
Fractional Permissions
without the Fractions

Alex Summers

 ETH Zurich

Joint work with: Stefan Heule, Rustan Leino, Peter Müller
 ETH Zurich MSR Redmond ETH Zurich

Overview

• Verification of (race-free) concurrent programs,
using (something like) fractional permissions

• Background
•  Problem: picking rational values
• Abstract read permissions
• Handling calls, fork/join, monitors
•  Permission expressions
• Conclusions

Fractional Permissions (Boyland)

•  Provide a way of describing disciplined (race-
free) use of shared memory locations.

• Many readers ✓ One writer ✓ Not both.
• Heap locations are managed using permissions
▫  passed between threads, but never duplicated

•  Permission amounts are rationals p from [0,1]
▫  p=0 (no permission)
▫  0<p<1 (read permission)
▫  p=1 (read/write permission)

•  Permissions can be split and recombined

Implicit Dynamic Frames (Smans)

• Uses permissions as assertions to control which
threads can read/write to heap locations

•  Permissions can be fractional
• Extend first-order logic assertions to

additionally include “accessibility predicates”:
acc(x.f, p) ; we have permission p to location x.f

•  For example, acc(x.f,1) && x.f == 4 && acc(x.g,1)
•  Permissions treated multiplicatively; i.e.,
▫  acc(x.f,p) && acc(x.f,p) ≡ acc(x.f,2p)

• Related to Sep. Logic * [Parkinson/Summers’11]

Chalice (Leino & Müller)

• Verification tool for concurrent programs
▫  race-freedom, deadlock-freedom, functional specs

•  Specification logic : Implicit Dynamic Frames
•  Supports weak fractional permissions
▫  acc(e.f, n%) – integer percentages (0<n≤100)

• Also counting permissions (not discussed here)
• Verification conditions are generated in terms of
▫  Heap variable – tracks information about heap
▫  Mask variable – tracks permissions currently held

• Modular verification – per method declaration.

Inhale and Exhale

•  “inhale P” and “exhale P” are used in Chalice to
encode transfers between threads/calls

•  “inhale P” means:
▫  assume heap properties in p
▫  gain permissions in p
▫  havoc newly-readable locations

•  “exhale P” means:
▫  assert heap properties in p
▫  check and give up permissions

void m()
requires p
ensures q
{
 // inhale P
 ...
 // exhale P
 call m()
 // inhale Q
 ...
 // exhale Q
}

Inhale and Exhale

•  “inhale P” and “exhale P” are used in Chalice to
encode transfers between threads/calls

•  “inhale P” means:
▫  assume heap properties in p
▫  gain permissions in p
▫  havoc newly-readable locations

•  “exhale P” means:
▫  assert heap properties in p
▫  check and give up permissions

void m()
requires p
ensures q
{
 // inhale P
 ...
 // exhale P
 call m()
 // inhale Q
 ...
 // exhale Q
}

Inhale and Exhale

•  “inhale P” and “exhale P” are used in Chalice to
encode transfers between threads/calls

•  “inhale P” means:
▫  assume heap properties in p
▫  gain permissions in p
▫  havoc newly-readable locations

•  “exhale P” means:
▫  assert heap properties in p
▫  check and give up permissions

void m()
requires p
ensures q
{
 // inhale P
 ...
 // exhale P
 call m()
 // inhale Q
 ...
 // exhale Q
}

Inhale and Exhale

•  “inhale P” and “exhale P” are used in Chalice to
encode transfers between threads/calls

•  “inhale P” means:
▫  assume heap properties in p
▫  gain permissions in p
▫  havoc newly-readable locations

•  “exhale P” means:
▫  assert heap properties in p
▫  check and give up permissions

void m()
requires p
ensures q
{
 // inhale P
 ...
 // exhale P
 call m()
 // inhale Q
 ...
 // exhale Q
}

Inhale and Exhale

•  “inhale P” and “exhale P” are used in Chalice to
encode transfers between threads/calls

•  “inhale P” means:
▫  assume heap properties in p
▫  gain permissions in p
▫  havoc newly-readable locations

•  “exhale P” means:
▫  assert heap properties in p
▫  check and give up permissions

void m()
requires p
ensures q
{
 // inhale P
 ...
 // exhale P
 call m()
 // inhale Q
 ...
 // exhale Q
}

Inhale and Exhale

•  “inhale P” and “exhale P” are used in Chalice to
encode transfers between threads/calls

