| Preliminaries | Session Instantiation | Model<br>0000 | Connecting Triples |
|---------------|-----------------------|---------------|--------------------|
|               |                       |               |                    |

# **On Separation, Session Types and Algebra**

Akbar Hussain Peter W. O'Hearn Rasmus L. Petersen

Department of Computer Science Queen Mary University of London

Dublin Concurrency Workshop, 2011

| Preliminaries | Session Instantiation | Model<br>0000 | Connecting Triples |
|---------------|-----------------------|---------------|--------------------|
| Formalisms    |                       |               |                    |

## Modularity

| Preliminaries | Session Instantiation | Model<br>0000 | Connecting Triples |
|---------------|-----------------------|---------------|--------------------|
| Formalisms    |                       |               |                    |

#### Modularity

# Session Types

- Process Calculi
- Message Passing

| Preliminaries | Session Instantiation | Model<br>0000 | Connecting Triples |
|---------------|-----------------------|---------------|--------------------|
| Formalisms    |                       |               |                    |

## Modularity

#### **Session Types**

- Process Calculi
- Message Passing

## **Concurrent Separation Logic**

- Imperative Programs
- Shared Resource





| Preliminaries | Session Instantiation | Model<br>0000 | Connecting Triples |
|---------------|-----------------------|---------------|--------------------|
| Outline       |                       |               |                    |

## **Preliminaries**

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra

## 2 Session Instantiation of BCSL

- BCSL/ST
- Translation

# Model

Predicate Transformer Model

## 4 Connecting Triples

Dijkstra & Plotkin Triples

| Preliminaries<br>• o o o o o o o o o o o o o o o o o o o | Session Instantiation | Model<br>0000 | Connecting Triples |
|----------------------------------------------------------|-----------------------|---------------|--------------------|
| Baby Session Types (BST)                                 |                       |               |                    |
| Outline                                                  |                       |               |                    |

#### **Preliminaries**

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra
- Session Instantiation of BCSL
   BCSL/ST
  - Translation

## 3 Mode

- Predicate Transformer Model
- Connecting Triples
  - Dijkstra & Plotkin Triples

| Preliminaries<br>0 0000000000000000000000000000000000 | Session Instantiation | Model | Connecting Triples |
|-------------------------------------------------------|-----------------------|-------|--------------------|
| Baby Session Types (BST)                              |                       |       |                    |
| Baby Session Typ                                      | bes                   |       |                    |

# Programs

$$P ::= k?j.P \mid k!j.P \mid P \parallel P \mid inact$$

| Preliminaries<br>000000000000000000000000000000000000 | Session Instantiation | Model | Connecting Triples |
|-------------------------------------------------------|-----------------------|-------|--------------------|
| Baby Session Types (BST)                              |                       |       |                    |
| Baby Session Typ                                      | es                    |       |                    |

# Programs

$$P ::= k?j.P \mid k!j.P \mid P \parallel P \mid inact$$

# Types

$$\alpha, \beta ::= ![\alpha]; \beta | ?[\alpha]; \beta | end$$

| Preliminaries<br>o●ooooooooooooooo | Session Instantiation | Model | Connecting Triples |
|------------------------------------|-----------------------|-------|--------------------|
| Baby Session Types (BST)           |                       |       |                    |
| Baby Session Type                  | es                    |       |                    |

## Programs

$$P ::= k?j.P \mid k!j.P \mid P \parallel P \mid inact$$

# Types

$$\alpha,\beta ::= ![\alpha];\beta \mid ?[\alpha];\beta \mid \text{end}$$

# Co-Types

$$\overline{![\alpha];\beta} = ?[\alpha];\overline{\beta} \quad \overline{?[\alpha];\beta} = ![\alpha];\overline{\beta} \quad \overline{\mathsf{end}} = \mathsf{end}$$

| Preliminaries<br>oo●ooooooooooooo | Session Instantiation | Model | Connecting Triples |
|-----------------------------------|-----------------------|-------|--------------------|
| Baby Session Types (BST)          |                       |       |                    |
| Baby Session Type                 | es                    |       |                    |

 $\blacktriangleright$   $\Delta$  ranges over finite multisets of variable/type pairs

| Preliminaries            | Session Instantiation | Model | Connecting Triples |
|--------------------------|-----------------------|-------|--------------------|
| Baby Session Types (BST) |                       |       |                    |
| Baby Session Typ         | es                    |       |                    |

- $\blacktriangleright$   $\Delta$  ranges over finite multisets of variable/type pairs
- ► △ is consistent when channels occur at most twice and are co-types of each other

| Preliminaries            | Session Instantiation | Model | Connecting Triples |
|--------------------------|-----------------------|-------|--------------------|
| Baby Session Types (BST) |                       |       |                    |
| <b>Baby Session Ty</b>   | pes                   |       |                    |

