
Motivation UTP Circus Problem Conc

Concurrency and State in UTP
— Choice as Parallelism

Andrew Butterfield1 Paweł Gancarski1 Jim Woodcock2

Andrew.Butterfield@cs.tcd.ie

1Lero@TCD, Trinity College Dublin, Dublin 2, Ireland
2University of York, UK

Dublin Concurrency Workshop, April 14th–15th 2011

Motivation UTP Circus Problem Conc

ok ∧ ¬ wait

Motivation UTP Circus Problem Conc

A Simple Imperative Language

u, v ∈ Var variables
e, c ∈ Expr expressions
p,q, r ∈ Prog ::=

skip no-op
| v := e assignment
| p;q seq. comp.
| p / c . q conditional
| c ∗ p while-loop

c denotes a condition: boolean valued expression over
variables
There are a number of ways to give this a formal semantics.

Motivation UTP Circus Problem Conc

Prog Semantics

Denotational Semantics:

ρ ∈ State = Var → Val
MP : Prog → State → State

MP [[x := e]]ρ =̂ ρ⊕ {x 7→ ME [[e]]ρ}

(Programs as State-Transformers)
Weakest Pre-Condition Semantics:

C ,D ∈ Cond = State → B
WP : Prog → Cond → Cond

WP(x := e)D =̂ D[e/x]

(Programs as Predicate Transformers)
we could go on …

Motivation UTP Circus Problem Conc

A Simple Concurrent Language

a,b ∈ Event Events
p,q, r ∈ Conc ::=

stop deadlock
| skip termination
| a → p event prefix
| p;q sequence
| p u q non-determinism
| p 2 q event choice
| p ‖A q parallel (synch on A)

Events are atomic
There are also number of ways to give this a formal
semantics.

Motivation UTP Circus Problem Conc

Conc Denotational Semantics (I)
Trace Semantics:

tr ∈ Trace = Event ∗

MT : Conc → PTrace
MT [[stop]] =̂ {〈〉}

MT [[a → p]] =̂ {〈〉} ∪ {tr _ 〈a〉|tr ∈ MT [[p]]}

Failures Semantics

ref ∈ Refusal = PEvent
MF : Conc → P(Trace × Refusal)

MF [[stop]] =̂ {(〈〉, ref) | ref ⊆ Event}
MF [[a → p]] =̂ {(〈〉, ref) | a /∈ ref }∪

{tr _ 〈(a, ref)〉 | tr ∈ MF [[p]], ref ⊆ Event}

Failures-Divergences, Labelled Transition Systems, …

Motivation UTP Circus Problem Conc

Introducing Circus
Circus is a language that combines Z and CSP
(a mashup of Prog and Conc)
The syntax (of a simple version) is easy:

p,q, r ∈ Circus ::=
skip termination

| v := e assignment
| p;q sequence
| p / c . q conditional
| c ∗ p while-loop
| stop deadlock
| a → p event prefix
| p u q non-determinism
| p 2 q event choice
| p|[U |A|V]|q parallel, U ,V var-sets

What about the semantics?

Motivation UTP Circus Problem Conc

Unifying Theories of Programming (UTP)

UTP is a semantic framework that tries to merge semantic
models.
The approach is to encode them using predicates that
characterise relations between before- and after-states.

P(o1, . . . ,on,o′1, . . . ,o
′
n)

oi before-value of observation oi
o′i after-value of observation oi

“Programs (and Processes) as Relational Predicates”.
Observations consist of program variable values, along
with other (auxilliary) variables that capture relevant
aspects of behaviour.

Motivation UTP Circus Problem Conc

Prog UTP Semantics (I)

We define two key observations:
state, state′ : Var → Val
program variable state
ok ,ok ′ : B
the starting and finishing of the program.

For total correctness, all our predicates have the form:
ok ∧ P ⇒ ok ′ ∧ Q — a.k.a. “Designs”
If started when P is true, it finishes, ensuring that Q holds.
We introduce a shorthand: P ` Q.

