#### Liveness of Communicating Transactions

#### Edsko de Vries

(joint work with Vasileios Koutavas and Matthew Hennessy)





Dublin Concurrency Workshop 2011



#### Traditional Transactions

► Transactions provide an abstraction for error recovery in a concurrent setting.

#### Traditional Transactions

- Transactions provide an abstraction for error recovery in a concurrent setting.
- ► The transactional system guarantees:
  - Atomicity: Each transaction will either run in its entirety or not at all
  - Consistency: Faults caused by a transaction are automatically detected and rolled-back
  - ▶ **Isolation**: The effects of a transaction are concealed from the rest of the system until the transaction commits
  - ▶ **Durability**: After a transaction commits, its effects are permanent.

#### Traditional Transactions

- Transactions provide an abstraction for error recovery in a concurrent setting.
- ► The transactional system guarantees:
  - Atomicity: Each transaction will either run in its entirety or not at all
  - Consistency: Faults caused by a transaction are automatically detected and rolled-back
  - Isolation: The effects of a transaction are concealed from the rest of the system until the transaction commits
  - Durability: After a transaction commits, its effects are permanent.
- ► However, isolation limits concurrency
  - The semantics of traditional transactions is sequential schedules
  - Traditional transactions do not offer an abstraction for recovery from distributed errors (e.g. deadlocks)



## **Communicating Transactions**

- ► We drop isolation to increase concurrency
  - There is no limit on the communication between a transaction and its environment
- ► The transactional system guarantees:
  - Atomicity: Each transaction will either run in its entirety or not at all
  - Consistency: Faults caused by a transaction are automatically detected and rolled-back, together with all effects of the transaction to its environment
  - ► **Durability**: After all transactions that have interacted commit, their effects are permanent (coordinated checkpointing)
- ► We are interested in safety and especially liveness properties
  - ► First theory of liveness in the presence of transactions
  - We have studied the transactional properties of communicating transactions in [CONCUR'2010]



## Safety

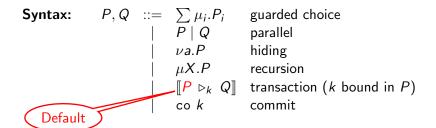
Safety: "Nothing bad will happen" [Lamport'77]

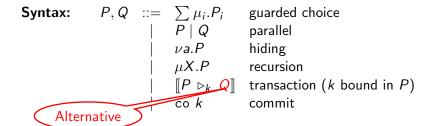
- ▶ A safety property can be formulated as a safety test  $T^{\circ}$  which signals on channel  $\circ$  when it detects the bad behaviour
- ▶ P passes the safety test  $T^{\circ}$  when  $P \mid T^{\circ}$  cannot output on  $\circ$ 
  - ► This is the negation of passing a "may test" [DeNicola-Hennessy'84]

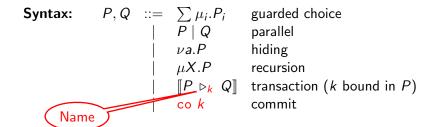
#### Liveness

Liveness: "Something good will eventually happen" [Lamport'77]

- ▶ A liveness property can be formulated as a liveness test  $T^{\omega}$  which detects and reports good behaviour on  $\omega$ .
- ▶ P passes the liveness test  $T^{\omega}$  when all future states of  $P \mid T^{\omega}$  can output on  $\omega$ 
  - ► This is a "should test" [Binksma-Rensink-Vogler'95, Rensink-Vogler'07]
  - ► It excludes pathological traces
- ► We will later see why "must testing" [DeNicola-Hennessy'84] is not appropriate for transactions







$$\begin{array}{lll} \textbf{Syntax:} & P,Q & ::= & \sum \mu_i.P_i & \text{guarded choice} \\ & | & P \mid Q & \text{parallel} \\ & | & \nu a.P & \text{hiding} \\ & | & \mu X.P & \text{recursion} \\ & | & \llbracket P \rhd_k & Q \rrbracket & \text{transaction } (k \text{ bound in } P) \\ & | & \text{co } k & \text{commit} \end{array}$$

