
On substitution closure and congruence in π
and axiomatisations of bisimilarity in absence of sum

Daniel Hirschkoff, ENS de Lyon
Damien Pous, CNRS, Grenoble

Dublin, 15.o4.2o11

Open question

In which fragments of π is bisimilarity (∼) a congruence?

I π is a process calculus (P ::= 0
∣∣ P | P

∣∣ α.P ∣∣ (νa)P
∣∣ . . .);

I equipped with a labelled transition semantics P
α−→ P ′;

I yielding (labelled) bisimilarity:

P

α
��

∼ Q

α
��

P ′ ∼ Q ′

I congruence property: does P ∼ Q entail C [P] ∼ C [Q] ?

I substitution closure: does P ∼ Q entail Pσ ∼ Qσ ?

Some known answers

I With sum, substitution closure and congruence fail:

a | b ∼ a.b + b.a

but c(a). (a | b)

c(b)
��

6∼ c(a). (a.b + b.a)

c(b)
��

(a | b)

τ

��

{b/a} 6∼ (a.b + b.a)

τ

��
#

{b/a}

I In the asynchronous π-calculus, they hold.

Some known answers

I With sum, substitution closure and congruence fail:

a | b ∼ a.b + b.a

but c(a). (a | b)

c(b)
��

6∼ c(a). (a.b + b.a)

c(b)
��

(a | b)

τ

��

{b/a} 6∼ (a.b + b.a)

τ

��
#

{b/a}

I In the asynchronous π-calculus, they hold.

Some answers, cont.

I In the synchronous case, without sum:

no
see [Sangiorgi & Walker 2001],

counter-example with replication (!) and name restriction (ν):

!a.b.τ.t | !b.a.τ.t ∼ !(νz) (a.z .t | b.z)

but !a.a.τ.t | !a.a.τ.t 6∼ !(νz) (a.z .t | a.z)

I Our work: removing either replication or name restriction.

Outline of the presentation:

1. µCCS: neither replication nor name restriction [FoSSaCS 2007]
2. finite π: no replication [FoSSaCS 2007]
3. top-level replications (without name restriction) [ICALP 2010]

Some answers, cont.

I In the synchronous case, without sum: no
see [Sangiorgi & Walker 2001],

counter-example with replication (!) and name restriction (ν):

!a.b.τ.t | !b.a.τ.t ∼ !(νz) (a.z .t | b.z)

but !a.a.τ.t | !a.a.τ.t 6∼ !(νz) (a.z .t | a.z)

I Our work: removing either replication or name restriction.

Outline of the presentation:

1. µCCS: neither replication nor name restriction [FoSSaCS 2007]
2. finite π: no replication [FoSSaCS 2007]
3. top-level replications (without name restriction) [ICALP 2010]

Some answers, cont.

I In the synchronous case, without sum: no
see [Sangiorgi & Walker 2001],

counter-example with replication (!) and name restriction (ν):

!a.b.τ.t | !b.a.τ.t ∼ !(νz) (a.z .t | b.z)

but !a.a.τ.t | !a.a.τ.t 6∼ !(νz) (a.z .t | a.z)

I Our work: removing either replication or name restriction.

Outline of the presentation:

1. µCCS: neither replication nor name restriction [FoSSaCS 2007]
2. finite π: no replication [FoSSaCS 2007]
3. top-level replications (without name restriction) [ICALP 2010]

µCCS

Consider the following tiny fragment of CCS:

E ,F ::= 0
∣∣ F | F

∣∣ a.F

I no sum,

I no name restriction or relabelling,

I no replication or recursion,

I no synchronisation.

What does bisimilarity look like? Is it substitution closed?

Bisimilarity in µCCS

I bisimilarity is a congruence;

I (|, 0) is an abelian monoid:

E | 0 ∼ E E | F ∼ F | E E | (F | G) ∼ (E | F) | G

I a distribution law relates prefixed processes and parallel
composition:

a.(F | a.F) ∼ a.F | a.F

more generally, a.(F | (a.F)n) ∼ (a.F)n+1

Theorem: the above laws axiomatise bisimilarity in µCCS.
Corollary: bisimilarity is substitution closed in µCCS.