Motivation UTP Circus Problem Conc

Prog UTP Semantics (II)

skip =̂ True ` state′ = state
x := e =̂ True ` state′ = state † {x 7→ e}

p;q =̂ ∃okm, statem •
p[okm, statem/ok ′, state′]
∧ q[okm, statem/ok , state]

p / c . q =̂ c ∧ p ∨ ¬ c ∧ q
c ∗ p =̂ µW • p;W / c . skip

(Programs are (Relational) Predicates)

Motivation UTP Circus Problem Conc

Refinement

UTP has been formulated to support refinement
If S is a specification, and P is a program then P satisfies
S (S v P) if every behaviour of P implies one of S
A behaviour of predicate Q is any assignment of values to
both dashed and un-dashed variables that satisfies Q.

S v P =̂ [P ⇒ S]

Here [Q] denotes the universal closure of Q
A consequence of this, given that P u Q v P , is that we
have the following definition of non-determinism:
P u Q =̂ P ∨ Q

Motivation UTP Circus Problem Conc

Healthiness Conditions

The predicate subspace of designs, and other interesting
subspaces are characterised by Healthiness Conditions.
For example, all design predicates satisfy the following
laws:

H1 P = ok ⇒ P
H2 P = P ; (ok ⇒ ok ′) ∧ state′ = state

Both of these, and many others, can be captured as stating
that a healthy predicate is a fixpoint of an idempotent
predicate-transformer, e.g.:

R1(P) =̂ ok ⇒ P R1 ◦ R1 = R1

Motivation UTP Circus Problem Conc

Designs, ordered by Refinement, form a Lattice

True ` False Miracle

True ` x ′=3 True ` x ′=6

True ` (x ′=3∨x ′=6)

True ` x ′∈{1...10}

x ′=state′(x) False ` True Chaos

v

Motivation UTP Circus Problem Conc

What is Miracle ?

Miracle (¬ ok) is the lattice top
It refines everything else, hence its name.
It is clearly infeasible (it can never be started).
Why do we include it ?

It simplifies the math (we keep the lattice)
We can trap it and similar pathologies with another
healthiness condition that it fails

H4 P ; true = true

H4(¬ ok)
= ¬ ok ; true
= ∃ . . .m • ¬ ok ∧ true
= ¬ ok
6= true

Motivation UTP Circus Problem Conc

Conc UTP Semantics (I—Observations)

We define four key observations:
ok ,ok ′ : B
capture the absence of livelock.
wait ,wait ′ : Bool
captures that a process may be waiting for an event.
tr , tr ′ : Event∗:
Traces record the events observed to date
ref , ref ′ : PEvent
contain the events being refused

Motivation UTP Circus Problem Conc

Conc UTP Semantics (II—Healthiness)

R1(P) =̂ P ∧ tr 6 tr ′

R2(P) =̂ ∃s • P [s, s _ (tr ′ − tr)/tr , tr ′]
R3(P) =̂ II / wait . P

II =̂ R1(¬ ok)
∨ (ok ′ ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref)

R =̂ R1 ◦ R2 ◦ R3
CSP1(P) =̂ P ∨ R1(¬ ok)
CSP2(P) =̂ P ; J

J =̂ (ok ⇒ ok ′) ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref
CSP =̂ CSP1 ◦ CSP2 ◦ R

Motivation UTP Circus Problem Conc

A key result
Assume that P mentions ok , tr , ref ,wait ,ok ′, tr ′, ref ′,wait ′

Consider the predicate space CSP formed by taking all
such P and forming

R(CSP1(CSP2(P)))

Assume that Q and R only mention
tr , ref ,wait , tr ′, ref ′,wait ′

Consider the predicate space RD formed by taking all
such Q and R and forming

R(Q ` R)

It turns out that CSP = RD
In other words, CSP processes are Reactive Designs

Motivation UTP Circus Problem Conc

Conc UTP Semantics (III—Definitions)

stop =̂ R(True ` wait ′ ∧ tr ′ = tr)
skip =̂ R(True ` ¬ wait ′ ∧ tr ′ = tr)

a → skip =̂ R(True ` tr ′ = tr ∧ a /∈ ref ′

/ wait ′ .
tr ′ = tr _ 〈a〉)

a → p =̂ (a → skip;p)
p;q =̂ ∃okm,waitm, trm, refm •

p[okm, statem, trm, refm/ok ′, state′, tr ′, ref ′]
∧ q[okm, statem, trm, refm/ok , state, tr , ref]

p u q =̂ p ∨ q
p 2 q =̂ (p ∧ q) / stop . (p ∨ q)