#### Main reductions:

$$a_i = \overline{b}_j$$

$$\sum_{i \in I} \mathsf{a}_i.P_i \mid \sum_{j \in J} \mathsf{b}_j.Q_j o P_i \mid Q_j$$

R-Co

$$\boxed{\llbracket P \mid \mathsf{co}\ k \, \triangleright_k \, Q \rrbracket \, \to P}$$

#### **R-Емв**

$$\sum a_i.P_i \mid \sum b_j.Q_j \to P_i \mid Q_j \quad \llbracket P \rhd_k \ Q \rrbracket \ \mid R \to \llbracket P \mid R \rhd_k \ Q \mid R \rrbracket$$

$$\llbracket P \rhd_k Q \rrbracket \to Q$$

$$\begin{array}{lll} \textbf{Syntax:} & P,Q & ::= & \sum \mu_i.P_i & \text{guarded choice} \\ & | & P \mid Q & \text{parallel} \\ & | & \nu a.P & \text{hiding} \\ & | & \mu X.P & \text{recursion} \\ & | & \llbracket P \rhd_k & Q \rrbracket & \text{transaction } (k \text{ bound in } P) \\ & | & \text{co } k & \text{commit} \end{array}$$

#### Main reductions:

$$\frac{\text{R-Comm}}{\sum_{i \in I} a_i.P_i \mid \sum_{j \in J} b_j.Q_j \to P_i \mid Q_j} \frac{\text{R-Emb}}{\left[\!\!\left[P \triangleright_k \ Q\right]\!\!\right] \mid R \to \left[\!\!\left[P \mid R \triangleright_k \ Q \mid R\right]\!\!\right]}$$

R-Co

$$\boxed{\llbracket P \mid \mathsf{co}\ k \, \triangleright_k \, Q \rrbracket \, \to P}$$

$$\llbracket P \rhd_k Q \rrbracket \to Q$$

$$\begin{array}{lll} \textbf{Syntax:} & P,Q & ::= & \sum \mu_i.P_i & \text{guarded choice} \\ & | & P \mid Q & \text{parallel} \\ & | & \nu a.P & \text{hiding} \\ & | & \mu X.P & \text{recursion} \\ & | & \llbracket P \rhd_k & Q \rrbracket & \text{transaction } (k \text{ bound in } P) \\ & | & \text{co } k & \text{commit} \end{array}$$

#### Main reductions:

R-COMM 
$$a_i = \overline{b}_j$$
 R-EMB 
$$\sum_{i \in I} a_i.P_i \mid \sum_{j \in J} b_j.Q_j \to P_i \mid Q_j$$
 
$$\boxed{ \llbracket P \triangleright_k Q \rrbracket \mid R \to \llbracket P \mid R \triangleright_k Q \mid R \rrbracket }$$

R-Co

$$\boxed{\llbracket P \mid \mathsf{co}\ k \, \triangleright_k \, Q \rrbracket \, \to P}$$

$$\llbracket P \rhd_k Q \rrbracket \to Q$$

$$a.c.\omega + e.\omega \mid [\overline{a}.\overline{c}.co k + \overline{e} \triangleright_k r]$$

$$a.c.\omega + e.\omega \mid [\overline{a}.\overline{c}.co k + \overline{e} \triangleright_k r]$$

$$\begin{array}{c} a.c.\omega + e.\omega \mid \llbracket \overline{a}.\overline{c}.\operatorname{co} \ k + \overline{e} \rhd_{k} \ r \rrbracket \\ \\ \hline \R^{-\operatorname{Emb}} & \llbracket a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.\operatorname{co} \ k + \overline{e} \rhd_{k} \ a.c.\omega + e.\omega \mid r \rrbracket \end{array}$$

