On substitution closure and congruence in 7
and axiomatisations of bisimilarity in absence of sum

Daniel Hirschkoff, ENS de Lyon
Damien Pous, CNRS, Grenoble

Dublin, 15.04.2011



Open question

In which fragments of 7 is bisimilarity (~) a congruence?

» 7 is a process calculus (P ::=0 ’ P|P ’ a.P ’ (va)P ‘ )

» equipped with a labelled transition semantics P — P’;

v

yielding (labelled) bisimilarity:

P~ Q

P/ ~ Q/

» congruence property: does P ~ Q entail C[P|] ~ C[Q] 7

v

substitution closure: does P ~ Q entail Po ~ Qo 7



Some known answers

» With sum, substitution closure and congruence fail:

alb ~ a.b+b.a
but  c(a). (3| b) o c(a). (a.b+ b.a)
c(b)i ic(b)

(3| b) (b/a} (3.b+ b3) {b/a)

| i



Some known answers

» With sum, substitution closure and congruence fail:

alb ~ a.b+b.a

but  c(a). (3| b) o c(a). (a.b+ b.a)

| o

(alb) (b/a} (a.b%b.a) {b/a}

» In the asynchronous m-calculus, they hold.



Some answers, cont.

» In the synchronous case, without sum:



Some answers, cont.

» In the synchronous case, without sum: no
see [Sangiorgi & Walker 2001],

counter-example with replication (!) and name restriction (v):

o
N

|
NI
SN—

la.b.rt | batt ~ Wvz)(az
but laar.t | l3art # (vz)(az

r~|-\ "H



Some answers, cont.

» In the synchronous case, without sum: no
see [Sangiorgi & Walker 2001],
counter-example with replication (!) and name restriction (v):

o
N

la.b.rt | batt ~ Wvz)(az
but laar.t | l3art # (vz)(az

r~|-\ "H
|
NI

» Our work: removing either replication or name restriction.

Outline of the presentation:
1. pCCS: neither replication nor name restriction [FoSSaCS 2007]
2. finite 7 no replication [FoSSaCS 2007]
3. top-level replications (without name restriction) [ICALP 2010]



nCCS

Consider the following :iny fragment of CCS:
E,F:::0|F|F’3.F

> no sum,
» no name restriction or relabelling,
» no replication or recursion,

» no synchronisation.

What does bisimilarity look like? Is it substitution closed?



Bisimilarity in 4 CCS

» bisimilarity is a congruence;

» (],0) is an abelian monoid:
E|I0O~E E|F~F|E E|(F|IG)~(E|F)|G

» a distribution law relates prefixed processes and parallel
composition:

a.(F|aF)~aF]|aF



Bisimilarity in 4 CCS

» bisimilarity is a congruence;

» (],0) is an abelian monoid:
E|I0O~E E|F~F|E E|(F|IG)~(E|F)|G

» a distribution law relates prefixed processes and parallel
composition:

a.(F|aF)~aF]|aF
more generally, a.(F|(a.F)") ~ (a.F)"!



Bisimilarity in 4 CCS

» bisimilarity is a congruence;

» (],0) is an abelian monoid:
E|I0O~E E|F~F|E E|(F|IG)~(E|F)|G

» a distribution law relates prefixed processes and parallel
composition:

a.(F|aF)~aF]|aF
more generally, a.(F|(a.F)") ~ (a.F)"!

Theorem: the above laws axiomatise bisimilarity in ;1 CCS.



Bisimilarity in 4 CCS

» bisimilarity is a congruence;

» (],0) is an abelian monoid:
E|I0O~E E|F~F|E E|(F|IG)~(E|F)|G

» a distribution law relates prefixed processes and parallel
composition:

a.(F|aF)~aF]|aF
more generally, a.(F|(a.F)") ~ (a.F)"!

Theorem: the above laws axiomatise bisimilarity in ;1 CCS.
Corollary: bisimilarity is substitution closed in 1 CCS.



Overview of the proof

1. Use the distribution law to normalise processes:
a.(F|(a.F)") — (a.F)"Jr1

(so that normal forms express the maximal degree of parallelism.)

2. Show that bisimilarity coincides with structural congruence on
normal forms



Overview of the proof

1. Use the distribution law to normalise processes:
a.(F|(a.F)") — (a.F)"Jr1

(so that normal forms express the maximal degree of parallelism.)

2. Show that bisimilarity coincides with structural congruence on
normal forms

Two key lemmas:
» [Milner&Moller 1993] Any process admits a unique
decomposition into prime factors
(a process is prime if it cannot be decomposed as a parallel composition)
» IfaF~E|E (with Ey, E» 2 0)
then a.F ~ (a.F’)k (with k > 1 and F’ in normal form)



Outline

finite 7



Adding name restriction

» The previous strategy fails when adding name restriction:
we found no axiomatisation
(remember that the calculus lacks sum).

» We can however exploit the previous results.



