
Liveness of Communicating Transactions

Edsko de Vries

(joint work with Vasileios Koutavas and Matthew Hennessy)

TRINITY COLLEGE DUBLIN
COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH

Dublin Concurrency Workshop 2011

Overview of TransCCS
Safety and Liveness Theory

Traditional Transactions

I Transactions provide an abstraction for error recovery in a
concurrent setting.

I The transactional system guarantees:
I Atomicity: Each transaction will either run in its entirety or

not at all
I Consistency: Faults caused by a transaction are automatically

detected and rolled-back
I Isolation: The effects of a transaction are concealed from the

rest of the system until the transaction commits
I Durability: After a transaction commits, its effects are

permanent.
I However, isolation limits concurrency

I The semantics of traditional transactions is sequential
schedules

I Traditional transactions do not offer an abstraction for
recovery from distributed errors (e.g. deadlocks)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Traditional Transactions

I Transactions provide an abstraction for error recovery in a
concurrent setting.

I The transactional system guarantees:
I Atomicity: Each transaction will either run in its entirety or

not at all
I Consistency: Faults caused by a transaction are automatically

detected and rolled-back
I Isolation: The effects of a transaction are concealed from the

rest of the system until the transaction commits
I Durability: After a transaction commits, its effects are

permanent.

I However, isolation limits concurrency
I The semantics of traditional transactions is sequential

schedules
I Traditional transactions do not offer an abstraction for

recovery from distributed errors (e.g. deadlocks)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Traditional Transactions

I Transactions provide an abstraction for error recovery in a
concurrent setting.

I The transactional system guarantees:
I Atomicity: Each transaction will either run in its entirety or

not at all
I Consistency: Faults caused by a transaction are automatically

detected and rolled-back
I Isolation: The effects of a transaction are concealed from the

rest of the system until the transaction commits
I Durability: After a transaction commits, its effects are

permanent.
I However, isolation limits concurrency

I The semantics of traditional transactions is sequential
schedules

I Traditional transactions do not offer an abstraction for
recovery from distributed errors (e.g. deadlocks)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Communicating Transactions

I We drop isolation to increase concurrency
I There is no limit on the communication between a transaction

and its environment

I The transactional system guarantees:
I Atomicity: Each transaction will either run in its entirety or

not at all
I Consistency: Faults caused by a transaction are automatically

detected and rolled-back, together with all effects of the
transaction to its environment

I Durability: After all transactions that have interacted commit,
their effects are permanent (coordinated checkpointing)

I We are interested in safety and especially liveness properties
I First theory of liveness in the presence of transactions
I We have studied the transactional properties of

communicating transactions in [CONCUR’2010]

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Safety

Safety: “Nothing bad will happen” [Lamport’77]

I A safety property can be formulated as a safety test T ; which
signals on channel ; when it detects the bad behaviour

I P passes the safety test T ; when P | T ; cannot output on ;
I This is the negation of passing a “may test”

[DeNicola-Hennessy’84]

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Liveness

Liveness: “Something good will eventually happen” [Lamport’77]

I A liveness property can be formulated as a liveness test Tω

which detects and reports good behaviour on ω.
I P passes the liveness test Tω when all future states of P | Tω

can output on ω
I This is a “should test” [Binksma-Rensink-Vogler’95,

Rensink-Vogler’07]
I It excludes pathological traces

I We will later see why “must testing” [DeNicola-Hennessy’84]
is not appropriate for transactions

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

TransCCS [CONCUR 2010]

Syntax: P,Q ::=
∑
µi .Pi guarded choice

| P | Q parallel
| νa.P hiding
| µX .P recursion
| JP .k QK transaction (k bound in P)
| co k commit

DefaultAlternativeName
Main reductions:
R-Comm

ai = bj∑
i∈I

ai .Pi |
∑
j∈J

bj .Qj → Pi | Qj

R-Emb
k /∈ R

JP .k QK | R → JP | R .k Q | RK

R-Co

JP | co k .k QK → P

R-Ab

JP .k QK → Q

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

TransCCS [CONCUR 2010]