- $\Delta$  ranges over finite multisets of variable/type pairs
- ► △ is consistent when channels occur at most twice and are co-types of each other
- Δ is said to be complete if end is the only type that appears in it and it is denoted by Φ.

| Preliminaries            | Session Instantiation | Model | Connecting Triples |
|--------------------------|-----------------------|-------|--------------------|
| Baby Session Types (BST) |                       |       |                    |
| <b>Baby Session Ty</b>   | pes                   |       |                    |

- $\Delta$  ranges over finite multisets of variable/type pairs
- ► △ is consistent when channels occur at most twice and are co-types of each other
- Δ is said to be complete if end is the only type that appears in it and it is denoted by Φ.
- $\Delta \circ \Delta'$  is multiset union, where we write  $\Delta \simeq \Delta'$  to mean that  $\Delta \circ \Delta'$  is consistent.

| Preliminaries            | Session Instantiation | Model | Connecting Triples |
|--------------------------|-----------------------|-------|--------------------|
| Baby Session Types (BST) |                       |       |                    |
| Baby Session Typ         | bes                   |       |                    |

- $\Delta$  ranges over finite multisets of variable/type pairs
- ► △ is consistent when channels occur at most twice and are co-types of each other
- Δ is said to be complete if end is the only type that appears in it and it is denoted by Φ.
- $\Delta \circ \Delta'$  is multiset union, where we write  $\Delta \simeq \Delta'$  to mean that  $\Delta \circ \Delta'$  is consistent.

## Typing

## $P \triangleright \Delta$

| Preliminaries<br>000000000000000000000000000000000000 | Session Instantiation | Model | Connecting Triples |
|-------------------------------------------------------|-----------------------|-------|--------------------|
| Baby Session Types (BST)                              |                       |       |                    |
| <b>Proof Rules for BS</b>                             | т                     |       |                    |

[Consequence] 
$$\frac{\Delta_1 \vdash \Delta_2 \quad P \triangleright \Delta_2}{P \triangleright \Delta_1}$$
  
[Inact] 
$$\frac{1}{\text{inact} \triangleright \emptyset}$$
 [Par] 
$$\frac{P_1 \triangleright \Delta_1 \quad P_2 \triangleright \Delta_2}{P_1 \parallel P_2 \triangleright \Delta_1 \circ \Delta_2}$$

 $[\text{Receive}] \quad \frac{P \triangleright \Delta \circ k \colon \beta \circ j \colon \alpha}{k?j.P \triangleright \Delta \circ k \colon ?[\alpha]; \beta} \quad [\text{Send}] \quad \frac{P \triangleright \Delta \circ k \colon \beta}{k!j.P \triangleright \Delta \circ k \colon ![\alpha]; \beta \circ j \colon \alpha}$ 

| Preliminaries<br>000000000000000000000000000000000000 | Session Instantiation | Model<br>0000 | Connecting Triples |
|-------------------------------------------------------|-----------------------|---------------|--------------------|
| Baby Session Types (BST)                              |                       |               |                    |
| <b>Proof Rules for BS</b>                             | т                     |               |                    |

$$[\text{Consequence}] \quad \frac{\Delta_1 \vdash \Delta_2 \quad P \triangleright \Delta_2}{P \triangleright \Delta_1}$$
$$[\text{Inact}] \quad \frac{P_1 \triangleright \Delta_1 \quad P_2 \triangleright \Delta_2}{P_1 \parallel P_2 \triangleright \Delta_1 \circ \Delta_2}$$

 $[\text{Receive}] \quad \frac{P \triangleright \Delta \circ k \colon \beta \circ j \colon \alpha}{k! j . P \triangleright \Delta \circ k \colon ?[\alpha]; \beta} \quad [\text{Send}] \quad \frac{P \triangleright \Delta \circ k \colon \beta}{k! j . P \triangleright \Delta \circ k \colon ![\alpha]; \beta \circ j \colon \alpha}$ 

| Preliminaries            | Session Instantiation | Model | Connecting Triples |
|--------------------------|-----------------------|-------|--------------------|
| Baby Session Types (BST) |                       |       |                    |
| Examples                 |                       |       |                    |

# $(k!x.inact) \parallel (k!y.inact) \triangleright \Delta$

| Preliminaries            | Session Instantiation | Model | Connecting Triples |
|--------------------------|-----------------------|-------|--------------------|
| Baby Session Types (BST) |                       |       |                    |
| Fxamples                 |                       |       |                    |