(Processes are (Relational) Predicates)

Motivation UTP Circus Problem Conc

Conc UTP Semantics (IV—Parallel)

p ‖A q =̂ ∃ok1,wait1, tr1, ref1,ok2,wait2, tr2, ref2•
p[ok1,wait1, tr1, ref1/ok ′,wait ′, tr ′, ref ′] ∧
q[ok2,wait2, tr2, ref2/ok ′,wait ′, tr ′, ref ′] ∧
ok ′ = ok1 ∧ ok2
wait ′ = wait1 ∨ wait2
tr ′ − tr ∈ (tr1 − tr) GA (tr2 − tr)
ref ′ ⊆ ((ref1 ∪ ref2) ∩ A) ∪ ((ref1 ∩ ref2) \ A)

We “run” p and q together, relabelling their final state.
Effectively each runs on its own local copy of the state
We merge the outcomes appropriately
(GA returns the way its trace arguments can be merged if
required to synch on A).

Motivation UTP Circus Problem Conc

Semantic Mashup

We merged the syntax pretty easily, so lets mash the
semantics together.
UTP also supports methods to link different theories via a
Galois Connection, typically capturing a notion of
refinement.

…beyond the scope of this talk

Motivation UTP Circus Problem Conc

Circus UTP Semantics (I—Observations)

We simply mash the observations together:

ok ,ok ′ : B from Prog ,Conc
wait ,wait ′ : B from Conc
tr , tr ′ : Event ∗ from Conc
ref , ref ′ : PEvent from Conc
state, state′ : Var → Val from Prog

Motivation UTP Circus Problem Conc

Circus UTP Semantics (II—Healthiness)
We merge the state observations into Conc healthiness

R1(P) =̂ P ∧ tr 6 tr ′

R2(P) =̂ ∃s • P [s, s _ (tr ′ − tr)/tr , tr ′]
R3(P) =̂ II / wait . P

II =̂ R1(¬ ok)
∨ (ok ′ ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref
∧ state′ = state)

R =̂ R1 ◦ R2 ◦ R3
CSP1(P) =̂ P ∨ R1(¬ ok)
CSP2(P) =̂ P ; J

J =̂ (ok ⇒ ok ′) ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref
∧ state′ = state

CSP =̂ CSP1 ◦ CSP2 ◦ R

Both II and J now assert that state does not change.

Motivation UTP Circus Problem Conc

Circus UTP Semantics (III—Definitions)

We just show those definitions that explicitly mention state

skip =̂ R(True ` ¬ wait ′ ∧ tr ′ = tr ∧ state′ = state)
a → skip =̂ R(True ` state′ = state ∧ (tr ′ = tr ∧ a /∈ ref ′

/ wait ′ .
tr ′ = tr _ 〈a〉))

p;q =̂ ∃ . . .m , statem •
p[. . .m , statem/ . . .

′ , state′]
∧ q[. . .m , statem/ . . . , state]

Motivation UTP Circus Problem Conc

Circus UTP Semantics (IV—Parallel)

p|[U |A|V]|q
=̂ ∃ok1,wait1, tr1, ref1, state1ok2,wait2, tr2, ref2, state2•

p[ok1,wait1, tr1, ref1, state1/ok ′,wait ′, tr ′, ref ′, state′] ∧
q[ok2,wait2, tr2, ref2, state2/ok ′,wait ′, tr ′, ref ′, state′] ∧
ok ′ = ok1 ∧ ok2
wait ′ = wait1 ∨ wait2
tr ′ − tr ∈ (tr1 − tr) GA (tr2 − tr)
ref ′ ⊆ ((ref1 ∪ ref2) ∩ A) ∪ ((ref1 ∩ ref2) \ A)
state′ = state ⊕ state1|U ⊕ state2|V

We now have to duplicate variable state
We have to merge variable state changes, but we assume
U and V are disjoint

Motivation UTP Circus Problem Conc

stop says nothing about state

The definition of stop is unchanged.
It cannot assert that state′ = state, or we would lose the
following (very useful) CSP law:

p 2 stop = p

Curious …

Motivation UTP Circus Problem Conc

That’s done, now let’s play !