Bisimilarity in µCCS

I bisimilarity is a congruence;

I (|, 0) is an abelian monoid:

E | 0 ∼ E E | F ∼ F | E E | (F | G) ∼ (E | F) | G

I a distribution law relates prefixed processes and parallel
composition:

a.(F | a.F) ∼ a.F | a.F

more generally, a.(F | (a.F)n) ∼ (a.F)n+1

Theorem: the above laws axiomatise bisimilarity in µCCS.
Corollary: bisimilarity is substitution closed in µCCS.

Bisimilarity in µCCS

I bisimilarity is a congruence;

I (|, 0) is an abelian monoid:

E | 0 ∼ E E | F ∼ F | E E | (F | G) ∼ (E | F) | G

I a distribution law relates prefixed processes and parallel
composition:

a.(F | a.F) ∼ a.F | a.F

more generally, a.(F | (a.F)n) ∼ (a.F)n+1

Theorem: the above laws axiomatise bisimilarity in µCCS.

Corollary: bisimilarity is substitution closed in µCCS.

Bisimilarity in µCCS

I bisimilarity is a congruence;

I (|, 0) is an abelian monoid:

E | 0 ∼ E E | F ∼ F | E E | (F | G) ∼ (E | F) | G

I a distribution law relates prefixed processes and parallel
composition:

a.(F | a.F) ∼ a.F | a.F

more generally, a.(F | (a.F)n) ∼ (a.F)n+1

Theorem: the above laws axiomatise bisimilarity in µCCS.
Corollary: bisimilarity is substitution closed in µCCS.

Overview of the proof

1. Use the distribution law to normalise processes:

a.(F | (a.F)n)→ (a.F)n+1

(so that normal forms express the maximal degree of parallelism.)

2. Show that bisimilarity coincides with structural congruence on
normal forms

Two key lemmas:

I [Milner&Moller 1993] Any process admits a unique
decomposition into prime factors

(a process is prime if it cannot be decomposed as a parallel composition)

I If a.F ∼ E1 | E2 (with E1,E2 6∼ 0)

then a.F ∼ (a.F ′)k (with k > 1 and F ′ in normal form)

Overview of the proof

1. Use the distribution law to normalise processes:

a.(F | (a.F)n)→ (a.F)n+1

(so that normal forms express the maximal degree of parallelism.)

2. Show that bisimilarity coincides with structural congruence on
normal forms

Two key lemmas:

I [Milner&Moller 1993] Any process admits a unique
decomposition into prime factors

(a process is prime if it cannot be decomposed as a parallel composition)

I If a.F ∼ E1 | E2 (with E1,E2 6∼ 0)

then a.F ∼ (a.F ′)k (with k > 1 and F ′ in normal form)

Outline

µCCS

finite π

Top-level replications

Adding name restriction

I The previous strategy fails when adding name restriction:
we found no axiomatisation

(remember that the calculus lacks sum).

I We can however exploit the previous results.

Proving substitution closure in π

I Show that {(Eσ,Fσ) | E ∼ F} is a bisimulation:

I if Eσ
α−→ E ′, can Fσ answer?

I easy except when α = τ ,
a(c)←−− E

bc−→, with σ(a) = σ(b):

Eσ

τ

��

E
bc

a(c)

~~

F
bc

!!

a(c)

}}

Fσ

τ

��
bc �� a(c)��

bc
��

a(c)
��

E ′ E0 F1 F2

I the remaining case is when both answers use sequential
prefixes; call this a mutual desynchronisation.

Proving substitution closure in π

I Show that {(Eσ,Fσ) | E ∼ F} is a bisimulation:

I if Eσ
α−→ E ′, can Fσ answer?

I easy except when α = τ ,
a(c)←−− E

bc−→, with σ(a) = σ(b):

Eσ

τ

��

E
bc

a(c)

~~

F
bc

!!

a(c)

}}

Fσ

τ

��bc �� a(c)��
bc
��

a(c)
��

E ′ E0 F1 F2 ?