•  “inhale P” means:
▫  assume heap properties in p
▫  gain permissions in p
▫  havoc newly-readable locations

•  “exhale P” means:
▫  assert heap properties in p
▫  check and give up permissions

void m()
requires p
ensures q
{
 // inhale P
 ...
 // exhale P
 call m()
 // inhale Q
 ...
 // exhale Q
}

Inhale and Exhale

•  “inhale P” and “exhale P” are used in Chalice to
encode transfers between threads/calls

•  “inhale P” means:
▫  assume heap properties in p
▫  gain permissions in p
▫  havoc newly-readable locations

•  “exhale P” means:
▫  assert heap properties in p
▫  check and give up permissions

void m()
requires p
ensures q
{
 // inhale P
 ...
 // exhale P
 call m()
 // inhale Q
 ...
 // exhale Q
}

Problem / Aims

• We always need to specify fractional (read)
permissions using precise (rational) values.
▫  Manual book-keeping is tedious
▫  Creates ‘noise’ in specifications, and limits re-use
▫  User only cares about read or write permissions

• Aim: abstract over concrete permission amounts
▫  User doesn’t choose amounts for read permissions

• Want decent performance from theorem provers
• Also, unbounded splitting of permissions...

Permission splitting
class Node {
 Node l,r;

 Outcome work(Data d)
 requires «permission to d.f»;
 ensures «permission to d.f»;
 {
 if (l != null) fork outL := l.work(d);
 if (r != null) fork outR := r.work(d);
 Outcome out := /* work on this node, using d.f */
 if (l != null) out.combine(join outL);
 if (r != null) out.combine(join outR);
 return out;
 }
}

How much permission?

Idea: abstract read permissions

•  Introduce new read permissions: acc(e.f, rd)
▫  Represents an (a priori unknown), positive

fractional permission
▫  Positive amount: allows reading of location e.f

•  Fractions are never expressed precisely
▫  We generate (satisfiable) constraints on them
▫  Specifications written using just:
  read permissions: acc(e.f, rd) or simply rd(e.f)
  write permissions: acc(e.f, 100%) or simply acc(e.f)
▫  Different read permissions can refer to different

amounts. But, sometimes we want them to match..

Matching rd permissions

•  For example, method calls often take some
permission and then return it to the caller:

• Rule: for a given method call, every rd
permission in a method specification is
interpreted by the same permission amount

method m(c: Cell)
 requires rd(c.val);
 ensures rd(c.val);
{
 /* do something fun... */
}

method main(c: Cell)
 requires acc(c.val);
{
 c.value := 0;
 call m(c);
 c.value := 1;
}

A recursive method ...
method m(c: Cell)
 requires rd(c.val);
 ensures rd(c.val);
{

 // do stuff

 call m(c);

 // do stuff

}

Declare fraction fm ; used to interpret rd in
current method specification: 0 < fm ≤ 1

Exhale precondition for recursive call
•  Declare 0 < fcall ≤ 1 (rd amounts in recursive call)
•  Check that we have some permission amount

assert Mask[c.val] > 0
•  Constrain fcall to be smaller than permission we have

assume fcall < Mask[c.val]
•  Give away this amount: Mask[c.val] -= fcall
Inhale postcondition: Mask[c.val] += fcall

Inhale precondition
 Mask[c.val] += fm

Exhale postcondition
•  Check available permission

assert Mask[c.val] >= fm
•  Remove permission from mask

Mask[c.val] -= fm

Losing permission

• What if we don’t intend to return same amount?

•  Introduce rd*

method m(c: Cell)
 requires rd(c.val);
 ensures rd(c.val);
{
 fork tk := m(c);
}

method m(c: Cell)
 requires rd(c.val);
 ensures rd*(c.val);
{
 fork tk := m(c);
}

exhale post-condition:
•  Check available permission

assert Mask[c.val] >= fm
 ✘

exhale post-condition:
•  Check some available permission

assert Mask[c.val] > 0 ✓
•  Unknown amount returned to caller

represents a different (positive)
fraction – with no other information

Monitors

•  Locks are associated with monitor invariants
▫  inhale monitor invariant on acquire of lock
▫  exhale monitor invariant on release of lock

• How should read permission in monitor
invariants be interpreted?

• Recall: for methods, we “choose” a value that is
convenient at each call site.

• Can we do the same when we transfer read
permission into a monitor?