Proving substitution closure in 7

» Show that {(Eo, Fo) | E ~ F} is a bisimulation:
» if Ec < E’, can Fo answer?

» easy except when oo =T, Ny~ 2 with a(a) = o(b):



Proving substitution closure in 7
» Show that {(Eo, Fo) | E ~ F} is a bisimulation:

» if Ec < E’, can Fo answer?

» easy except when oo =T, Ny~ 2 with a(a) = o(b):



Proving substitution closure in 7
» Show that {(Eo, Fo) | E ~ F} is a bisimulation:

» if Ec < E’, can Fo answer?

» easy except when oo =T, Ny~ 2 with a(a) = o(b):



Proving substitution closure in 7
» Show that {(Eo, Fo) | E ~ F} is a bisimulation:

» if Ec < E’, can Fo answer?

» easy except when oo =T, Ny~ 2 with a(a) = o(b):



Proving substitution closure in 7
» Show that {(Eo, Fo) | E ~ F} is a bisimulation:

» if Ec < E’, can Fo answer?

» easy except when oo =T, Ny~ 2 with a(a) = o(b):

a(c) K a(c) Y\ :
|
T |
b a(c ‘
k /(:) "Cl l @y
El EO RIS 1 F2 ?

» the remaining case is when both answers use sequential
prefixes; call this a mutual desynchronisation.



Using £ CCS to finish the proof



Using £ CCS to finish the proof

F
a(c) bc
T
bc a(c)
F1 ~ F>

» Port this mutual desynchronisation to 4 CCS by using an
erasing function;



Using £ CCS to finish the proof

F a and b are fixed
a(c) bc :
a(E) ifc=a
.E) =
(cba)-£) {0 otherwise
™
_ b.(E) ifc=0b
b a(c d.E) =
be (©) {ed-E) {0 otherwise
F1 ~ F2 ((vc)E) = (E) (c # a,b)

» Port this mutual desynchronisation to 4 CCS by using an
erasing function;
{(ve)(a(x).(bx | xc.ac) | be.a(y).yc)) = a.b | b.a



Using £ CCS to finish the proof

F a and b are fixed
a(c) bc :
a(E) ifc=a
.E) =
(cba)-£) {0 otherwise
™
_ b.(E) ifc=0b
b a(c d.E) =
be (©) {ed-E) {0 otherwise
o~ R (vQ)E)=(E)  (c#ab)

» Port this mutual desynchronisation to 4 CCS by using an
erasing function;
{(ve)(a(x).(bx | xc.ac) | be.a(y).yc)) = a.b | b.a

» Proposition: E ~ F in 7 implies (E) ~ (F) in nCCS.



Using £ CCS to finish the proof

<F> a and b are fixed
a b .
_Jal(E) ifc=a
11CCS (c(x)-E) = {0 otherwise
b ’ (cd.£) = {b'<E> Icftlfe?w[i)se
(F2) ~ (F2) ((ve)E) = (E) (c # a, b)

» Port this mutual desynchronisation to ;4 CCS by using an
erasing function; B B -
((ve)(a(x).(bx | xc.ac) | be.a(y).yc)) = a.b| b.a

> Proposition: E ~ F inw implies (E) ~ (F) in pCCS.



Using £ CCS to finish the proof

<F> a and b are fixed
a b .
_Jal(E) ifc=a
11CCS (c(x)-E) = {0 otherwise
b ’ (cd-£) = {3<E> :tlfefwli)se
(F2) ~ (F2) ((ve)E) = (E) (c # a, b)

» Port this mutual desynchronisation to ;4 CCS by using an
erasing function;

{(ve)(a(x).(bx | Xc.ac) | be.a(y).yc)) = a.b| b.a
> Proposition: E ~ F inw implies (E) ~ (F) in pCCS.

> The axiomatisation of ~ on uCCS tells us that a mutual
desynchronisation cannot happen in pCCS.



Corollary:

On finite ™ without sum,
ground, early, late and open bisimilarity
coincide and are congruences.



Outline

Top-level replications



mCCS

» mCCS is 4CCS with top-level replications:

E,F:=0|F|F|aF
P,Qu=F|P|P|laF (with 1a.F 2 1a.F | F)

» What does bisimilarity look like? Is it substitution closed?



Bisimilarity in mCCS

» Same laws as in uCCS (abelian monoid, distribution law);

» Standard laws for replication:
la.F | la.F ~ la.F la.F | a.F ~ la.F
» Other phenomena:

la|b.a~la|b la.a ~ la



Bisimilarity in mCCS

v

Same laws as in uCCS (abelian monoid, distribution law);

v

Standard laws for replication:

la.F | la.F ~ la.F la.F | a.F ~ la.F

v

Other phenomena:

la|b.a~la|b la.a ~ la

v

Note: there are mutual desynchronisations

la.b|!b.a

la.b| !b.a ~ la.b | !b.a



Erasing subterms
» la.F | a.F ~ la.F generalises to la.F | C[a.F] ~la.F | C[0]:
A As A A

— in particular, la|!b.a|c.a~la|lb|c.