Syntax: P,Q ::=
∑
µi .Pi guarded choice

| P | Q parallel
| νa.P hiding
| µX .P recursion
| JP .k QK transaction (k bound in P)
| co k commit

DefaultAlternativeName
Main reductions:
R-Comm

ai = bj∑
i∈I

ai .Pi |
∑
j∈J

bj .Qj → Pi | Qj

R-Emb
k /∈ R

JP .k QK | R → JP | R .k Q | RK

R-Co

JP | co k .k QK → P

R-Ab

JP .k QK → Q

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

TransCCS [CONCUR 2010]

Syntax: P,Q ::=
∑
µi .Pi guarded choice

| P | Q parallel
| νa.P hiding
| µX .P recursion
| JP .k QK transaction (k bound in P)
| co k commit

Default

AlternativeName
Main reductions:
R-Comm

ai = bj∑
i∈I

ai .Pi |
∑
j∈J

bj .Qj → Pi | Qj

R-Emb
k /∈ R

JP .k QK | R → JP | R .k Q | RK

R-Co

JP | co k .k QK → P

R-Ab

JP .k QK → Q

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

TransCCS [CONCUR 2010]

Syntax: P,Q ::=
∑
µi .Pi guarded choice

| P | Q parallel
| νa.P hiding
| µX .P recursion
| JP .k QK transaction (k bound in P)
| co k commit

Default

Alternative

Name
Main reductions:
R-Comm

ai = bj∑
i∈I

ai .Pi |
∑
j∈J

bj .Qj → Pi | Qj

R-Emb
k /∈ R

JP .k QK | R → JP | R .k Q | RK

R-Co

JP | co k .k QK → P

R-Ab

JP .k QK → Q

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

TransCCS [CONCUR 2010]

Syntax: P,Q ::=
∑
µi .Pi guarded choice

| P | Q parallel
| νa.P hiding
| µX .P recursion
| JP .k QK transaction (k bound in P)
| co k commit

DefaultAlternative

Name

Main reductions:
R-Comm

ai = bj∑
i∈I

ai .Pi |
∑
j∈J

bj .Qj → Pi | Qj

R-Emb
k /∈ R

JP .k QK | R → JP | R .k Q | RK

R-Co

JP | co k .k QK → P

R-Ab

JP .k QK → Q

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

TransCCS [CONCUR 2010]

Syntax: P,Q ::=
∑
µi .Pi guarded choice

| P | Q parallel
| νa.P hiding
| µX .P recursion
| JP .k QK transaction (k bound in P)
| co k commit

DefaultAlternativeName

Main reductions:
R-Comm

ai = bj∑
i∈I

ai .Pi |
∑
j∈J

bj .Qj → Pi | Qj

R-Emb
k /∈ R

JP .k QK | R → JP | R .k Q | RK

R-Co

JP | co k .k QK → P

R-Ab

JP .k QK → Q

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

TransCCS [CONCUR 2010]

Syntax: P,Q ::=
∑
µi .Pi guarded choice

| P | Q parallel
| νa.P hiding
| µX .P recursion
| JP .k QK transaction (k bound in P)
| co k commit

DefaultAlternativeName

Main reductions:
R-Comm

ai = bj∑
i∈I

ai .Pi |
∑
j∈J

bj .Qj → Pi | Qj

R-Emb
k /∈ R

JP .k QK | R → JP | R .k Q | RK

R-Co

JP | co k .k QK → P

R-Ab

JP .k QK → Q

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

TransCCS [CONCUR 2010]

Syntax: P,Q ::=
∑
µi .Pi guarded choice

| P | Q parallel
| νa.P hiding
| µX .P recursion
| JP .k QK transaction (k bound in P)
| co k commit