 $(k!x.inact) \parallel (k!y.inact) \triangleright \Delta$ 

 $\Rightarrow \Delta$  is not consistent

| Preliminaries<br>000000000000000000000000000000000000 | Session Instantiation | Model<br>0000 | Connecting Triples |
|-------------------------------------------------------|-----------------------|---------------|--------------------|
| Baby Session Types (BST)                              |                       |               |                    |
| Examples                                              |                       |               |                    |

 $(k!x.inact) \parallel (k!y.inact) \triangleright \Delta$ 

 $\Rightarrow \Delta$  is not consistent

## Example (2 - Ownership Transfer)

Let  $H = ![\alpha]; end$ 

| Process 1                                                                     | Process 2                                       | Process 3                                                    |
|-------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|
| $\{k: \texttt{end}, j: \texttt{end}\}$                                        | $\{k: \texttt{end}, \ x: \texttt{end}\}$        | $\{j: \texttt{end}, \ y: \texttt{end}, \ z: \texttt{end}\}$  |
| j!h′                                                                          | <i>x</i> ! <i>w</i>                             | <i>y</i> ?( <i>z</i> )                                       |
| $\{h': \overline{H}, \ k: \texttt{end}, \ j: ![\overline{H}]; \texttt{end}\}$ | $\{x: H, k: end, w: end\}$                      | $\{ \pmb{y}: \overline{\pmb{H}}, \ \pmb{j}: \texttt{end} \}$ |
| k!h                                                                           | <u>k?(x)</u>                                    | j?(y)                                                        |
| $\{h: H, h': \overline{H}, k: ![H]; end, j: ![\overline{H}]; end\}$           | { <i>k</i> :?[ <i>H</i> ]; end, <i>w</i> : end} | <i>j</i> :?[ <i>H</i> ]; end}                                |

| Preliminaries<br>000000000000000000000000000000000000 | Session Instantiation | Model<br>0000 | Connecting Triples |
|-------------------------------------------------------|-----------------------|---------------|--------------------|
| Baby Session Types (BST)                              |                       |               |                    |
| Examples                                              |                       |               |                    |

 $(k!x.inact) \parallel (k!y.inact) \triangleright \Delta$ 

 $\Rightarrow \Delta$  is not consistent

## Example (2 - Ownership Transfer)

Let  $H = ![\alpha]; end$ 

| Process 1                                                                                                                    | Process 2                                       | Process 3                                                   |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|
| { <i>k</i> : end, <i>j</i> : end}                                                                                            | $\{k: \texttt{end}, \ x: \texttt{end}\}$        | $\{j: \texttt{end}, \ y: \texttt{end}, \ z: \texttt{end}\}$ |
| <b>j</b> ! <i>h</i> ′                                                                                                        | <i>x</i> ! <i>w</i>                             | <i>y</i> ?( <i>z</i> )                                      |
| $\{ \mathbf{h}' : \overline{\mathbf{H}}, \mathbf{k} : \mathtt{end}, \mathbf{j} : ! [\overline{\mathbf{H}}]; \mathtt{end} \}$ | $\{x: H, k: \texttt{end}, w: \texttt{end}\}$    | $\{y: \overline{H}, j: end\}$                               |
| k!h                                                                                                                          | k?(x)                                           | j?( <b>y</b> )                                              |
| $\{h: H, h': \overline{H}, k: ![H]; end, j: ![\overline{H}]; end\}$                                                          | { <i>k</i> :?[ <i>H</i> ]; end, <i>w</i> : end} | { <i>j</i> :?[ <b>H</b> ]; end}                             |

| Preliminaries<br>000000000000000000000000000000000000 | Session Instantiation | Model<br>0000 | Connecting Triples |
|-------------------------------------------------------|-----------------------|---------------|--------------------|
| Baby Session Types (BST)                              |                       |               |                    |
| Examples                                              |                       |               |                    |

 $(k!x.inact) \parallel (k!y.inact) \triangleright \Delta$ 

 $\Rightarrow \Delta$  is not consistent

## Example (2 - Ownership Transfer)

Let  $H = ![\alpha]; end$ 

| Process 1                                                                                  | Process 2                                       | Process 3                                         |
|--------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|
| $\{k: \texttt{end}, j: \texttt{end}\}$                                                     | $\{k: \texttt{end}, \ x: \texttt{end}\}$        | $\{j: end, y: end, z: end\}$                      |
| j!h′                                                                                       | <i>x!w</i>                                      | <i>y</i> ?( <i>z</i> )                            |
| $\{ {m h}': \overline{m H}, \ {m k}: 	ext{end}, \ {m j}: ! [\overline{m H}]; 	ext{end} \}$ | $\{x: H, k: end, w: end\}$                      | $\{ m{y}: \overline{m{H}},  m{j}: 	extsf{end} \}$ |
| k!h                                                                                        | k?(x)                                           | j?(y)                                             |
| $\{h: H, h': \overline{H}, k: ![H]; end, j: ![\overline{H}]; end\}$                        | { <i>k</i> :?[ <i>H</i> ]; end, <i>w</i> : end} | <i>j</i> :?[ <i>H</i> ]; end}                     |

| Preliminaries                     | Session Instantiation | Model<br>0000 | Connecting Triples |
|-----------------------------------|-----------------------|---------------|--------------------|
| Basic Concurrent Separation Logic | (BCSL)                |               |                    |
| Outline                           |                       |               |                    |

