On substitution closure and congruence in π and axiomatisations of bisimilarity in absence of sum

Daniel Hirschkoff, ENS de Lyon Damien Pous, CNRS, Grenoble

Dublin, 15.o4.2o11

Open question

In which fragments of π is bisimilarity (\sim) a congruence?

- \blacktriangleright π is a process calculus $(P := \mathbf{0} \mid P \mid P \mid \alpha.P \mid (\nu a)P \mid \ldots);$
- equipped with a labelled transition semantics $P \xrightarrow{\alpha} P'$;
- yielding (labelled) bisimilarity:

- congruence property: does I
- does $P \sim Q$ entail $C[P] \sim C[Q]$?
- substitution closure:
- does $P \sim Q$ entail $P\sigma \sim Q\sigma$?

Some known answers

▶ With sum, substitution closure and congruence fail:

Some known answers

With sum, substitution closure and congruence fail:

▶ In the asynchronous π -calculus, they hold.

Some answers, cont.

▶ In the synchronous case, without sum:

Some answers, cont.

In the synchronous case, without sum: no see [Sangiorgi & Walker 2001], counter-example with replication (!) and name restriction (ν):

Some answers, cont.

In the synchronous case, without sum: no see [Sangiorgi & Walker 2001], counter-example with replication (!) and name restriction (ν):

Our work: removing either replication or name restriction.

Outline of the presentation:

- 1. μ CCS: neither replication nor name restriction [FoSSaCS 2007]
- 2. finite π : no replication [FoSSaCS 2007]
- 3. top-level replications (without name restriction) [ICALP 2010]

$\mu \mathsf{CCS}$

Consider the following tiny fragment of CCS:

$$E, F ::= \mathbf{0} \mid F \mid F \mid a.F$$

- no sum,
- no name restriction or relabelling,
- no replication or recursion,
- no synchronisation.

What does bisimilarity look like? Is it substitution closed?

Bisimilarity in μ CCS

- bisimilarity is a congruence;
- \triangleright (|, **0**) is an abelian monoid:

$$E \mid \mathbf{0} \sim E$$
 $E \mid F \sim F \mid E$ $E \mid (F \mid G) \sim (E \mid F) \mid G$

a distribution law relates prefixed processes and parallel composition:

$$a.(F \mid a.F) \sim a.F \mid a.F$$

Bisimilarity in μCCS

- bisimilarity is a congruence;
- \triangleright ($|, \mathbf{0}$) is an abelian monoid:

$$E \mid \mathbf{0} \sim E$$
 $E \mid F \sim F \mid E$ $E \mid (F \mid G) \sim (E \mid F) \mid G$

a distribution law relates prefixed processes and parallel composition:

$$a.(F\mid a.F)\sim a.F\mid a.F$$
 more generally,
$$a.(F\mid (a.F)^n)\sim (a.F)^{n+1}$$

Bisimilarity in μCCS

- bisimilarity is a congruence;
- \triangleright (|, **0**) is an abelian monoid:

$$E \mid \mathbf{0} \sim E$$
 $E \mid F \sim F \mid E$ $E \mid (F \mid G) \sim (E \mid F) \mid G$

a distribution law relates prefixed processes and parallel composition:

$$a.(F\mid a.F)\sim a.F\mid a.F$$
 more generally,
$$a.(F\mid (a.F)^n)\sim (a.F)^{n+1}$$

Theorem: the above laws axiomatise bisimilarity in μ CCS.

Bisimilarity in μ CCS

- bisimilarity is a congruence;
- (|, 0) is an abelian monoid:

$$E \mid \mathbf{0} \sim E$$
 $E \mid F \sim F \mid E$ $E \mid (F \mid G) \sim (E \mid F) \mid G$

a distribution law relates prefixed processes and parallel composition:

$$a.(F\mid a.F)\sim a.F\mid a.F$$
 more generally,
$$a.(F\mid (a.F)^n)\sim (a.F)^{n+1}$$

Theorem: the above laws axiomatise bisimilarity in μ CCS. Corollary: bisimilarity is substitution closed in μ CCS.

Overview of the proof

1. Use the distribution law to normalise processes:

$$a.(F \mid (a.F)^n) \to (a.F)^{n+1}$$

(so that normal forms express the maximal degree of parallelism.)

2. Show that bisimilarity coincides with structural congruence on normal forms

Overview of the proof

1. Use the distribution law to normalise processes:

$$a.(F \mid (a.F)^n) \rightarrow (a.F)^{n+1}$$

(so that normal forms express the maximal degree of parallelism.)