DefaultAlternativeName

Main reductions:
R-Comm

ai = bj∑
i∈I

ai .Pi |
∑
j∈J

bj .Qj → Pi | Qj

R-Emb
k /∈ R

JP .k QK | R → JP | R .k Q | RK

R-Co

JP | co k .k QK → P

R-Ab

JP .k QK → Q

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Example

a.c .ω + e.; | Ja.c .co k + e .k rK

R-Emb−−−−→ Ja.c .ω + e.; | a.c .co k + e .k a.c .ω + e.; | rK
R-Comm−−−−−→ J c .ω | c .co k .k a.c .ω + e.; | rK
R-Comm−−−−−→ J ω | co k .k a.c.ω + e.; | rK

R-Co−−−→ ω

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Example

a.c .ω + e.; | Ja.c .co k + e .k rK

R-Emb−−−−→ Ja.c .ω + e.; | a.c .co k + e .k a.c .ω + e.; | rK
R-Comm−−−−−→ J c .ω | c .co k .k a.c .ω + e.; | rK
R-Comm−−−−−→ J ω | co k .k a.c.ω + e.; | rK

R-Co−−−→ ω

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Example

a.c .ω + e.; | Ja.c .co k + e .k rK
R-Emb−−−−→ Ja.c .ω + e.; | a.c .co k + e .k a.c .ω + e.; | rK

R-Comm−−−−−→ J c .ω | c .co k .k a.c .ω + e.; | rK
R-Comm−−−−−→ J ω | co k .k a.c.ω + e.; | rK

R-Co−−−→ ω

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Example

a.c .ω + e.; | Ja.c .co k + e .k rK
R-Emb−−−−→ Ja.c .ω + e.; | a.c .co k + e .k a.c .ω + e.; | rK

R-Comm−−−−−→ J c .ω | c .co k .k a.c .ω + e.; | rK

R-Comm−−−−−→ J ω | co k .k a.c.ω + e.; | rK
R-Co−−−→ ω

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Example

a.c .ω + e.; | Ja.c.co k + e .k rK
R-Emb−−−−→ Ja.c .ω + e.; | a.c.co k + e .k a.c .ω + e.; | rK

R-Comm−−−−−→ J c .ω | c .co k .k a.c .ω + e.; | rK
R-Comm−−−−−→ J ω | co k .k a.c.ω + e.; | rK

R-Co−−−→ ω

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Example

a.c .ω + e.; | Ja.c .co k + e .k rK
R-Emb−−−−→ Ja.c .ω + e.; | a.c .co k + e .k a.c .ω + e.; | rK

R-Comm−−−−−→ J c .ω | c .co k .k a.c .ω + e.; | rK
R-Comm−−−−−→ J ω | co k .k a.c.ω + e.; | rK

R-Co−−−→ ω

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Example

a.c .ω + e.; | Ja.c .co k + e .k rK
R-Emb−−−−→ Ja.c .ω + e.; | a.c .co k + e .k a.c .ω + e.; | rK

R-Comm−−−−−→ J c .ω | c .co k .k a.c .ω + e.; | rK
R-Comm−−−−−→ J ω | co k .k a.c.ω + e.; | rK

R-Co−−−→ ω

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Example (a second trace)

a.c .ω + e.; | Ja.c.co k + e .k rK

R-Emb−−−−→ Ja.c .ω + e.; | a.c.co k + e .k a.c.ω + e.; | rK
R-Comm−−−−−→ J

;

.k a.c .ω + e.; | rK
R-Ab−−−→ a.c .ω + e.; | r

(The environment is restored)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Example (a second trace)

a.c .ω + e.; | Ja.c.co k + e .k rK
R-Emb−−−−→ Ja.c .ω + e.; | a.c.co k + e .k a.c.ω + e.; | rK

R-Comm−−−−−→ J

;

.k a.c .ω + e.; | rK
R-Ab−−−→ a.c .ω + e.; | r

(The environment is restored)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Example (a second trace)

a.c .ω + e.; | Ja.c.co k + e .k rK
R-Emb−−−−→ Ja.c .ω + e.; | a.c.co k + e .k a.c.ω + e.; | rK

R-Comm−−−−−→ J ; .k a.c .ω + e.; | rK

R-Ab−−−→ a.c .ω + e.; | r

(The environment is restored)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Example (a second trace)

a.c .ω + e.; | Ja.c.co k + e .k rK
R-Emb−−−−→ Ja.c .ω + e.; | a.c.co k + e .k a.c.ω + e.; | rK