Monitors

• Analogous idea: fix fraction at release

 /* ... */
 release lock;

 /* ... */

 acquire lock;
 /* ... */

Thread 1

class Lock {
 var x: int;
 invariant rd(x);
}

Monitors

• Analogous idea: fix fraction at release

•  Fraction needs to be fixed at object creation
▫  Not possible at share for similar reasons

 /* ... */
 release lock;

 /* ... */

 acquire lock;
 /* ... */

Thread 1

acquire lock;
/* ... */
release lock;

Thread 2

class Lock {
 var x: int;
 invariant rd(x);
}

Monitors

• 

 method main(lock: Lock)
 requires rd(x);
 {
 release lock;
 }

class Lock {
 var x: int;
 invariant rd(x);
}

Monitors

•  Solution 1: Use rd*(x) in monitor

• No guarantee that permission we get back is the
same, when we re-acquire monitor

 method main(lock: Lock)
 requires rd(x);
 {
 release lock;

 acquire lock;
 }

Only need to check that we have
some permission.

class Lock {
 var x: int;
 invariant rd*(x);
}

Example Revisited
class Node {
 Node l,r;

 Outcome work(Data d)
 requires «permission to d.f»;
 ensures «permission to d.f»;
 {
 if (l != null) fork outL := l.work(d);
 if (r != null) fork outR := r.work(d);
 Outcome out := /* work on this node, using d.f */
 if (l != null) out.combine(join outL);
 if (r != null) out.combine(join outR);
 return out;
 }
}

Example Revisited

•  rd permissions sufficient to specify the example

class Node {
 Node l,r;

 Outcome work(Data d)
 requires rd(d.f);
 ensures rd(d.f);
 {
 if (l != null) fork outL := l.work(d);
 if (r != null) fork outR := r.work(d);
 Outcome out := /* work on this node, using d.f */
 if (l != null) out.combine(join outL);
 if (r != null) out.combine(join outR);
 return out;
 }
}

Some amount(s) given
away, but not all

Same amount(s) are
retrieved

class Management {
 Data d; // shared data
 ...
 void manage(Workers w) {
 // ... make up some work
 out1 := call w.ask(task1, d);
 out2 := call w.ask(task2, d);
 // ... drink coffee
 join out1; join out2;
 d.f := // modify data
 }

class Workers {
 Outcome do(Task t, Data d, Plan p)
 { ... }
 token<Outcome> ask(Task t, Data d) {
 fork out := call do(t,d,plan);
 return out;
 }
}

How do we know we get back all
the permissions we gave away?

Intuitively, ask returns the
permission it was passed minus the
permission held by the forked thread

do requires rd access to
the shared data

ask requires rd access to
the shared data, and gives
some of this permission to
the newly-forked thread

Permission expressions

• We need a way to express (unknown) amounts
of read permission held by a forked thread

• We also need to be able to express the difference
between two permission amounts

• We generalise our permissions: acc(e.f, P)
▫  where P is a permission expression:
  100% or rd (as before)
  rd(tk) where tk is a token for a forked thread
  rd(m) where m is a monitor
  P1 + P2 or P1 - P2

• Easy to encode, and is much more expressive...

class Management {
 Data d; // shared data
 ...
 void manage(Workers w) {
 // ... make up some work
 out1 := call w.ask(task1, d);
 out2 := call w.ask(task2, d);
 // ... drink coffee
 join out1; join out2;
 d.f := // modify data
 }

class Workers {
 Outcome do(Task t, Data d, Plan p)
 { ... }
 token<Outcome> ask(Task t, Data d) {
 fork out := call do(t,d,plan);
 return out;
 }
} requires acc(d.f, rd)

ensures acc(d.f, rd – rd(result))

requires acc(d.f, rd)
ensures acc(d.f, rd)

requires acc(d.f, 100%)
ensures acc(d.f, 100%)

class Management {
 Data d; // shared data
 ...
 void manage(Workers w) {
 // ... make up some work // 100%
 out1 := call w.ask(task1, d);
 out2 := call w.ask(task2, d);
 // ... drink coffee
 join out1; join out2;
 d.f := // modify data
 }

class Workers {
 Outcome do(Task t, Data d, Plan p)
 { ... }
 token<Outcome> ask(Task t, Data d) {
 fork out := call do(t,d,plan);
 return out;
 }
} requires acc(d.f, rd)

ensures acc(d.f, rd – rd(result))

requires acc(d.f, 100%)
ensures acc(d.f, 100%)

requires acc(d.f, rd)
ensures acc(d.f, rd)