$$\begin{array}{c} a.c.\omega + e.\omega \mid \llbracket \overline{a}.\overline{c}.\operatorname{co} \ k + \overline{e} \, \triangleright_k \, r \rrbracket \\ \\ \hline \overset{\mathrm{R-EMB}}{\longrightarrow} & \llbracket a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.\operatorname{co} \ k + \overline{e} \, \triangleright_k \, a.c.\omega + e.\omega \mid r \rrbracket \\ \\ \hline \overset{\mathrm{R-COMM}}{\longrightarrow} & \llbracket \ c.\omega \quad \mid \ \overline{c}.\operatorname{co} \ k \quad \triangleright_k \, a.c.\omega + e.\omega \mid r \rrbracket \end{array}$$

$$\begin{array}{c} a.c.\omega + e.\omega \mid \begin{bmatrix} \overline{a}.\overline{c}.\operatorname{co} \ k + \overline{e} \ \triangleright_{k} \ r \end{bmatrix} \\ \\ \frac{\operatorname{R-EMB}}{} & \begin{bmatrix} a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.\operatorname{co} \ k + \overline{e} \ \triangleright_{k} \ a.c.\omega + e.\omega \mid r \end{bmatrix} \\ \\ \frac{\operatorname{R-COMM}}{} & \begin{bmatrix} c.\omega & | \overline{c}.\operatorname{co} \ k & | \triangleright_{k} \ a.c.\omega + e.\omega \mid r \end{bmatrix} \\ \\ \\ \frac{\operatorname{R-COMM}}{} & \begin{bmatrix} \omega & | \operatorname{co} \ k & | \triangleright_{k} \ a.c.\omega + e.\omega \mid r \end{bmatrix} \end{array}$$

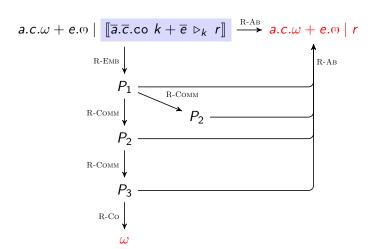
$$\begin{array}{c} a.c.\omega + e.\omega \mid \llbracket \overline{a}.\overline{c}.\operatorname{co} \ k + \overline{e} \, \triangleright_k \, r \rrbracket \\ \\ \xrightarrow{\text{R-EMB}} & \llbracket a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.\operatorname{co} \ k + \overline{e} \, \triangleright_k \, a.c.\omega + e.\omega \mid r \rrbracket \\ \\ \xrightarrow{\text{R-COMM}} & \llbracket \ c.\omega \quad \mid \overline{c}.\operatorname{co} \ k \quad \triangleright_k \, a.c.\omega + e.\omega \mid r \rrbracket \\ \\ \xrightarrow{\text{R-COMM}} & \llbracket \ \omega \quad \mid \operatorname{co} \ k \quad \triangleright_k \, a.c.\omega + e.\omega \mid r \rrbracket \end{array}$$

$$a.c.\omega + e.\omega \mid [\overline{a}.\overline{c}.co k + \overline{e} \triangleright_k r]$$

$$\begin{array}{c} a.c.\omega + e.\omega \mid [\![ \overline{a}.\overline{c}.\text{co} \ k + \overline{e} \triangleright_k \ r ]\!] \\ \\ \hline \text{$\mathbb{R}$-Emb} \end{array}$$

$$\begin{array}{c} \mathbb{R}\text{-Emb} \\ \\ \end{array} \downarrow [\![ a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.\text{co} \ k + \overline{e} \triangleright_k \ a.c.\omega + e.\omega \mid r ]\!]$$

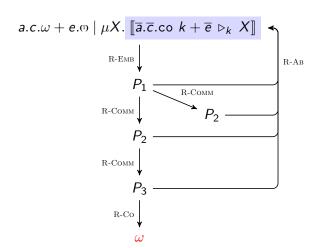
## Simple Example (all traces)