R-Comm−−−−−→ J ; .k a.c .ω + e.; | rK

R-Ab−−−→ a.c .ω + e.; | r

(The environment is restored)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Example (a second trace)

a.c .ω + e.; | Ja.c.co k + e .k rK
R-Emb−−−−→ Ja.c .ω + e.; | a.c.co k + e .k a.c.ω + e.; | rK

R-Comm−−−−−→ J ; .k a.c .ω + e.; | rK
R-Ab−−−→ a.c .ω + e.; | r

(The environment is restored)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Example (a second trace)

a.c .ω + e.; | Ja.c.co k + e .k rK
R-Emb−−−−→ Ja.c .ω + e.; | a.c.co k + e .k a.c.ω + e.; | rK

R-Comm−−−−−→ J ; .k a.c .ω + e.; | rK
R-Ab−−−→ a.c .ω + e.; | r (The environment is restored)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Example (all traces)

a.c .ω + e.; | Ja.c .co k + e .k rK a.c.ω + e.; | r

P1

P2

P2

P3

ω

R-Ab

R-Ab

R-Emb

R-Comm

R-Comm

R-Comm

R-Co

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Restarting transactions

a.c .ω + e.; | µX . Ja.c.co k + e .k X K

P1

P2

P2

P3

ω

R-AbR-Emb

R-Comm

R-Comm

R-Comm

R-Co

Infinitely aborting loop

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Restarting transactions

a.c .ω + e.; | µX . Ja.c.co k + e .k X K

P1

P2

P2

P3

ω

R-AbR-Emb

R-Comm

R-Comm

R-Comm

R-Co

Infinitely aborting loop

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Restarting transactions

a.c .ω + e.; | µX . Ja.c.co k + e .k X K

P1

P2

P2

P3

ω

R-AbR-Emb

R-Comm

R-Comm

R-Comm

R-Co

Infinitely aborting loop

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Compositional Semantics

I The embedding rule is simple but entangles the processes

I We need to reason about the behaviour of P|Q in terms of P
and Q

I We introduce a compositional Labelled Transition System that

uses secondary transactions: JP .k QK◦

a.c .ω + e.; | Ja.c .co k + e .k rK
emb k−−−→ Ja.c .ω + e.; .k a.c .ω + e.;K◦ | emb k−−−→ Ja.c .co k + e .k rK
k(e)−−→ J c .ω .k a.c .ω + e.;K◦ | k(e)−−→ J .k rK
ab k−−−→ a.c .ω + e.; | ab k−−−→ r

a.c .ω + e.; | Ja.c .co k + e .k rK
emb k−−−→ Ja.c .ω + e.; .k a.c .ω + e.;K◦ | emb k−−−→ Ja.c .co k + e .k rK
k(a)−−→ J c .ω .k a.c .ω + e.;K◦ | k(a)−−→ J c .co k .k rK
k(c)−−→ J ω .k a.c .ω + e.;K◦ | k(c)−−→ J co k .k rK
co k−−−→ ω | co k−−−→ 0

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Compositional Semantics

I The embedding rule is simple but entangles the processes

I We need to reason about the behaviour of P|Q in terms of P
and Q

I We introduce a compositional Labelled Transition System that

uses secondary transactions: JP .k QK◦

a.c .ω + e.; | Ja.c .co k + e .k rK
emb k−−−→ Ja.c .ω + e.; .k a.c .ω + e.;K◦ | emb k−−−→ Ja.c .co k + e .k rK
k(e)−−→ J c .ω .k a.c .ω + e.;K◦ | k(e)−−→ J .k rK
ab k−−−→ a.c .ω + e.; | ab k−−−→ r

a.c .ω + e.; | Ja.c .co k + e .k rK
emb k−−−→ Ja.c .ω + e.; .k a.c .ω + e.;K◦ | emb k−−−→ Ja.c .co k + e .k rK
k(a)−−→ J c .ω .k a.c .ω + e.;K◦ | k(a)−−→ J c .co k .k rK
k(c)−−→ J ω .k a.c .ω + e.;K◦ | k(c)−−→ J co k .k rK
co k−−−→ ω | co k−−−→ 0