2. Show that bisimilarity coincides with structural congruence on normal forms

Two key lemmas:

► [Milner&Moller 1993] Any process admits a unique decomposition into prime factors

(a process is prime if it cannot be decomposed as a parallel composition)

▶ If $a.F \sim E_1 \mid E_2$ (with $E_1, E_2 \not\sim \mathbf{0}$) then $a.F \sim (a.F')^k$ (with k > 1 and F' in normal form)

Outline

 μ CCS

 $\text{finite } \pi$

Top-level replications

Adding name restriction

► The previous strategy fails when adding name restriction: we found no axiomatisation (remember that the calculus lacks sum).

We can however exploit the previous results.

- ▶ Show that $\{(E\sigma, F\sigma) \mid E \sim F\}$ is a bisimulation:
 - if $E\sigma \xrightarrow{\alpha} E'$, can $F\sigma$ answer?
 - easy except when $\alpha = \tau$, $\stackrel{a(c)}{\longleftarrow} E \stackrel{\overline{bc}}{\longrightarrow}$, with $\sigma(a) = \sigma(b)$:

- ▶ Show that $\{(E\sigma, F\sigma) \mid E \sim F\}$ is a bisimulation:
 - if $E\sigma \xrightarrow{\alpha} E'$, can $F\sigma$ answer?
 - ▶ easy except when $\alpha = \tau$, $\stackrel{a(c)}{\longleftrightarrow}$ $E \xrightarrow{\overline{bc}}$, with $\sigma(a) = \sigma(b)$:

- ▶ Show that $\{(E\sigma, F\sigma) \mid E \sim F\}$ is a bisimulation:
 - if $E\sigma \xrightarrow{\alpha} E'$, can $F\sigma$ answer?
 - easy except when $\alpha = \tau$, $\stackrel{a(c)}{\longleftarrow} E \stackrel{\overline{bc}}{\longrightarrow}$, with $\sigma(a) = \sigma(b)$:

- ▶ Show that $\{(E\sigma, F\sigma) \mid E \sim F\}$ is a bisimulation:
 - if $E\sigma \xrightarrow{\alpha} E'$, can $F\sigma$ answer?
 - ▶ easy except when $\alpha = \tau$, $\stackrel{a(c)}{\longleftrightarrow}$ $E \xrightarrow{\overline{bc}}$, with $\sigma(a) = \sigma(b)$:

- ▶ Show that $\{(E\sigma, F\sigma) \mid E \sim F\}$ is a bisimulation:
 - if $E\sigma \xrightarrow{\alpha} E'$, can $F\sigma$ answer?
 - easy except when $\alpha = \tau$, $\stackrel{a(c)}{\longleftarrow} E \stackrel{\overline{bc}}{\longrightarrow}$, with $\sigma(a) = \sigma(b)$:

▶ the remaining case is when both answers use sequential prefixes; call this a mutual desynchronisation.

Using μCCS to finish the proof

▶ Port this mutual desynchronisation to μ CCS by using an erasing function;

▶ Port this mutual desynchronisation to μ CCS by using an erasing function;

$$\langle (\nu c)(\underline{a}(x).(\overline{b}x \mid \overline{x}c.\overline{a}c) \mid \overline{b}c.\underline{a}(y).\overline{y}c) \rangle = \underline{a}.\overline{b} \mid \overline{b}.\underline{a}$$

▶ Port this mutual desynchronisation to μ CCS by using an erasing function;

$$\langle (\nu c)(\underline{a}(x).(\overline{b}x \mid \overline{x}c.\overline{a}c) \mid \overline{b}c.\underline{a}(y).\overline{y}c) \rangle = \underline{a}.\overline{b} \mid \overline{b}.\underline{a}$$

▶ Proposition: $E \sim F$ in π implies $\langle E \rangle \sim \langle F \rangle$ in μ CCS.

a and b are fixed

$$\langle c(x).E \rangle = \begin{cases} a.\langle E \rangle & \text{if } c = a \\ \mathbf{0} & \text{otherwise} \end{cases}$$
$$\langle \overline{c}d.E \rangle = \begin{cases} \overline{b}.\langle E \rangle & \text{if } c = b \\ \mathbf{0} & \text{otherwise} \end{cases}$$
$$\langle (\nu c)E \rangle = \langle E \rangle & (c \neq a, b)$$