## **Preliminaries**

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra
- Session Instantiation of BCSL
   BCSL/ST
  - Translation

## 3 Mode

- Predicate Transformer Model
- Connecting Triples
  - Dijkstra & Plotkin Triples

| Preliminaries                     | Session Instantiation | Model<br>0000 | Connecting Triples |  |  |
|-----------------------------------|-----------------------|---------------|--------------------|--|--|
| Basic Concurrent Separation Logi  | c (BCSL)              |               |                    |  |  |
| Basic Concurrent Separation Logic |                       |               |                    |  |  |
|                                   |                       |               |                    |  |  |

## A preordered commutative monoid of propositions

(Props,  $\vdash$ , \*, emp)

#### A set of commands (Com)

Equipped with total binary operations  $c \parallel c'$  and c; c' with  $skip \in Com$ 

| Preliminaries                            | Session Instantiation | Model | Connecting Triples |  |  |
|------------------------------------------|-----------------------|-------|--------------------|--|--|
| Basic Concurrent Separation Logic (BCSL) |                       |       |                    |  |  |
| Proof Rules for B                        | CSL                   |       |                    |  |  |

$$\begin{bmatrix} \text{Skip} \end{bmatrix} \frac{\{X\} c \{Y\}}{\{X\} \text{skip} \{X\}} & [\text{Frame} ] \quad \frac{\{X\} c \{Y\}}{\{X * F\} c \{Y * F\}} \\ \begin{bmatrix} \text{Seq} \end{bmatrix} \quad \frac{\{X\} c_1 \{Y\} \quad \{Y\} c_2 \{Z\}}{\{X\} c_1; c_2 \{Z\}} & [\text{Par} ] \quad \frac{\{X_1\} c_1 \{Y_1\} \quad \{X_2\} c_2 \{Y_2\}}{\{X_1 * X_2\} c_1 \parallel c_2 \{Y_1 * Y_2\}} \\ \\ \begin{bmatrix} \text{Consequence} \end{bmatrix} \quad \frac{X' \vdash X \quad \{X\} c \{Y\} \quad Y \vdash Y'}{\{X'\} c \{Y'\}} \\ \end{bmatrix}$$

| Preliminaries                            | Session Instantiation | Model<br>0000 | Connecting Triples |  |
|------------------------------------------|-----------------------|---------------|--------------------|--|
| Basic Concurrent Separation Logic (BCSL) |                       |               |                    |  |
| Parallel Rules                           |                       |               |                    |  |

[BST] 
$$\frac{P_1 \triangleright \Delta_1 \quad P_2 \triangleright \Delta_2}{P_1 \parallel P_2 \triangleright \Delta_1 \circ \Delta_2}$$

[BCSL] 
$$\frac{\{X_1\} c_1 \{Y_1\} \{X_2\} c_2 \{Y_2\}}{\{X_1 * X_2\} c_1 \| c_2 \{Y_1 * Y_2\}}$$

| Preliminaries                            | Session Instantiation | Model | Connecting Triples |  |  |
|------------------------------------------|-----------------------|-------|--------------------|--|--|
| Basic Concurrent Separation Logic (BCSL) |                       |       |                    |  |  |
| Heap Model Instan                        | ntiation              |       |                    |  |  |

## Structure of propositions

$$(Props, \vdash, *, emp) = (P(Heaps), \subseteq, *, \{u\})$$

- Heaps:  $\mathbb{N} \rightarrow_f \mathbb{N}$
- P(Heaps): Powerset
- ► *u*: Empty partial function.
- ►  $X * Y = \{h_X \bullet h_Y \mid h_X \in X \land h_Y \in Y \land h_X \bullet h_Y \downarrow\}$  where  $h \bullet h'$  denotes the union of disjoint heap.

| Preliminaries                            | Session Instantiation | Model | Connecting Triples |  |  |
|------------------------------------------|-----------------------|-------|--------------------|--|--|
| Basic Concurrent Separation Logic (BCSL) |                       |       |                    |  |  |
| Heap Model Insta                         | Intiation             |       |                    |  |  |

## Structure of propositions

$$(Props, \vdash, *, emp) = (P(Heaps), \subseteq, *, \{u\})$$

- Heaps:  $\mathbb{N} \rightarrow_f \mathbb{N}$
- P(Heaps): Powerset
- ► *u*: Empty partial function.
- ►  $X * Y = \{h_X \bullet h_Y \mid h_X \in X \land h_Y \in Y \land h_X \bullet h_Y \downarrow\}$  where  $h \bullet h'$  denotes the union of disjoint heap.