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Compositional Semantics

I The embedding rule is simple but entangles the processes

I We need to reason about the behaviour of P|Q in terms of P
and Q

I We introduce a compositional Labelled Transition System that

uses secondary transactions: JP .k QK◦

a.c .ω + e.; | Ja.c .co k + e .k rK
emb k−−−→ Ja.c .ω + e.; .k a.c .ω + e.;K◦ | emb k−−−→ Ja.c .co k + e .k rK
k(e)−−→ J c .ω .k a.c .ω + e.;K◦ | k(e)−−→ J .k rK
ab k−−−→ a.c .ω + e.; | ab k−−−→ r

a.c .ω + e.; | Ja.c .co k + e .k rK
emb k−−−→ Ja.c .ω + e.; .k a.c .ω + e.;K◦ | emb k−−−→ Ja.c .co k + e .k rK
k(a)−−→ J c .ω .k a.c .ω + e.;K◦ | k(a)−−→ J c .co k .k rK
k(c)−−→ J ω .k a.c .ω + e.;K◦ | k(c)−−→ J co k .k rK
co k−−−→ ω | co k−−−→ 0

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Compositional Semantics (2)

The behaviour of processes in TransCCS can be understood by
CCS-like “Clean” traces derived by the LTS that:

I consider only traces where all actions are eventually
committed

I ignore transactional annotations on the traces

L(Ja.c .co k + e .k rK) = {ε, a c, r}

(Non-prefix-closed set)

L(µX . Ja.c.co k + e .k X K) = {ε, a c}

(Atomicity: all-or-nothing)

I enable compositional reasoning:
I L(P | Q) = L(P) zip L(Q)
I L(P) ⊆ L(Q) implies L(P | R) ⊆ L(Q | R)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Compositional Semantics (2)

The behaviour of processes in TransCCS can be understood by
CCS-like “Clean” traces derived by the LTS that:

I consider only traces where all actions are eventually
committed

I ignore transactional annotations on the traces

L(Ja.c .co k + e .k rK) = {ε, a c, r}

(Non-prefix-closed set)

L(µX . Ja.c.co k + e .k X K) = {ε, a c}

(Atomicity: all-or-nothing)

I enable compositional reasoning:
I L(P | Q) = L(P) zip L(Q)
I L(P) ⊆ L(Q) implies L(P | R) ⊆ L(Q | R)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Compositional Semantics (2)

The behaviour of processes in TransCCS can be understood by
CCS-like “Clean” traces derived by the LTS that:

I consider only traces where all actions are eventually
committed

I ignore transactional annotations on the traces

L(Ja.c .co k + e .k rK) = {ε, a c, r} (Non-prefix-closed set)

L(µX . Ja.c.co k + e .k X K) = {ε, a c}

(Atomicity: all-or-nothing)

I enable compositional reasoning:
I L(P | Q) = L(P) zip L(Q)
I L(P) ⊆ L(Q) implies L(P | R) ⊆ L(Q | R)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Compositional Semantics (2)

The behaviour of processes in TransCCS can be understood by
CCS-like “Clean” traces derived by the LTS that:

I consider only traces where all actions are eventually
committed

I ignore transactional annotations on the traces

L(Ja.c .co k + e .k rK) = {ε, a c, r} (Non-prefix-closed set)

L(µX . Ja.c.co k + e .k X K) = {ε, a c}

(Atomicity: all-or-nothing)

I enable compositional reasoning:
I L(P | Q) = L(P) zip L(Q)
I L(P) ⊆ L(Q) implies L(P | R) ⊆ L(Q | R)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Compositional Semantics (2)

The behaviour of processes in TransCCS can be understood by
CCS-like “Clean” traces derived by the LTS that:

I consider only traces where all actions are eventually
committed

I ignore transactional annotations on the traces

L(Ja.c .co k + e .k rK) = {ε, a c, r} (Non-prefix-closed set)