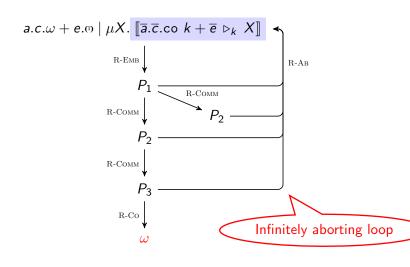
#### Restarting transactions

$$a.c.\omega + e.\omega \mid \mu X$$
.  $[\overline{a}.\overline{c}.co \ k + \overline{e} \triangleright_k X]$ 

#### Restarting transactions



#### Restarting transactions

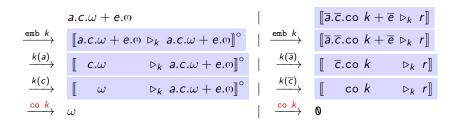


#### Compositional Semantics

- ► The embedding rule is simple but entangles the processes
- ▶ We need to reason about the behaviour of P|Q in terms of P and Q
- ▶ We introduce a compositional Labelled Transition System that uses secondary transactions:  $[P \triangleright_k Q]^\circ$

## Compositional Semantics

- The embedding rule is simple but entangles the processes
- ▶ We need to reason about the behaviour of P|Q in terms of P and Q
- ▶ We introduce a compositional Labelled Transition System that uses secondary transactions:  $[P \triangleright_k Q]^{\circ}$



## Compositional Semantics

- The embedding rule is simple but entangles the processes
- ▶ We need to reason about the behaviour of P|Q in terms of P and Q
- ▶ We introduce a compositional Labelled Transition System that uses secondary transactions:  $\llbracket P \rhd_k Q \rrbracket^{\circ}$

# Compositional Semantics (2)

The behaviour of processes in TransCCS can be understood by CCS-like "Clean" traces derived by the LTS that:

- consider only traces where all actions are eventually committed
- ▶ ignore transactional annotations on the traces

- consider only traces where all actions are eventually committed
- ▶ ignore transactional annotations on the traces

$$\mathcal{L}(\llbracket a.c.\operatorname{co} k + e \triangleright_k r \rrbracket) = \{\epsilon, \ \operatorname{ac}, \ r\}$$

- consider only traces where all actions are eventually committed
- ▶ ignore transactional annotations on the traces

$$\mathcal{L}(\llbracket a.c.\operatorname{co} k + e \triangleright_k r \rrbracket) = \{\epsilon, ac, r\}$$
 (Non-prefix-closed set)

- consider only traces where all actions are eventually committed
- ▶ ignore transactional annotations on the traces

$$\mathcal{L}(\llbracket a.c.\operatorname{co} k + e \rhd_k r \rrbracket) = \{\epsilon, \ \operatorname{ac}, \ r\} \qquad \text{(Non-prefix-closed set)}$$
 
$$\mathcal{L}(\mu X. \llbracket a.c.\operatorname{co} k + e \rhd_k X \rrbracket) = \{\epsilon, \ \operatorname{ac}\}$$

- consider only traces where all actions are eventually committed
- ▶ ignore transactional annotations on the traces

$$\mathcal{L}(\llbracket a.c.\operatorname{co} k + e \triangleright_k r \rrbracket) = \{\epsilon, \ \mathbf{ac}, \ \mathbf{r}\} \qquad \text{(Non-prefix-closed set)}$$

$$\mathcal{L}(\mu X. \llbracket a.c.\operatorname{co} k + e \triangleright_k X \rrbracket) = \{\epsilon, \ \mathbf{ac}\} \qquad \text{(Atomicity: all-or-nothing)}$$

- consider only traces where all actions are eventually committed
- ignore transactional annotations on the traces

$$\mathcal{L}(\llbracket a.c.\operatorname{co} k + e \rhd_k r \rrbracket) = \{\epsilon, \ a \ c, \ r\} \qquad \text{(Non-prefix-closed set)}$$

$$\mathcal{L}(\mu X. \llbracket a.c.\operatorname{co} k + e \rhd_k X \rrbracket) = \{\epsilon, \ a \ c\} \qquad \text{(Atomicity: all-or-nothing)}$$

