ U
(4) COPp(CS) ∧ 2 Rp

→ 2 (¬ U(CS,CS′) ∨ (2 U(CS′
,CS′′)) → 3 last)

then COP∗

0 ‖ . . . ‖COP∗

n ∧ 2 R → 2 progress

where progress = “some operation active → some operation terminates”

Predicate U (“unchanged”) describes conditions under
which COPp(CS) terminates in environment Rp.

At any time, COPp eventually terminates (3 last), if:
It updates the shared state itself ¬ U(CS,CS′), or
It encounters no interference 2 U(CS′,CS′′)

Theorem holds for weak fair and nonfair interleaving

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Outline

1 RGITL in KIV
Background: Interactive Theorem Proving with KIV
Interval Temporal Logic (ITL) and Programs
Proof Principles
Rely-Guarantee (RG)
Decomposition Theorems

2 Verification of Hazard Pointers
Lock-Free Algorithms
Hazard Pointers
Proof Sketch

3 Summary and Open Issues

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Lock-free Algorithms

Do not use locks to protect global data structures from
interference
Instead: Try and retry principle with three steps

Make local copy old of pointer Global to data structure.
Prepare modification by computing new.
Compare and set (CAS) snapshot.

If CAS returns false due to interference retry.

CAS(old, new; Global) {
Atomic {

if Global = old then {
Global := new; return true }

else return false } }

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Hazard Pointers: Basic Idea

Problem: Deallocation after removal from data structure
leads to illegal concurrent access (and the ABA problem)

Either rely on garbage collection, use modification
counters or use hazard pointers

Invented in [Michael 04] (similar: [Herlihy et al. 04])

Every process X stores reference it wants to access in
hazard pointer record: HPR[X] := r and validates this entry

Idea: Validated entries are protected from deallocation

To schedule r for deallocation, put in retired list rlistX
Scan removes all references in rlistX \ HPR
using local vars. iX , lhpX , lhplistX to collect pointers from
HPR

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Verification Challenge

Verification with hazard pointers is much more complex
than assuming GC (various automated proofs for GC)

[Michael04] gives temporal characterization,
arguing about time points in the past

[Parkinson, Bornat, O’Hearn 07] propose hazard pointers
as a challenge for mechanized verification. They use ghost
code to characterize unvalidated hazard pointers.

Idea: Characterize validated hazard pointers:
“As soon as reference r has been validated by X, no other
process Y will deallocate it in its Scan-Operation”.

HazardX ∧ ScanY ∧ ltopX ∈ (rlistY \ lhplistY) →

if lhpUsedY then iY < X ∨ (iY = X ∧ lhpY = r)

else iY ≤ X

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Outline

1 RGITL in KIV
Background: Interactive Theorem Proving with KIV
Interval Temporal Logic (ITL) and Programs
Proof Principles
Rely-Guarantee (RG)
Decomposition Theorems

2 Verification of Hazard Pointers
Lock-Free Algorithms
Hazard Pointers
Proof Sketch

3 Summary and Open Issues

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Summary

Interactive verification approach based on a variant of ITL
with explicit programs and interleaving

KIV implements TL-calculus based on symbolic execution

Compositional semantics of interleaving allows to derive
rely-guarantee rules, decomposition for safety and liveness
properties

Mechanized verification of several lin. algorithms,
among them Michael&Scott’s queue, Treiber’s Stack
with hazard pointers and modification counters

for more algorithms and KIV proofs see
http://www.informatik.uni-augsburg.de/swt/projects/lock-free.html

RGITL in KIV Verification of Hazard Pointers Summary and Open Issues

Open issues

General verification principles for non-atomic refinements
(“ modulo stuttering”) involving programs
(not just transition systems!) is still an open issue

Generalize linearizability theorem

Two complete fragments: RG and pure ITL,
but no completeness theorem

Current automation: rewriting & heuristics
Future work: Better automation

Shape Analysis (TVLA) to automate reasoning about heaps
Separation Logic to encode disjoint heaps
(compatible with TL? with types?)
Computing invariants/relys as fixpoints

	RGITL in KIV
	Background: Interactive Theorem Proving with KIV
	Interval Temporal Logic (ITL) and Programs
	Proof Principles
	Rely-Guarantee (RG)
	Decomposition Theorems

	Verification of Hazard Pointers
	Lock-Free Algorithms
	Hazard Pointers
	Proof Sketch

	Summary and Open Issues