L(µX . Ja.c.co k + e .k X K) = {ε, a c} (Atomicity: all-or-nothing)

I enable compositional reasoning:
I L(P | Q) = L(P) zip L(Q)
I L(P) ⊆ L(Q) implies L(P | R) ⊆ L(Q | R)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Compositional Semantics (2)

The behaviour of processes in TransCCS can be understood by
CCS-like “Clean” traces derived by the LTS that:

I consider only traces where all actions are eventually
committed

I ignore transactional annotations on the traces

L(Ja.c .co k + e .k rK) = {ε, a c, r} (Non-prefix-closed set)

L(µX . Ja.c.co k + e .k X K) = {ε, a c} (Atomicity: all-or-nothing)

I enable compositional reasoning:
I L(P | Q) = L(P) zip L(Q)
I L(P) ⊆ L(Q) implies L(P | R) ⊆ L(Q | R)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Safety

Definition (Basic Observable)

P⇓a iff there exists P ′ such that P →∗ P ′ | a

I Basic observable actions are permanent

Definition (P passes safety test T ;)

P cannotT ; when P | T ; 6⇓;

Definition (Safety preservation)

S @∼safe
I when ∀T ;. S cannotT ; implies I cannotT ;

Theorem (Characterization of safety preservation)

S @∼safe
I iff L(S) ⊇ L(I)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Safety

Definition (Basic Observable)

P⇓a iff there exists P ′ such that P →∗ P ′ | a

I Basic observable actions are permanent

Definition (P passes safety test T ;)

P cannotT ; when P | T ; 6⇓;

Definition (Safety preservation)

S @∼safe
I when ∀T ;. S cannotT ; implies I cannotT ;

Theorem (Characterization of safety preservation)

S @∼safe
I iff L(S) ⊇ L(I)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Safety

Definition (Basic Observable)

P⇓a iff there exists P ′ such that P →∗ P ′ | a

I Basic observable actions are permanent

Definition (P passes safety test T ;)

P cannotT ; when P | T ; 6⇓;

Definition (Safety preservation)

S @∼safe
I when ∀T ;. S cannotT ; implies I cannotT ;

Theorem (Characterization of safety preservation)

S @∼safe
I iff L(S) ⊇ L(I)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Safety

Definition (Basic Observable)

P⇓a iff there exists P ′ such that P →∗ P ′ | a

I Basic observable actions are permanent

Definition (P passes safety test T ;)

P cannotT ; when P | T ; 6⇓;

Definition (Safety preservation)

S @∼safe
I when ∀T ;. S cannotT ; implies I cannotT ;

Theorem (Characterization of safety preservation)

S @∼safe
I iff L(S) ⊇ L(I)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Liveness

Definition (P Passes liveness Test T ω [Rensink-Vogler’07])

P shdTω when ∀R. P | Tω →∗ R implies R⇓ω

must testing
would consider
the infinite loop

a.c.ω + e.; | µX . Ja.c .co k + e .k X K

P1

P2

P2

P3

ω

R-AbR-Emb

R-Comm

R-Comm

R-Comm

R-Co

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Liveness

Definition (P Passes liveness Test T ω [Rensink-Vogler’07])

P shdTω when ∀R. P | Tω →∗ R implies R⇓ω

must testing
would consider
the infinite loop

a.c.ω + e.; | µX . Ja.c .co k + e .k X K

P1

P2

P2

P3

ω

R-AbR-Emb

R-Comm

R-Comm

R-Comm

R-Co

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Liveness

Definition (P Passes liveness Test T ω [Rensink-Vogler’07])

P shdTω when ∀R. P | Tω →∗ R implies R⇓ω

must testing
would consider
the infinite loop

a.c.ω + e.; | µX . Ja.c .co k + e .k X K

P1

P2

P2

P3

ω

R-AbR-Emb

R-Comm

R-Comm

R-Comm

R-Co

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Liveness

Definition (P passes liveness test T ω [Rensink-Vogler’07])