I the remaining case is when both answers use sequential
prefixes; call this a mutual desynchronisation.

Proving substitution closure in π

I Show that {(Eσ,Fσ) | E ∼ F} is a bisimulation:

I if Eσ
α−→ E ′, can Fσ answer?

I easy except when α = τ ,
a(c)←−− E

bc−→, with σ(a) = σ(b):

Eσ

τ

��

E
bc

a(c)

~~

F

a|b?

��

bc

!!

a(c)

}}

Fσ

τ

��bc �� a(c)��
bc
��

a(c)
��

E ′ E0 F1 F2 F1σ

I the remaining case is when both answers use sequential
prefixes; call this a mutual desynchronisation.

Proving substitution closure in π

I Show that {(Eσ,Fσ) | E ∼ F} is a bisimulation:

I if Eσ
α−→ E ′, can Fσ answer?

I easy except when α = τ ,
a(c)←−− E

bc−→, with σ(a) = σ(b):

Eσ

τ

��

E
bc

a(c)

~~

F

a|b?

��

bc

!!

a(c)

}}

Fσ

τ

��bc �� a(c)��
bc
��

a(c)
��

E ′ E0 F1 F2 F2σ

I the remaining case is when both answers use sequential
prefixes; call this a mutual desynchronisation.

Proving substitution closure in π

I Show that {(Eσ,Fσ) | E ∼ F} is a bisimulation:

I if Eσ
α−→ E ′, can Fσ answer?

I easy except when α = τ ,
a(c)←−− E

bc−→, with σ(a) = σ(b):

Eσ

τ

��

E
bc

a(c)

~~

F
bc

!!

a(c)

}}

Fσ

τ

��bc �� a(c)��
bc
��

a(c)
��

E ′ E0 F1 F2 ?

I the remaining case is when both answers use sequential
prefixes; call this a mutual desynchronisation.

Using µCCS to finish the proof

F

bc

��

a(c)

��

bc
��

π

a(c)
��

F1 ∼ F2

a and b are fixed

〈c(x).E 〉 =

{
a.〈E 〉 if c = a

0 otherwise

〈cd .E 〉 =

{
b.〈E 〉 if c = b

0 otherwise

〈(νc)E 〉 = 〈E 〉 (c 6= a, b)

I Port this mutual desynchronisation to µCCS by using an
erasing function;

〈(νc)(a(x).(bx | xc.ac) | bc.a(y).yc)〉 = a.b | b.a

I Proposition: E ∼ F in π implies 〈E 〉 ∼ 〈F 〉 in µCCS.

I The axiomatisation of ∼ on µCCS tells us that a mutual
desynchronisation cannot happen in µCCS.

Using µCCS to finish the proof

F

bc

��

a(c)

��

bc
��

π

a(c)
��

F1 ∼ F2

a and b are fixed

〈c(x).E 〉 =

{
a.〈E 〉 if c = a

0 otherwise

〈cd .E 〉 =

{
b.〈E 〉 if c = b

0 otherwise

〈(νc)E 〉 = 〈E 〉 (c 6= a, b)

I Port this mutual desynchronisation to µCCS by using an
erasing function;

〈(νc)(a(x).(bx | xc.ac) | bc.a(y).yc)〉 = a.b | b.a

I Proposition: E ∼ F in π implies 〈E 〉 ∼ 〈F 〉 in µCCS.

I The axiomatisation of ∼ on µCCS tells us that a mutual
desynchronisation cannot happen in µCCS.

Using µCCS to finish the proof

F

bc

��

a(c)

��

bc
��

π

a(c)
��

F1 ∼ F2

a and b are fixed

〈c(x).E 〉 =

{
a.〈E 〉 if c = a

0 otherwise

〈cd .E 〉 =

{
b.〈E 〉 if c = b

0 otherwise

〈(νc)E 〉 = 〈E 〉 (c 6= a, b)

I Port this mutual desynchronisation to µCCS by using an
erasing function;

〈(νc)(a(x).(bx | xc.ac) | bc.a(y).yc)〉 = a.b | b.a

I Proposition: E ∼ F in π implies 〈E 〉 ∼ 〈F 〉 in µCCS.