Mutation statement [n] := m where  $m, n \in \mathbb{N}$ .

| Preliminaries<br>○○○○○○○○○○●○○○○         | Session Instantiation | Model<br>0000 | Connecting Triples |  |  |
|------------------------------------------|-----------------------|---------------|--------------------|--|--|
| Basic Concurrent Separation Logic (BCSL) |                       |               |                    |  |  |
| Heap Model Instan                        | tiation               |               |                    |  |  |

## Structure of propositions

$$(Props, \vdash, *, emp) = (P(Heaps), \subseteq, *, \{u\})$$

- Heaps:  $\mathbb{N} \rightarrow_f \mathbb{N}$
- P(Heaps): Powerset
- ► *u*: Empty partial function.
- ►  $X * Y = \{h_X \bullet h_Y \mid h_X \in X \land h_Y \in Y \land h_X \bullet h_Y \downarrow\}$  where  $h \bullet h'$  denotes the union of disjoint heap.

Mutation statement [n] := m where  $m, n \in \mathbb{N}$ .

$$\overline{\{n\mapsto -\}[n]:=m\{n\mapsto m\}}$$

| Preliminaries<br>○○○○○○○○○○○○     | Session Instantiation | Model | Connecting Triples |
|-----------------------------------|-----------------------|-------|--------------------|
| Basic Concurrent Separation Logic | (BCSL)                |       |                    |
| Examples                          |                       |       |                    |

## Example (1 - Racey programs)

$$[10]:=23 \parallel [10]:=44$$

| Preliminaries                     | Session Instantiation | Model<br>0000 | Connecting Triples |
|-----------------------------------|-----------------------|---------------|--------------------|
| Basic Concurrent Separation Logic | (BCSL)                |               |                    |
| Examples                          |                       |               |                    |

## Example (1 - Racey programs)

$$[10] := 23 \parallel [10] := 44$$
  
 $10 \mapsto - * 10 \mapsto -$  is false

| Preliminaries                     | Session Instantiation | Model<br>0000 | Connecting Triples |
|-----------------------------------|-----------------------|---------------|--------------------|
| Basic Concurrent Separation Logic | (BCSL)                |               |                    |
| Examples                          |                       |               |                    |

## Example (1 - Racey programs)

$$[10] := 23 \parallel [10] := 44$$
  
 $10 \mapsto - * 10 \mapsto -$  is false

## Example (2 - Ownership Transfer via Shared Buffer)

$$\{emp\} \\ \{emp * emp\} \\ \{emp\} \\ x := cons(a, b); \\ \{x \mapsto -, -\} \\ putWhenEmpty(x); \\ \{emp\} \\ \{emp\} \\ \{emp\} \\ \{emp \} \\ \{emp \} \\ \{emp\} \\$$

| Preliminaries<br>○○○○○○○○○○○○○○○○○ | Session Instantiation | Model<br>0000 | Connecting Triples |
|------------------------------------|-----------------------|---------------|--------------------|
| Algebra                            |                       |               |                    |
| Outline                            |                       |               |                    |

## **Preliminaries**

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra
- Session Instantiation of BCSL
   BCSL/ST
  - Translation

## 3 Mode

- Predicate Transformer Model
- Connecting Triples
  - Dijkstra & Plotkin Triples

| Preliminaries                           | Session Instantiation | Model | <b>Connecting Triples</b> |
|-----------------------------------------|-----------------------|-------|---------------------------|
| 000000000000000000000000000000000000000 |                       |       |                           |

Algebra

#### Algebra for Concurrency (Hoare et al 2009)

- ► Two ordered monoids (S, ⊑, \*, u) and (S, ⊑, ;, skip) representing parallel and sequential composition, where \*, ; are montone and \* is commutative.
- Parallel and Sequencing are related by the Exchange Law

$$(p*r); (q*s) \sqsubseteq (p;q)*(r;s) \quad p,q,r,s \in S$$

| Preliminaries                           | Session Instantiation | Model | Connecting Triples |
|-----------------------------------------|-----------------------|-------|--------------------|
| 000000000000000000000000000000000000000 |                       |       |                    |