- ► enable compositional reasoning:
  - $\mathcal{L}(P \mid Q) = \mathcal{L}(P) \operatorname{zip} \mathcal{L}(Q)$
  - ▶  $\mathcal{L}(P) \subseteq \mathcal{L}(Q)$  implies  $\mathcal{L}(P \mid R) \subseteq \mathcal{L}(Q \mid R)$



### Definition (Basic Observable)

 $P \Downarrow_a$  iff there exists P' such that  $P \rightarrow^* P' \mid a$ 

Basic observable actions are permanent

### Definition (Basic Observable)

 $P \Downarrow_a$  iff there exists P' such that  $P \rightarrow^* P' \mid a$ 

Basic observable actions are permanent

Definition (P passes safety test  $T^{\circ}$ )

 $P \operatorname{cannot} T^{\circ}$  when  $P \mid T^{\circ} \not \Downarrow_{\circ}$ 

### Definition (Basic Observable)

 $P \Downarrow_a$  iff there exists P' such that  $P \to^* P' \mid a$ 

Basic observable actions are permanent

Definition (P passes safety test  $T^{\circ}$ )

 $P \operatorname{cannot} T^{\circ}$  when  $P \mid T^{\circ} \not \Downarrow_{\circ}$ 

Definition (Safety preservation)

 $S \sqsubseteq_{\text{safe}} I$  when  $\forall T^{\circ}$ .  $S \operatorname{cannot} T^{\circ}$  implies  $I \operatorname{cannot} T^{\circ}$ 

### Definition (Basic Observable)

 $P \Downarrow_a$  iff there exists P' such that  $P \rightarrow^* P' \mid a$ 

Basic observable actions are permanent

### Definition (P passes safety test $T^{\circ}$ )

 $P \operatorname{cannot} T^{\circ}$  when  $P \mid T^{\circ} \not \Downarrow_{\circ}$ 

### Definition (Safety preservation)

 $S \sqsubseteq_{\text{safe}} I$  when  $\forall T^{\circ}$ .  $S \operatorname{cannot} T^{\circ}$  implies  $I \operatorname{cannot} T^{\circ}$ 

### Theorem (Characterization of safety preservation)

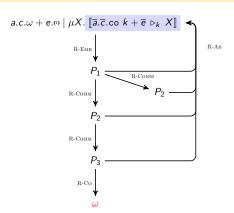
 $S \sqsubseteq_{\text{safe}} I$  iff  $\mathcal{L}(S) \supseteq \mathcal{L}(I)$ 

Definition (P Passes liveness Test  $T^{\omega}$  [Rensink-Vogler'07])

 $P \operatorname{shd} T^{\omega}$  when  $\forall R. P \mid T^{\omega} \to^* R$  implies  $R \Downarrow_{\omega}$ 

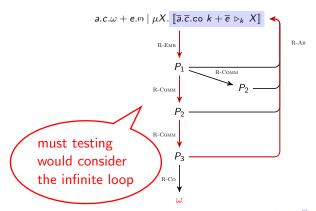
## Definition (P Passes liveness Test $T^{\omega}$ [Rensink-Vogler'07])

 $P \operatorname{shd} T^{\omega}$  when  $\forall R. P \mid T^{\omega} \to^* R$  implies  $R \Downarrow_{\omega}$ 



### Definition (P Passes liveness Test $T^{\omega}$ [Rensink-Vogler'07])

 $P \operatorname{shd} T^{\omega}$  when  $\forall R. P \mid T^{\omega} \to^* R$  implies  $R \Downarrow_{\omega}$ 