P shdTω when ∀R. P | Tω →∗ R implies R⇓ω

Definition (Tree Failures [Rensink-Vogler’07])

(t,Ref) is a tree failure of P when

∃P ′. P
t

=⇒CL P ′ and L(P ′) ∩ Ref = ∅

F(P) = {(t,Ref) tree failure of P}

t

Ref

I Ref is generally non-prefix-closed

Theorem (Characterization of liveness preservation)

S @∼live
I iff F(S) ⊇ F(I)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Liveness

Definition (P passes liveness test T ω [Rensink-Vogler’07])

P shdTω when ∀R. P | Tω →∗ R implies R⇓ω

Definition (Tree Failures [Rensink-Vogler’07])

(t,Ref) is a tree failure of P when

∃P ′. P
t

=⇒CL P ′ and L(P ′) ∩ Ref = ∅

F(P) = {(t,Ref) tree failure of P}

t

Ref

I Ref is generally non-prefix-closed

Theorem (Characterization of liveness preservation)

S @∼live
I iff F(S) ⊇ F(I)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Liveness

Definition (P passes liveness test T ω [Rensink-Vogler’07])

P shdTω when ∀R. P | Tω →∗ R implies R⇓ω

Definition (Tree Failures [Rensink-Vogler’07])

(t,Ref) is a tree failure of P when

∃P ′. P
t

=⇒CL P ′ and L(P ′) ∩ Ref = ∅

F(P) = {(t,Ref) tree failure of P}

t

Ref

I Ref is generally non-prefix-closed

Theorem (Characterization of liveness preservation)

S @∼live
I iff F(S) ⊇ F(I)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Examples

Let Sab = µX . Ja.b.co k .k X K L(Sab) = {ε, ab}
F(Sab) = {(ε, S\ab), (ab,S) | S ⊆ A∗}

I Sab hsafe I1 = Ja.b.co k .k 0K L(I1) = {ε, ab}
Sab 6 @∼live

I1 F(I1) = {(ε,S), (ab,S) | S ⊆ A∗}

I Sab hsafe I2 = µX . Ja.b.co k + e .k X K L(I2) = L(Sab)

Sab hlive I2 F(I2) = F(Sab)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Examples

Let Sab = µX . Ja.b.co k .k X K L(Sab) = {ε, ab}
F(Sab) = {(ε, S\ab), (ab,S) | S ⊆ A∗}

I Sab hsafe I1 = Ja.b.co k .k 0K L(I1) = {ε, ab}
Sab 6 @∼live

I1 F(I1) = {(ε, S), (ab,S) | S ⊆ A∗}

I Sab hsafe I2 = µX . Ja.b.co k + e .k X K L(I2) = L(Sab)

Sab hlive I2 F(I2) = F(Sab)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Simple Examples

Let Sab = µX . Ja.b.co k .k X K L(Sab) = {ε, ab}
F(Sab) = {(ε, S\ab), (ab,S) | S ⊆ A∗}

I Sab hsafe I1 = Ja.b.co k .k 0K L(I1) = {ε, ab}
Sab 6 @∼live

I1 F(I1) = {(ε, S), (ab,S) | S ⊆ A∗}

I Sab hsafe I2 = µX . Ja.b.co k + e .k X K L(I2) = L(Sab)

Sab hlive I2 F(I2) = F(Sab)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Comparison with CCS (1)

Safety in TransCCS is characterized by non-prefix-closed sets of
traces
Safety in CCS is characterized by prefix-closed sets of traces

I TransCCS safety tests have the same distinguishing power as
CCS safety tests

I If in CCS P @∼safe
Q then also in TransCCS P @∼safe

Q

I No way to encode non-prefix-closed traces in CCS; thus no
fully-abstract translation from TransCCS to CCS

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Comparison with CCS (1)

Safety in TransCCS is characterized by non-prefix-closed sets of
traces
Safety in CCS is characterized by prefix-closed sets of traces

I TransCCS safety tests have the same distinguishing power as
CCS safety tests

I If in CCS P @∼safe
Q then also in TransCCS P @∼safe

Q

I No way to encode non-prefix-closed traces in CCS; thus no
fully-abstract translation from TransCCS to CCS