Algebra

## Algebra for Concurrency (Hoare et al 2009)

- ► Two ordered monoids (S, ⊆, \*, u) and (S, ⊆, ;, skip) representing parallel and sequential composition, where \*, ; are montone and \* is commutative.
- Parallel and Sequencing are related by the Exchange Law

$$(p*r); (q*s) \sqsubseteq (p;q)*(r;s) \quad p,q,r,s \in S$$



| Preliminaries<br>○○○○○○○○○○○○○ | Session Instantiation | Model<br>0000 | Connecting Triples |
|--------------------------------|-----------------------|---------------|--------------------|
| Algebra                        |                       |               |                    |
| Exchange Law                   |                       |               |                    |

#### Validates Plotkin Triple (to come)

- Concurrency Rule
- Frame Rule (when P \* skip = P)

| Preliminaries<br>○○○○○○○○○○○○○○ | Session Instantiation | Model<br>0000 | Connecting Triples |
|---------------------------------|-----------------------|---------------|--------------------|
| Algebra                         |                       |               |                    |
| Exchange Law                    |                       |               |                    |

### Validates Plotkin Triple (to come)

- Concurrency Rule
- Frame Rule (when P \* skip = P)

## $\{P\} C \{Q\} \Leftrightarrow P \sqsupseteq C; Q$

Proof:

$$\begin{array}{l} P \sqsupseteq C; Q \land P' \sqsupseteq C'; Q' \\ \Rightarrow P * P' \sqsupseteq (C; Q) * (C'; Q') & \text{monotonicity of} \\ \Rightarrow P * P' \sqsupseteq (C * C'); (Q * Q') & \text{exchange Law} \end{array}$$

| Preliminaries | Session Instantiation | Model | Connecting Triples |
|---------------|-----------------------|-------|--------------------|
| BCSL/ST       |                       |       |                    |
| Outline       |                       |       |                    |

#### **Preliminaries**

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra

# Session Instantiation of BCSL BCSL/ST

Translation

## 3 Model

• Predicate Transformer Model

## Connecting Triples

• Dijkstra & Plotkin Triples

| Preliminaries<br>0000000000000000000 | Session Instantiation<br>○●○○○ | Model<br>0000 | Connecting Triples |
|--------------------------------------|--------------------------------|---------------|--------------------|
| BCSL/ST                              |                                |               |                    |
| Structure                            |                                |               |                    |

#### $(Props, \vdash, *, emp)$

- Props to be the set of session typing contexts Δ
- $\Delta * \Delta'$  to be  $\Delta \circ \Delta'$
- *emp* is the empty context  $\emptyset$
- ►  $X \vdash Y$  where  $X \vdash Y$  iff X is inconsistent or  $\exists \Phi$ .  $X = Y \circ \Phi$

| Preliminaries | Session Instantiation | Model<br>0000 | Connecting Triples |
|---------------|-----------------------|---------------|--------------------|
| BCSL/ST       |                       |               |                    |
| Structure     |                       |               |                    |

#### $(Props, \vdash, *, emp)$

- Props to be the set of session typing contexts Δ
- $\Delta * \Delta'$  to be  $\Delta \circ \Delta'$
- ▶ emp is the empty context Ø
- ►  $X \vdash Y$  where  $X \vdash Y$  iff X is inconsistent or  $\exists \Phi$ .  $X = Y \circ \Phi$

## Commands

$$C ::= k?j.C \mid k!j \mid C \parallel C \mid C; C \mid$$
skip

| Preliminaries | Session Instantiation | Model<br>0000 | Connecting Triples |
|---------------|-----------------------|---------------|--------------------|
| BCSI /ST      |                       |               |                    |

## **Specialised Rules for Session Instantiation**

[Send] 
$$\overline{\{k: ! [\alpha]; \beta * j: \alpha\} k! j \{k: \beta\}}$$

[Receive] 
$$\frac{\{A * k : \beta * j : \alpha\} P\{B\}}{\{A * k : ?[\alpha]; \beta\} k? j. P\{B\}}$$

| Preliminaries | Session Instantiation | Model | Connecting Triples |
|---------------|-----------------------|-------|--------------------|
| Translation   |                       |       |                    |
| Outline       |                       |       |                    |

#### **Preliminaries**

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra

# Session Instantiation of BCSL BCSL/ST

Translation

## Model

Predicate Transformer Model

## Connecting Triples

• Dijkstra & Plotkin Triples

| Preliminaries | Session Instantiation | Model | Connecting Triples |
|---------------|-----------------------|-------|--------------------|
| Translation   |                       |       |                    |
| Translation   |                       |       |                    |