## Definition (P passes liveness test $T^{\omega}$ [Rensink-Vogler'07])

 $P \operatorname{shd} T^{\omega}$  when  $\forall R. P \mid T^{\omega} \to^* R$  implies  $R \Downarrow_{\omega}$ 

## Definition (Tree Failures [Rensink-Vogler'07])

$$(t, Ref)$$
 is a **tree failure** of  $P$  when  $\exists P'. P \stackrel{t}{\Rightarrow}_{CL} P'$  and  $\mathcal{L}(P') \cap Ref = \emptyset$ 



$$\mathcal{F}(P) = \{(t, Ref) \text{ tree failure of } P\}$$

### Definition (P passes liveness test $T^{\omega}$ [Rensink-Vogler'07])

 $P \operatorname{shd} T^{\omega}$  when  $\forall R. P \mid T^{\omega} \to^* R$  implies  $R \Downarrow_{\omega}$ 

## Definition (Tree Failures [Rensink-Vogler'07])

$$(t, Ref)$$
 is a **tree failure** of  $P$  when  $\exists P'. P \stackrel{t}{\Rightarrow}_{CL} P'$  and  $\mathcal{L}(P') \cap Ref = \emptyset$ 



$$\mathcal{F}(P) = \{(t, Ref) \text{ tree failure of } P\}$$

► *Ref* is generally non-prefix-closed

### Definition (P passes liveness test $T^{\omega}$ [Rensink-Vogler'07])

 $P \operatorname{shd} T^{\omega}$  when  $\forall R. P \mid T^{\omega} \to^* R$  implies  $R \Downarrow_{\omega}$ 

## Definition (Tree Failures [Rensink-Vogler'07])

$$(t, Ref)$$
 is a **tree failure** of  $P$  when  $\exists P'. P \stackrel{t}{\Rightarrow}_{CL} P'$  and  $\mathcal{L}(P') \cap Ref = \emptyset$ 



$$\mathcal{F}(P) = \{(t, Ref) \text{ tree failure of } P\}$$

Ref is generally non-prefix-closed

### Theorem (Characterization of liveness preservation)

$$S \sqsubseteq_{\text{live}} I \quad \text{iff} \quad \mathcal{F}(S) \supseteq \mathcal{F}(I)$$



## Simple Examples

Let 
$$S_{ab} = \mu X$$
. [a.b.co  $k \triangleright_k X$ ]  $\mathcal{L}(S_{ab}) = \{\epsilon, ab\}$   
 $\mathcal{F}(S_{ab}) = \{(\epsilon, S \setminus ab), (ab, S) \mid S \subseteq A^*\}$ 

## Simple Examples

Let 
$$S_{ab} = \mu X$$
.  $[a.b.co \ k \triangleright_k X]$   $\mathcal{L}(S_{ab}) = \{\epsilon, ab\}$   $\mathcal{F}(S_{ab}) = \{(\epsilon, S \setminus ab), (ab, S) \mid S \subseteq A^*\}$ 

## Simple Examples

Let 
$$S_{ab} = \mu X$$
.  $\llbracket a.b. \operatorname{co} k \triangleright_k X \rrbracket$   $\mathcal{L}(S_{ab}) = \{\epsilon, ab\}$   $\mathcal{F}(S_{ab}) = \{(\epsilon, S \setminus ab), (ab, S) \mid S \subseteq A^*\}$ 

$$\begin{array}{ll} \blacktriangleright & S_{ab} \eqsim_{\text{safe}} I_2 = \mu X. \ \llbracket a.b.\text{co} \ k + e \vartriangleright_k \ X \rrbracket \\ & S_{ab} \eqsim_{\text{live}} I_2 \end{array} \qquad \qquad \mathcal{L}(I_2) = \mathcal{L}(S_{ab}) \\ \mathcal{F}(I_2) = \mathcal{F}(S_{ab}) \end{array}$$

# Comparison with CCS (1)

Safety in **TransCCS** is characterized by non-prefix-closed sets of traces
Safety in **CCS** is characterized by prefix-closed sets of traces