Erasing subterms
» la.F | a.F ~ la.F generalises to !a.F | C[a.F] ~ !a.F | C[0]:
A As A A
— in particular, la|!b.a|c.a~la|lb|c.

» la.a ~ la generalises to !a.C[a.C[0]] ~ !a.C][O]:

A A

— in particular, la.(b.a.(b]| c) | ¢) ~la.(b| ¢).



Erasing subterms
» la.F | a.F ~ la.F generalises to la.F | C[a.F] ~la.F | C[0]:
A As A A
— in particular, la|!b.a|c.a~la|lb|c.

» la.a ~ la generalises to !a.C[a.C[0]] ~ !a.C][O]:

A A
— in particular, la.(b.a.(b | ¢) | ¢) ~la.(b] ¢).

» Simultaneous, mutual erasing: la.b | !b.a~la|!b

SRV



Axiom schemes?

> ]_[,-Sn!a,-.C,-[Co[O], RN Cn[O]] ~ Hign!ai'Ci[O’ .. ,0]
» la.C[a.C[...a.C[0]...]] ~ !a.C[O]

» + combinations of these laws

— hard to reason about, not really informative.



Axiom schemes?

v

]_[,-Sn!a,-.C,-[Co[O], ey Cn[O]] ~ Hign!ai'Ci[O’ .. ,0]
la.Cla.C[...a.C[0]...]] ~ 'a.C[O]

» + combinations of these laws

v

— hard to reason about, not really informative.

Lemma: the following inference rule is sound

Cl0] ~a.F | P
C[0] ~ Cla.F]

— not an equational rule.



Another approach

» A seed for a process P is a process of minimal size which is
bisimilar to P.

la.a, la|la ~ la
la.b|!b.a, la|lb.a ~ la|lb
la|lb.c|d.b.c.ca ~ la|lb.c|d

> any process has a seed;
» seeds do not contain redundant subterms:

Ay A2



Another approach

» A seed for a process P is a process of minimal size which is
bisimilar to P.

la.a, la|la ~ la
la.b|!b.a, la|lb.a ~ la|lb
la|lb.c|d.b.c.ca ~ la|lb.c|d

> any process has a seed;
» seeds do not contain redundant subterms:

Ay A2

» Uniqueness: if P~ Q and P, Q are seeds, then P = Q.

(difficult, technical proof)



A rewriting system

» Guess the seed of a process, and use it to clean the process:

(modulo structural congruence and distribution law)

s s s
P=— P =P = ..



A rewriting system

» Guess the seed of a process, and use it to clean the process:

(modulo structural congruence and distribution law)

CloFl 22 clop taF|taF| P& 1aF|P



A rewriting system

» Guess the seed of a process, and use it to clean the process:

(modulo structural congruence and distribution law)

CloFl 22 clop taF|taF| P& 1aF|P

» Examples:

lab | b ba M abiibb 2 wabe P 1ap
la.(b|a.b) 2B la.b

lab|tha I abpe AP s



A rewriting system

» Guess the seed of a process, and use it to clean the process:

(modulo structural congruence and distribution law)

CloFl 22 clop taF|taF| P& 1aF|P

» Examples:

lab | b ba M abiibb 2 wabe P 1ap
la.(b|a.b) 2B la.b

lab|tha I abpe AP s

la[1b laltb
— —

la|la.b la|la



A rewriting system, cont.

» Correctness: if P 2 S, then P~ S. (easy)

» Completeness: P seed(P), seed(P). (technical)



A rewriting system, cont.

» Correctness: if P 2 S, then P~ S. (easy)
» Completeness: P seed(P), seed(P). (technical)

» Consequences:

> PNQiffPi*Sand Qi*SforsomeS;
» ~ is decidable [Christensen, Hirshfeld & Moller 1994].
» ~ is substitution closed, and hence, a congruence (in 7);



Conclusions

» Bisimilarity is a congruence in:
» finite 7 [FoSSaCS 2007];
» public 7 with top-level replications [ICALP 2010].

» Methodology:
characterise bisimilarity in sum-free fragments of CCS/m

» equational axiomatisations
> rewriting systems
» transfer property
» seeds (minimal processes)



Future work

» Richer fragments with replication
> ‘“deep” replications
» “nested” replications
» name restriction but prefixed replication

» Weak bisimilarity?

I2.alab ~ laalalb

13| la.b =~ !3|la|!b

a.(F|!a.F)~laF
la.lb~ a.(la| !b)

1%



Future work

» Richer fragments with replication
> ‘“deep” replications
» “nested” replications
» name restriction but prefixed replication

» Weak bisimilarity?

I2.alab ~ laalalb

13| la.b =~ !3|la|!b

a.(F|!a.F)~laF
la.lb~ a.(la| !b)

1%



	micro CCS
	finite pi
	Top-level replications