## BST to BSCL

| Preliminaries | Session Instantiation | Model | Connecting Triples |
|---------------|-----------------------|-------|--------------------|
| Translation   |                       |       |                    |
| Translation   |                       |       |                    |

## **BST to BSCL**

#### **Theorem 1 - Soundness & Completeness**

 $P \triangleright \Delta$  is provable in **BST** if and only if  $\{\Delta\} \langle\!\langle P \rangle\!\rangle \{emp\}$  is provable in **BCSL/ST** 

| Preliminaries               | Session Instantiation | Model<br>●ooo | Connecting Triples |
|-----------------------------|-----------------------|---------------|--------------------|
| Predicate Transformer Model |                       |               |                    |
| Outline                     |                       |               |                    |

#### **Preliminaries**

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra
- Session Instantiation of BCSL
   BCSL/ST
  - Translation

## 3 Model

Predicate Transformer Model

# 4 Connecting Triples

Dijkstra & Plotkin Triples

| Preliminaries               | Session Instantiation | Model<br>o●oo | Connecting Triples |
|-----------------------------|-----------------------|---------------|--------------------|
| Predicate Transformer Model |                       |               |                    |
| Structure                   |                       |               |                    |

#### **Propositions**

Suppose we have an ordered total commutative monoid  $(Props, \vdash, *, emp)$  with a least element  $\perp$ 

| Preliminaries               | Session Instantiation | Model<br>o●oo | Connecting Triples |
|-----------------------------|-----------------------|---------------|--------------------|
| Predicate Transformer Model |                       |               |                    |
| Structure                   |                       |               |                    |

#### **Propositions**

Suppose we have an ordered total commutative monoid  $(Props, \vdash, *, emp)$  with a least element  $\perp$ 

#### **Predicates**

- Model built from predicate transformers on non-empty down-wards closed subsets of *Props* (*Preds*).
- (*Preds*, ⊆) has a total commutative monoid structure (*Preds*, ⊆, ⊗, *I*)

$$\begin{array}{rcl} X \otimes Y &=& \{p \mid p \vdash x \ast y \land x \in X \land y \in Y\} \\ I &=& \{p \mid p \vdash emp\} \end{array}$$

| Preliminaries               | Session Instantiation | Model<br>⊙⊙●⊙ | Connecting Triples |
|-----------------------------|-----------------------|---------------|--------------------|
| Predicate Transformer Model |                       |               |                    |
| Structure                   |                       |               |                    |

## Commands

Montone functions space  $\textit{Preds} \rightarrow \textit{Preds}$ 

$$(F \parallel G)X = \bigcup \{FX_1 \otimes GX_2 \mid X_1 \otimes X_2 \subseteq X\}$$
  
nothing X = if X \ge I then I else false  
$$(F; G)X = F(G(X))$$
  
skip X = X

 $X \in Preds$ 

| Preliminaries               | Session Instantiation | Model<br>○○●○ | Connecting Triples |
|-----------------------------|-----------------------|---------------|--------------------|
| Predicate Transformer Model |                       |               |                    |
| Structure                   |                       |               |                    |

## Commands

Montone functions space  $\textit{Preds} \rightarrow \textit{Preds}$ 

$$(F \parallel G)X = \bigcup \{FX_1 \otimes GX_2 \mid X_1 \otimes X_2 \subseteq X\}$$
  
nothing X = if X \ge I then I else false  
$$(F; G)X = F(G(X))$$
  
skip X = X

#### $X \in Preds$

## Order

$$F \sqsubseteq G \iff \forall X. FX \supseteq GX.$$

| Preliminaries               | Session Instantiation | Model<br>○○○● | Connecting Triples |
|-----------------------------|-----------------------|---------------|--------------------|
| Predicate Transformer Model |                       |               |                    |
| Algebraic Structure         |                       |               |                    |

#### Monoids

(*Preds*,  $\sqsubseteq$ ,  $\parallel$ , nothing) and (*Preds*,  $\sqsubseteq$ , ;, *skip*) form monoids where  $\parallel$ , ; are monotone and  $\parallel$  is commutative.

| Preliminaries               | Session Instantiation | Model<br>○○○● | Connecting Triples |  |  |
|-----------------------------|-----------------------|---------------|--------------------|--|--|
| Predicate Transformer Model |                       |               |                    |  |  |
| Algebraic Structure         |                       |               |                    |  |  |

#### Monoids

(*Preds*,  $\sqsubseteq$ ,  $\parallel$ , nothing) and (*Preds*,  $\sqsubseteq$ , ;, *skip*) form monoids where  $\parallel$ , ; are monotone and  $\parallel$  is commutative.