Consider the following Circus “program/process”:

((x := 1;a → skip) 2 (x := 2;b → skip))
|[x |a,b,d |]| lhs can modify x , synch. on all events
(d → skip)

What is its behaviour according to our theory ?
What is/should be the underlying operational intuition ?

Motivation UTP Circus Problem Conc

Expanding x := e;a → skip

The expansion:

R(true ` ((tr ′ = tr ∧ a /∈ ref ′)
/ wait ′ .
(tr ′ = tr _ 〈a〉))
∧ state′ = state ⊕ {x 7→ e}

)

We see what is in effect the conjunction of the assignment and
prefix action, suggesting that it might be the same behaviour as
a → x := e

Motivation UTP Circus Problem Conc

Expanding the 2

(x := 1;a → skip) 2 (x := 2;b → skip)
= R((true ` ¬ wait ′ ∧ CHOOSE) ∨ R1(¬ ok))

R1(¬ ok) is “Miracle” — the top of the lattice
resulting from the contradiction
CHOOSE is final outcome of the choice (a disjunction)
This process never waits for an event, but insists that the
event and choice occur immediately
There is no empty trace possibility, violating prefix closure.

Motivation UTP Circus Problem Conc

Adding in |[x |a,b,d |]d → skip

The parallel construct requires synchronisation on all events
Lhs process has traces: 〈a〉, 〈b〉
Rhs process has traces 〈〉, 〈d 〉
None of these can be merged using G{a,b,d}
Calculation shows this reduces to R1(¬ ok)

We have a theory in which simple pieces put together with
standard language operators results in Miracle, the (totally
infeasible) process that refines any specification.

Motivation UTP Circus Problem Conc

What should happen ?

Process x := 1;a → skip will assign 1 to x , wait for and
participate in event a and then terminate
The behaviour of the external choice should be to run both
arms in parallel on local copies of the state, until an
external event resolves the choice. Then the losing arm
and its state changes are discarded.

In other words a multiple-event waiting point, needs a
thread with local state copied, per event, and once an
awaited event occurs, it kills the un-satisfied threads
(occam actually did this!)

Our problem arises because we treat these local state
copies as visible.

Motivation UTP Circus Problem Conc

What should happen ? (cont.)

The parallel composition puts a process that does c with
one that does either a or b, with full synchronisation, so it
should deadlock.
Our theory should predict:

((x := 1;a → skip) 2 (x := 2;b → skip))
|[x |a,b,d |]| (d → skip)

=
stop

As stop always waits, the value of x is not visible.

Motivation UTP Circus Problem Conc

Fixing the theory

Key idea:
Program variable state is not visible while waiting for
external events.
We say a predicate is “boxed” if state′ is arbitrary (hidden):

P =̂ ∃state′ • P

We modify an existing healthiness condition and add a new
one:

R3h(P) =̂ II / wait . P
CSP4(P) =̂ P ; skip

All other definitions remain unchanged.

Motivation UTP Circus Problem Conc

Where do we put the hard stuff?

Mixing variables and concurrency is tricky, as this example
shows
We could expose the “user” to it (make leading
assignments illegal in external choice)
We could have laws with lots of side-conditions
P 2 stop = P provided “mumble state mumble …”
Or we can adopt our preferred approach — try to hide it
(bury?) in the foundations

Providing an reasoning algebra that works at the
programming language level.

Motivation UTP Circus Problem Conc

The really hard stuff (UTP@TCD)

slotted-Circus: adding synchronous clocks to Circus
original application: hardware compilation
replace tr ,ref by slots : (Hist × Ref)+

Adding prioritised choice to slotted-Circus (Paweł
Gancarski)
also targeting hardware compilation
now seen as a way to model wireless sensor networks
Added probability to Designs, CSP, Circus, slotted-Circus
(Riccardo Bresciani)
replace ok , state by distr : State → [0,1]
early days yet …
Linkages between Circus and CSP (Arshad Beg)
linking variable-based and parametric-based state
manipulation

Motivation UTP Circus Problem Conc

ok ′ ∧ wait ′ ∧ questions /∈ ref ′

Motivation UTP Circus Problem Conc

ok ′ ∧ ¬ wait ′

	Motivation
	UTP
	Circus
	Problem
	Conc