# Comparison with CCS (1)

Safety in **TransCCS** is characterized by non-prefix-closed sets of traces

Safety in CCS is characterized by prefix-closed sets of traces

- ► TransCCS safety tests have the same distinguishing power as CCS safety tests
  - ▶ If in CCS  $P \sqsubseteq_{\text{safe}} Q$  then also in TransCCS  $P \sqsubseteq_{\text{safe}} Q$

# Comparison with CCS (1)

Safety in **TransCCS** is characterized by non-prefix-closed sets of traces

Safety in CCS is characterized by prefix-closed sets of traces

- TransCCS safety tests have the same distinguishing power as CCS safety tests
  - ▶ If in CCS  $P \sqsubseteq_{\mathrm{safe}} Q$  then also in TransCCS  $P \sqsubseteq_{\mathrm{safe}} Q$
- No way to encode non-prefix-closed traces in CCS; thus no fully-abstract translation from TransCCS to CCS

# Comparison with CCS (2)

Liveness in **TransCCS** is characterized by tree failures Liveness in **CCS** is characterized by a more complex model [Rensink-Vogler'07]

# Comparison with CCS (2)

Liveness in **TransCCS** is characterized by tree failures Liveness in **CCS** is characterized by a more complex model [Rensink-Vogler'07]

- TransCCS liveness tests have more distinguishing power than
   CCS liveness tests
  - ▶ In CCS  $a.(b.c + b.d) \sqsubseteq_{live} a.b.c + a.b.d$
  - ▶ In TransCCS  $a.(b.c + b.d) \not \sqsubseteq_{live} a.b.c + a.b.d$ 
    - $(a, \{bd\}) \not\in \mathcal{F}(a.(b.c+b.d))$
    - $(a, \{bd\}) \in \mathcal{F}(a.b.c + a.b.d)$
  - TransCCS distinguishing liveness test in the paper

# Comparison with CCS (2)

Liveness in **TransCCS** is characterized by tree failures Liveness in **CCS** is characterized by a more complex model [Rensink-Vogler'07]

- TransCCS liveness tests have more distinguishing power than
   CCS liveness tests
  - ▶ In CCS  $a.(b.c + b.d) \sqsubseteq_{live} a.b.c + a.b.d$
  - ▶ In TransCCS  $a.(b.c + b.d) \not \sqsubseteq_{live} a.b.c + a.b.d$ 
    - $(a, \{bd\}) \not\in \mathcal{F}(a.(b.c+b.d))$
    - $(a, \{bd\}) \in \mathcal{F}(a.b.c + a.b.d)$
  - TransCCS distinguishing liveness test in the paper
- ▶ Thus no sound translation from TransCCS to CCS that is the identity on CCS terms



# Also in [APLAS 2010]

- Canonical class of tests for liveness and safety
- See how restarting transactions add fault tolerance to CCS (Ex. 6)
- ► A sound, but incomplete bisimulation proof method, using the "clean" LTS transitions
- ► Many examples

### **Conclusions**

#### **Communicating transactions:**

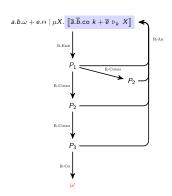
- Traditional transactions without the isolation requirement
  - ▶ No limit on communication or concurrency
- Simple safety and liveness theory
  - ► First theory of liveness in the presence of transactions
- ► **Future directions:** Reference implementation/evaluation of the construct in a programming language.

#### Advertisement

Joint Trinity/Microsoft Research PhD on extending Haskell with communicating transactions. We need a good student:)

## **ACD Properties**

A commit step makes the effects of the transaction permanent (**Durability** )



An abort step:

- ► restarts the transaction
- rolls-back embedded processes to their state before embedding (Consistency
   )
- does not roll-back actions that happened before embedding
- does not affect non-embedded processes

The semantics of transactions transactions are non-prefix-closed traces (**Atomicity** ).