▶ Port this mutual desynchronisation to μ CCS by using an erasing function;

$$\langle (\nu c)(\underline{a}(x).(\overline{b}x \mid \overline{x}c.\overline{a}c) \mid \overline{b}c.\underline{a}(y).\overline{y}c) \rangle = \underline{a}.\overline{b} \mid \overline{b}.\underline{a}$$

▶ Proposition: $E \sim F$ in π implies $\langle E \rangle \sim \langle F \rangle$ in μ CCS.

a and b are fixed

$$\langle c(x).E \rangle = \begin{cases} a.\langle E \rangle & \text{if } c = a \\ \mathbf{0} & \text{otherwise} \end{cases}$$
$$\langle \overline{c}d.E \rangle = \begin{cases} \overline{b}.\langle E \rangle & \text{if } c = b \\ \mathbf{0} & \text{otherwise} \end{cases}$$
$$\langle (\nu c)E \rangle = \langle E \rangle & (c \neq a, b)$$

▶ Port this mutual desynchronisation to μ CCS by using an erasing function;

$$\langle (\nu c)(\underline{a}(x).(\overline{b}x \mid \overline{x}c.\overline{a}c) \mid \overline{b}c.\underline{a}(y).\overline{y}c) \rangle = \underline{a}.\overline{b} \mid \overline{b}.\underline{a}$$

- ▶ Proposition: $E \sim F$ in π implies $\langle E \rangle \sim \langle F \rangle$ in μ CCS.
- ▶ The axiomatisation of \sim on μ CCS tells us that a mutual desynchronisation cannot happen in μ CCS.

Corollary:

On finite π without sum, ground, early, late and open bisimilarity coincide and are congruences.

Outline

 $\mu \mathsf{CCS}$

finite τ

Top-level replications

mCCS

▶ mCCS is μ CCS with top-level replications:

$$E, F ::= \mathbf{0} \mid F \mid F \mid a.F$$

$$P, Q ::= F \mid P \mid P \mid !a.F \qquad \text{(with } !a.F \xrightarrow{a} !a.F \mid F\text{)}$$

▶ What does bisimilarity look like? Is it substitution closed?

Bisimilarity in mCCS

- ▶ Same laws as in μ CCS (abelian monoid, distribution law);
- Standard laws for replication:

$$|a.F| |a.F| \sim |a.F|$$
 $|a.F| \sim |a.F|$

$$!a.F \mid a.F \sim !a.t$$

Other phenomena:

$$|a| b.a \sim |a| b$$

$$!a.a \sim !a$$

Bisimilarity in mCCS

- ▶ Same laws as in μ CCS (abelian monoid, distribution law);
- Standard laws for replication:

$$|a.F| |a.F| \sim |a.F|$$
 $|a.F| \sim |a.F|$

$$!a.F \mid a.F \sim !a.F$$

Other phenomena:

$$|a| b.a \sim |a| b$$

 $|a.a| \sim |a|$

▶ Note: there are mutual desynchronisations

Erasing subterms

▶ $!a.F \mid a.F \sim !a.F$ generalises to $!a.F \mid C[a.F] \sim !a.F \mid C[\mathbf{0}]$:

 \rightarrow in particular, $|a| |b.a| c.a \sim |a| |b| c.$

Erasing subterms

▶ $!a.F \mid a.F \sim !a.F$ generalises to $!a.F \mid C[a.F] \sim !a.F \mid C[\mathbf{0}]$:

 \rightarrow in particular, $|a| |b.a| c.a \sim |a| |b| c.$

▶ $!a.a \sim !a$ generalises to $!a.C[a.C[0]] \sim !a.C[0]$:

 \rightarrow in particular, $!a.(b.a.(b \mid c) \mid c) \sim !a.(b \mid c)$.

Erasing subterms

▶ $!a.F \mid a.F \sim !a.F$ generalises to $!a.F \mid C[a.F] \sim !a.F \mid C[\mathbf{0}]$:

 \rightarrow in particular, $|a| |b.a| c.a \sim |a| |b| c.$

▶ $!a.a \sim !a$ generalises to $!a.C[a.C[\mathbf{0}]] \sim !a.C[\mathbf{0}]$:

 \rightarrow in particular, $!a.(b.a.(b \mid c) \mid c) \sim !a.(b \mid c)$.

▶ Simultaneous, mutual erasing: $|a.b| |b.a \sim |a| |b$

Axiom schemes?

- $!a.C[a.C[...a.C[\mathbf{0}]...]] \sim !a.C[\mathbf{0}]$
- + combinations of these laws

 \rightarrow hard to reason about, not really informative.

Axiom schemes?