class Management {
 Data d; // shared data
 ...
 void manage(Workers w) {
 // ... make up some work // 100%
 out1 := call w.ask(task1, d); // 100% - rd(out1)
 out2 := call w.ask(task2, d);
 // ... drink coffee
 join out1; join out2;
 d.f := // modify data
 }

class Workers {
 Outcome do(Task t, Data d, Plan p)
 { ... }
 token<Outcome> ask(Task t, Data d) {
 fork out := call do(t,d,plan);
 return out;
 }
} requires acc(d.f, rd)

ensures acc(d.f, rd – rd(result))

requires acc(d.f, 100%)
ensures acc(d.f, 100%)

requires acc(d.f, rd)
ensures acc(d.f, rd)

class Management {
 Data d; // shared data
 ...
 void manage(Workers w) {
 // ... make up some work // 100%
 out1 := call w.ask(task1, d); // 100% - rd(out1)
 out2 := call w.ask(task2, d); // 100% - rd(out1) – rd(out2)
 // ... drink coffee
 join out1; join out2;
 d.f := // modify data
 }

class Workers {
 Outcome do(Task t, Data d, Plan p)
 { ... }
 token<Outcome> ask(Task t, Data d) {
 fork out := call do(t,d,plan);
 return out;
 }
} requires acc(d.f, rd)

ensures acc(d.f, rd – rd(result))

requires acc(d.f, 100%)
ensures acc(d.f, 100%)

requires acc(d.f, rd)
ensures acc(d.f, rd)

class Management {
 Data d; // shared data
 ...
 void manage(Workers w) {
 // ... make up some work // 100%
 out1 := call w.ask(task1, d); // 100% - rd(out1)
 out2 := call w.ask(task2, d); // 100% - rd(out1) – rd(out2)
 // ... drink coffee
 join out1; join out2; // 100%
 d.f := // modify data
 }

class Workers {
 Outcome do(Task t, Data d, Plan p)
 { ... }
 token<Outcome> ask(Task t, Data d) {
 fork out := call do(t,d,plan);
 return out;
 }
} requires acc(d.f, rd)

ensures acc(d.f, rd – rd(result))

requires acc(d.f, 100%)
ensures acc(d.f, 100%)

requires acc(d.f, rd)
ensures acc(d.f, rd)

class Management {
 Data d; // shared data
 ...
 void manage(Workers w) {
 // ... make up some work // 100%
 out1 := call w.ask(task1, d); // 100% - rd(out1)
 out2 := call w.ask(task2, d); // 100% - rd(out1) – rd(out2)
 // ... drink coffee
 join out1; join out2; // 100%
 d.f := // modify data // ✓ can write
 }

class Workers {
 Outcome do(Task t, Data d, Plan p)
 { ... }
 token<Outcome> ask(Task t, Data d) {
 fork out := call do(t,d,plan);
 return out;
 }
} requires acc(d.f, rd)

ensures acc(d.f, rd – rd(result))

requires acc(d.f, 100%)
ensures acc(d.f, 100%)

requires acc(d.f, rd)
ensures acc(d.f, rd)

Monitors

• Recall the awkward situation with monitors:
 method main(Lock: lock)
 requires rd(x);
 {
 release lock;

 acquire lock;
 }

class Lock {
 int x;
 invariant rd(x);
}

Monitors

•  Solution 2: Using the permission expressions

• Now we can express exactly the amount of
permission we need to exhale to the monitor.

 method main(Lock lock)
 requires acc(x,rd(lock));
 {
 release lock;

 acquire lock;
 }

class Lock {
 int x;
 invariant rd(x);
}

Summary and Extras

•  Presented a specification methodology:
▫  similar expressiveness to fractional permissions
▫  avoids explicit “values” for read permissions
▫  allows user to reason about read/write abstractly

•  Supports full Chalice language
▫  fork/join, channels, predicates, loop invariants

• Methodology is implemented
▫  backwards-compatible with a few easy edits
▫  permission encoding uses only integer-typed data
▫  performance comparable with existing encoding

Future Work
• We cannot express the permission left over after

we fork off an unbounded number of threads
▫  mathematical sums in permission expressions

▫  e.g., acc(x, 100% – Σi rd(tki))
▫  some careful encoding is required to perform well

•  In some obscure cases, permission
multiplication arises
▫  non-linear arithmetic tends to perform badly

• Experiment with encoding harder fractional
examples using abstract permission expressions

Are there any questions?