I The axiomatisation of ∼ on µCCS tells us that a mutual
desynchronisation cannot happen in µCCS.

Using µCCS to finish the proof

F

bc

��

a(c)

��

bc
��

π

a(c)
��

F1 ∼ F2

a and b are fixed

〈c(x).E 〉 =

{
a.〈E 〉 if c = a

0 otherwise

〈cd .E 〉 =

{
b.〈E 〉 if c = b

0 otherwise

〈(νc)E 〉 = 〈E 〉 (c 6= a, b)

I Port this mutual desynchronisation to µCCS by using an
erasing function;

〈(νc)(a(x).(bx | xc.ac) | bc.a(y).yc)〉 = a.b | b.a

I Proposition: E ∼ F in π implies 〈E 〉 ∼ 〈F 〉 in µCCS.

I The axiomatisation of ∼ on µCCS tells us that a mutual
desynchronisation cannot happen in µCCS.

Using µCCS to finish the proof

〈F 〉
b

��

a

��

b
��

µCCS

a

��
〈F2〉 ∼ 〈F2〉

a and b are fixed

〈c(x).E 〉 =

{
a.〈E 〉 if c = a

0 otherwise

〈cd .E 〉 =

{
b.〈E 〉 if c = b

0 otherwise

〈(νc)E 〉 = 〈E 〉 (c 6= a, b)

I Port this mutual desynchronisation to µCCS by using an
erasing function;

〈(νc)(a(x).(bx | xc.ac) | bc.a(y).yc)〉 = a.b | b.a

I Proposition: E ∼ F in π implies 〈E 〉 ∼ 〈F 〉 in µCCS.

I The axiomatisation of ∼ on µCCS tells us that a mutual
desynchronisation cannot happen in µCCS.

Using µCCS to finish the proof

〈F 〉
b

��

a

��

b
��

µCCS

a

��
〈F2〉 ∼ 〈F2〉

a and b are fixed

〈c(x).E 〉 =

{
a.〈E 〉 if c = a

0 otherwise

〈cd .E 〉 =

{
b.〈E 〉 if c = b

0 otherwise

〈(νc)E 〉 = 〈E 〉 (c 6= a, b)

I Port this mutual desynchronisation to µCCS by using an
erasing function;

〈(νc)(a(x).(bx | xc.ac) | bc.a(y).yc)〉 = a.b | b.a

I Proposition: E ∼ F in π implies 〈E 〉 ∼ 〈F 〉 in µCCS.

I The axiomatisation of ∼ on µCCS tells us that a mutual
desynchronisation cannot happen in µCCS.

Corollary:

On finite π without sum,
ground, early, late and open bisimilarity

coincide and are congruences.

Outline

µCCS

finite π

Top-level replications

mCCS

I mCCS is µCCS with top-level replications:

E ,F ::= 0
∣∣ F | F

∣∣ a.F

P,Q ::= F
∣∣ P | P

∣∣ !a.F (with !a.F
a−→ !a.F | F)

I What does bisimilarity look like? Is it substitution closed?

Bisimilarity in mCCS

I Same laws as in µCCS (abelian monoid, distribution law);

I Standard laws for replication:

!a.F | !a.F ∼ !a.F !a.F | a.F ∼ !a.F

I Other phenomena:

!a | b.a ∼ !a | b !a.a ∼ !a

I Note: there are mutual desynchronisations

!a.b | !b.a
a

ww

b

''

b �� a ��
!a.b | !b.a ∼ !a.b | !b.a

Bisimilarity in mCCS

I Same laws as in µCCS (abelian monoid, distribution law);

I Standard laws for replication:

!a.F | !a.F ∼ !a.F !a.F | a.F ∼ !a.F

I Other phenomena:

!a | b.a ∼ !a | b !a.a ∼ !a

I Note: there are mutual desynchronisations

!a.b | !b.a
a

ww

b

''

b �� a ��
!a.b | !b.a ∼ !a.b | !b.a

Erasing subterms

I !a.F | a.F ∼ !a.F generalises to !a.F | C [a.F] ∼ !a.F | C [0]:
!