- $ightharpoonup \prod_{i < n} [a_i.C_i[C_0[0], \ldots, C_n[0]] \sim \prod_{i < n} [a_i.C_i[0, \ldots, 0]]$
- $!a.C[a.C[...a.C[0]...]] \sim !a.C[0]$
- + combinations of these laws

ightarrow hard to reason about, not really informative.

Lemma: the following inference rule is sound

$$\frac{C[\mathbf{0}] \sim !a.F \mid P}{C[\mathbf{0}] \sim C[a.F]}$$

 \rightarrow not an equational rule.

Another approach

▶ A seed for a process *P* is a process of minimal size which is bisimilar to *P*.

- any process has a seed;
- seeds do not contain redundant subterms:

Another approach

▶ A seed for a process *P* is a process of minimal size which is bisimilar to *P*.

$$|a.a| \cdot |a| \cdot |a| \longrightarrow |a|$$

 $|a.b| \cdot |b.a| \cdot |a| \cdot |b.a| \longrightarrow |a| \cdot |b|$
 $|a| \cdot |b.c| \cdot |a| \cdot |b.c| \cdot |a|$

- any process has a seed;
- seeds do not contain redundant subterms:

lackbox Uniqueness: if $P\sim Q$ and P,Q are seeds, then $P\equiv Q.$ (difficult, technical proof)

Guess the seed of a process, and use it to clean the process: (modulo structural congruence and distribution law)

$$P \xrightarrow{S} P' \xrightarrow{S} P'' \xrightarrow{S} \dots$$

► Guess the seed of a process, and use it to clean the process: (modulo structural congruence and distribution law)

$$C[\underline{a.F}] \xrightarrow{!a.F|P} C[\mathbf{0}] \qquad !a.F \mid !a.F \mid P \xrightarrow{Q} !a.F \mid P$$

Guess the seed of a process, and use it to clean the process: (modulo structural congruence and distribution law)

$$C[a.F] \xrightarrow{!a.F|P} C[\mathbf{0}] \qquad !a.F \mid !a.F \mid P \xrightarrow{Q} !a.F \mid P$$

Examples:

Guess the seed of a process, and use it to clean the process: (modulo structural congruence and distribution law)

$$C[a.F] \xrightarrow{!a.F|P} C[\mathbf{0}] \qquad !a.F \mid !a.F \mid P \xrightarrow{Q} !a.F \mid P$$

► Examples:

A rewriting system, cont.

- ► Correctness: if $P \xrightarrow{S} {}^{\star} S$, then $P \sim S$.
- ► Completeness: $P \xrightarrow{\text{seed}(P)} * \text{seed}(P)$. (technical)

(easy)

A rewriting system, cont.

- ► Correctness: if $P \xrightarrow{S} {}^{\star} S$, then $P \sim S$. (easy)
- ► Completeness: $P \xrightarrow{\text{seed}(P)} * \text{seed}(P)$. (technical)
- ► Consequences:
 - ▶ $P \sim Q$ iff $P \xrightarrow{S} {}^* S$ and $Q \xrightarrow{S} {}^* S$ for some S;
 - ightharpoonup \sim is decidable [Christensen, Hirshfeld & Moller 1994].
 - ightharpoonup \sim is substitution closed, and hence, a congruence (in π);

Conclusions

- Bisimilarity is a congruence in:
 - finite π [FoSSaCS 2007];
 - public π with top-level replications [ICALP 2010].
- ► Methodology:

characterise bisimilarity in sum-free fragments of ${\rm CCS}/\pi$

- equational axiomatisations
- rewriting systems
- transfer property
- seeds (minimal processes)

Future work

- Richer fragments with replication
 - ▶ "deep" replications
 - "nested" replications
 - name restriction but prefixed replication

$$a.(F \mid !a.F) \sim !a.F$$

 $!a.!b \sim a.(!a \mid !b)$
 $!(\nu a)$

Weak bisimilarity?

$$|\overline{a}.a| a.b \approx |\overline{a}.a| a| b$$

 $|\overline{a}| |a.b \approx |\overline{a}| |a| |b$

Future work

- Richer fragments with replication
 - ▶ "deep" replications
 - "nested" replications
 - name restriction but prefixed replication

$$a.(F \mid !a.F) \sim !a.F$$

 $!a.!b \sim a.(!a \mid !b)$

Weak bisimilarity?

$$|\overline{a}.a| a.b \approx |\overline{a}.a| a|b$$

 $|\overline{a}| |a.b \approx |\overline{a}| |a| |b$