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Comparison with CCS (1)

Safety in TransCCS is characterized by non-prefix-closed sets of
traces
Safety in CCS is characterized by prefix-closed sets of traces

I TransCCS safety tests have the same distinguishing power as
CCS safety tests

I If in CCS P @∼safe
Q then also in TransCCS P @∼safe

Q

I No way to encode non-prefix-closed traces in CCS; thus no
fully-abstract translation from TransCCS to CCS

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Comparison with CCS (2)

Liveness in TransCCS is characterized by tree failures
Liveness in CCS is characterized by a more complex model
[Rensink-Vogler’07]

I TransCCS liveness tests have more distinguishing power than
CCS liveness tests

I In CCS a.(b.c + b.d) @∼live
a.b.c + a.b.d

I In TransCCS a.(b.c + b.d) 6 @∼live
a.b.c + a.b.d

I (a, {bd}) 6∈ F(a.(b.c + b.d))
I (a, {bd}) ∈ F(a.b.c + a.b.d)

I TransCCS distinguishing liveness test in the paper

I Thus no sound translation from TransCCS to CCS that is
the identity on CCS terms

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Comparison with CCS (2)

Liveness in TransCCS is characterized by tree failures
Liveness in CCS is characterized by a more complex model
[Rensink-Vogler’07]

I TransCCS liveness tests have more distinguishing power than
CCS liveness tests

I In CCS a.(b.c + b.d) @∼live
a.b.c + a.b.d

I In TransCCS a.(b.c + b.d) 6 @∼live
a.b.c + a.b.d

I (a, {bd}) 6∈ F(a.(b.c + b.d))
I (a, {bd}) ∈ F(a.b.c + a.b.d)

I TransCCS distinguishing liveness test in the paper

I Thus no sound translation from TransCCS to CCS that is
the identity on CCS terms

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Comparison with CCS (2)

Liveness in TransCCS is characterized by tree failures
Liveness in CCS is characterized by a more complex model
[Rensink-Vogler’07]

I TransCCS liveness tests have more distinguishing power than
CCS liveness tests

I In CCS a.(b.c + b.d) @∼live
a.b.c + a.b.d

I In TransCCS a.(b.c + b.d) 6 @∼live
a.b.c + a.b.d

I (a, {bd}) 6∈ F(a.(b.c + b.d))
I (a, {bd}) ∈ F(a.b.c + a.b.d)

I TransCCS distinguishing liveness test in the paper

I Thus no sound translation from TransCCS to CCS that is
the identity on CCS terms

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Also in [APLAS 2010]

I Canonical class of tests for liveness and safety

I See how restarting transactions add fault tolerance to CCS
(Ex. 6)

I A sound, but incomplete bisimulation proof method, using the
“clean” LTS transitions

I Many examples

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Conclusions

Communicating transactions:
I Traditional transactions without the isolation requirement

I No limit on communication or concurrency

I Simple safety and liveness theory
I First theory of liveness in the presence of transactions

I Future directions: Reference implementation/evaluation of
the construct in a programming language.

Advertisement

Joint Trinity/Microsoft Research PhD on extending Haskell with
communicating transactions. We need a good student :)

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

Edsko de Vries Liveness of Communicating Transactions

Overview of TransCCS
Safety and Liveness Theory

ACD Properties

a.b.ω + e.; | µX .
q

a.b.co k + e .k X
y

P1

P2

P2

P3

ω

R-Ab

R-Emb

R-Comm

R-Comm

R-Comm

R-Co

A commit step makes the effects of the
transaction permanent (Durability)

An abort step:

I restarts the transaction

I rolls-back embedded processes to their
state before embedding (Consistency
)

I does not roll-back actions that
happened before embedding

I does not affect non-embedded
processes

The semantics of transactions transactions
are non-prefix-closed traces (Atomicity).

Edsko de Vries Liveness of Communicating Transactions

	Overview of TransCCS
	Safety and Liveness Theory