∼| |!

→ in particular, !a | !b.a | c .a ∼ !a | !b | c .

I !a.a ∼ !a generalises to !a.C [a.C [0]] ∼ !a.C [0]:
! !

∼

→ in particular, !a.(b.a.(b | c) | c) ∼ !a.(b | c).

I Simultaneous, mutual erasing: !a.b | !b.a ∼ !a | !b

∼|
! !

|
! !

Erasing subterms

I !a.F | a.F ∼ !a.F generalises to !a.F | C [a.F] ∼ !a.F | C [0]:
!

∼| |!

→ in particular, !a | !b.a | c .a ∼ !a | !b | c .

I !a.a ∼ !a generalises to !a.C [a.C [0]] ∼ !a.C [0]:
! !

∼

→ in particular, !a.(b.a.(b | c) | c) ∼ !a.(b | c).

I Simultaneous, mutual erasing: !a.b | !b.a ∼ !a | !b

∼|
! !

|
! !

Erasing subterms

I !a.F | a.F ∼ !a.F generalises to !a.F | C [a.F] ∼ !a.F | C [0]:
!

∼| |!

→ in particular, !a | !b.a | c .a ∼ !a | !b | c .

I !a.a ∼ !a generalises to !a.C [a.C [0]] ∼ !a.C [0]:
! !

∼

→ in particular, !a.(b.a.(b | c) | c) ∼ !a.(b | c).

I Simultaneous, mutual erasing: !a.b | !b.a ∼ !a | !b

∼|
! !

|
! !

Axiom schemes?

I
∏

i≤n!ai .Ci [C0[0], . . . ,Cn[0]] ∼
∏

i≤n!ai .Ci [0, . . . , 0]

I !a.C [a.C [. . . a.C [0] . . .]] ∼ !a.C [0]

I + combinations of these laws

→ hard to reason about, not really informative.

Lemma: the following inference rule is sound

C [0] ∼ !a.F | P

C [0] ∼ C [a.F]

→ not an equational rule.

Axiom schemes?

I
∏

i≤n!ai .Ci [C0[0], . . . ,Cn[0]] ∼
∏

i≤n!ai .Ci [0, . . . , 0]

I !a.C [a.C [. . . a.C [0] . . .]] ∼ !a.C [0]

I + combinations of these laws

→ hard to reason about, not really informative.

Lemma: the following inference rule is sound

C [0] ∼ !a.F | P

C [0] ∼ C [a.F]

→ not an equational rule.

Another approach

I A seed for a process P is a process of minimal size which is
bisimilar to P.

!a.a , !a | !a !a

!a.b | !b.a , !a | !b.a !a | !b

!a | !b.c | d .b.c.a !a | !b.c | d

I any process has a seed;
I seeds do not contain redundant subterms:

|! |
! !!

I Uniqueness: if P ∼ Q and P,Q are seeds, then P ≡ Q.
(difficult, technical proof)

Another approach

I A seed for a process P is a process of minimal size which is
bisimilar to P.

!a.a , !a | !a !a

!a.b | !b.a , !a | !b.a !a | !b

!a | !b.c | d .b.c.a !a | !b.c | d

I any process has a seed;
I seeds do not contain redundant subterms:

|! |
! !!

I Uniqueness: if P ∼ Q and P,Q are seeds, then P ≡ Q.
(difficult, technical proof)

A rewriting system

I Guess the seed of a process, and use it to clean the process:
(modulo structural congruence and distribution law)

P
S−−→ P ′

S−−→ P ′′
S−−→ . . .

C [a.F]
!a.F |P−−−−→ C [0] !a.F | !a.F | P

Q−→ !a.F | P

I Examples:

!a.b | !b | b.a
!a|!b−−−→ !a.b | !b | b

!a|!b−−−→ !a.b | !b
!a|!b−−−→ !a | !b

!a.(b | a.b)
!a.b−−→ !a.b

!a.b | !b.a
!a|!b−−−→ !a.b | !b

!a|!b−−−→ !a | !b

!a | !a.b
!a|!b−−−→ !a | !a

!a|!b−−−→ !a

A rewriting system

I Guess the seed of a process, and use it to clean the process:
(modulo structural congruence and distribution law)

C [a.F]
!a.F |P−−−−→ C [0] !a.F | !a.F | P

Q−→ !a.F | P

I Examples:

!a.b | !b | b.a
!a|!b−−−→ !a.b | !b | b

!a|!b−−−→ !a.b | !b
!a|!b−−−→ !a | !b

!a.(b | a.b)
!a.b−−→ !a.b

!a.b | !b.a
!a|!b−−−→ !a.b | !b

!a|!b−−−→ !a | !b

!a | !a.b
!a|!b−−−→ !a | !a

!a|!b−−−→ !a

A rewriting system

I Guess the seed of a process, and use it to clean the process:
(modulo structural congruence and distribution law)

C [a.F]
!a.F |P−−−−→ C [0] !a.F | !a.F | P

Q−→ !a.F | P

I Examples:

!a.b | !b | b.a
!a|!b−−−→ !a.b | !b | b

!a|!b−−−→ !a.b | !b
!a|!b−−−→ !a | !b

!a.(b | a.b)
!a.b−−→ !a.b

!a.b | !b.a
!a|!b−−−→ !a.b | !b

!a|!b−−−→ !a | !b

!a | !a.b
!a|!b−−−→ !a | !a

!a|!b−−−→ !a

A rewriting system

I Guess the seed of a process, and use it to clean the process:
(modulo structural congruence and distribution law)

C [a.F]
!a.F |P−−−−→ C [0] !a.F | !a.F | P

Q−→ !a.F | P

I Examples:

!a.b | !b | b.a
!a|!b−−−→ !a.b | !b | b

!a|!b−−−→ !a.b | !b
!a|!b−−−→ !a | !b

!a.(b | a.b)
!a.b−−→ !a.b

!a.b | !b.a
!a|!b−−−→ !a.b | !b

!a|!b−−−→ !a | !b

!a | !a.b
!a|!b−−−→ !a | !a

!a|!b−−−→ !a

A rewriting system, cont.

I Correctness: if P
S−→? S , then P ∼ S . (easy)

I Completeness: P
seed(P)−−−−→? seed(P). (technical)

I Consequences:

I P ∼ Q iff P
S−→? S and Q

S−→? S for some S ;
I ∼ is decidable [Christensen, Hirshfeld & Moller 1994].
I ∼ is substitution closed, and hence, a congruence (in π);

A rewriting system, cont.

I Correctness: if P
S−→? S , then P ∼ S . (easy)

I Completeness: P
seed(P)−−−−→? seed(P). (technical)

I Consequences:

I P ∼ Q iff P
S−→? S and Q

S−→? S for some S ;
I ∼ is decidable [Christensen, Hirshfeld & Moller 1994].
I ∼ is substitution closed, and hence, a congruence (in π);

Conclusions

I Bisimilarity is a congruence in:
I finite π [FoSSaCS 2007];
I public π with top-level replications [ICALP 2010].

I Methodology:
characterise bisimilarity in sum-free fragments of CCS/π

I equational axiomatisations
I rewriting systems
I transfer property
I seeds (minimal processes)

Future work

I Richer fragments with replication
I “deep” replications a.(F | !a.F) ∼ !a.F
I “nested” replications !a.!b ∼ a.(!a | !b)
I name restriction but prefixed replication �

��!(νa)

I Weak bisimilarity?

!a.a | a.b ≈ !a.a | a | b

!a | !a.b ≈ !a | !a | !b

Thanks!

Future work

I Richer fragments with replication
I “deep” replications a.(F | !a.F) ∼ !a.F
I “nested” replications !a.!b ∼ a.(!a | !b)
I name restriction but prefixed replication �

��!(νa)

I Weak bisimilarity?

!a.a | a.b ≈ !a.a | a | b

!a | !a.b ≈ !a | !a | !b

Thanks!

	micro CCS
	finite pi
	Top-level replications