#### **Exchange Law**

The predicates transformers satisfy

 $(F_1 \parallel F_2); (G_1 \parallel G_2) \sqsubseteq (F_1; G_1) \parallel (F_2; G_2)$ 

| Preliminaries              | Session Instantiation | Model | Connecting Triples |
|----------------------------|-----------------------|-------|--------------------|
| Dijkstra & Plotkin Triples |                       |       |                    |
| Outline                    |                       |       |                    |

#### **Preliminaries**

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra
- Session Instantiation of BCSL
   BCSL/ST
  - Translation

# Mode

• Predicate Transformer Model

# Connecting Triples

Dijkstra & Plotkin Triples

| Preliminaries              | Session Instantiation | Model<br>0000 | Connecting Triples |
|----------------------------|-----------------------|---------------|--------------------|
| Dijkstra & Plotkin Triples |                       |               |                    |
|                            |                       |               |                    |

## **Plotkin Triple**

# $\{P\} C \{Q\} \iff P \sqsupseteq C; Q$

| Preliminaries              | Session Instantiation | Model<br>0000 | Connecting Triples<br>○●○ |
|----------------------------|-----------------------|---------------|---------------------------|
| Dijkstra & Plotkin Triples |                       |               |                           |

## **Plotkin Triple**

$$\{P\} C \{Q\} \iff P \sqsupseteq C; Q$$

## Session Types

$$\{\Delta\} \ \mathcal{C} \ \{\Delta'\} \quad \Longleftrightarrow \quad \llbracket \Delta \rrbracket \sqsupseteq \llbracket \mathcal{C} \rrbracket; \llbracket \Delta' \rrbracket$$

| Preliminaries              | Session Instantiation | Model<br>0000 | Connecting Triples<br>○●○ |
|----------------------------|-----------------------|---------------|---------------------------|
| Dijkstra & Plotkin Triples |                       |               |                           |

## **Plotkin Triple**

$$\{P\} C \{Q\} \iff P \sqsupseteq C; Q$$

## Session Types

$$\{\Delta\} \ \mathcal{C} \ \{\Delta'\} \quad \Longleftrightarrow \quad \llbracket \Delta \rrbracket \sqsupseteq \llbracket \mathcal{C} \rrbracket; \ \llbracket \Delta' \rrbracket$$

#### Predicate Transformer Dijkstra Triple

$$\langle Y \rangle F \langle Z \rangle \quad \Longleftrightarrow \quad Y \subseteq FZ$$

| Preliminaries              | Session Instantiation | Model<br>0000 | Connecting Triples |
|----------------------------|-----------------------|---------------|--------------------|
| Dijkstra & Plotkin Triples |                       |               |                    |

## **Plotkin Triple**

$$\{P\} C \{Q\} \iff P \sqsupseteq C; Q$$

## **Session Types**

$$\{\Delta\} \ \mathcal{C} \ \{\Delta'\} \quad \Longleftrightarrow \quad \llbracket \Delta \rrbracket \sqsupseteq \llbracket \mathcal{C} \rrbracket; \ \llbracket \Delta' \rrbracket$$

Predicate Transformer Dijkstra Triple

$$\langle Y \rangle F \langle Z \rangle \quad \iff \quad Y \subseteq FZ$$

**Predicate Transformer Plotkin Triple** 

*trans*[Y]  $\supseteq$  F; *trans*[Z]

| Preliminaries              | Session Instantiation | Model | Connecting Triples |  |
|----------------------------|-----------------------|-------|--------------------|--|
| Dijkstra & Plotkin Triples |                       |       |                    |  |
| Dijkstra & Plotkin Triples |                       |       |                    |  |

Theorem 2: Predicate Transformers and Proof Theory Agree

Assuming that a local and monotone predicate transformer  $[c_{prim}]$  is given for a collection of primitive commands, then

$$p \in \llbracket c \rrbracket X \iff \exists q \in X. \{p\} c \{q\}$$

holds for all *c*, as long as it holds for primitive commands.

| Preliminaries              | Session Instantiation | Model | Connecting Triples |
|----------------------------|-----------------------|-------|--------------------|
| Dijkstra & Plotkin Triples |                       |       |                    |
| Dijkstra & Plotki          | in Triples            |       |                    |

Theorem 2: Predicate Transformers and Proof Theory Agree

Assuming that a local and monotone predicate transformer  $[[c_{prim}]]$  is given for a collection of primitive commands, then

$$p \in \llbracket c \rrbracket X \iff \exists q \in X. \{p\} c \{q\}$$

holds for all *c*, as long as it holds for primitive commands.

#### **Theorem 3: Predicate Transformers and Algebra Agree**

For all  $Y, Z \in Preds$  and monotone  $F : Preds \rightarrow Preds$ ,

$$Y \subseteq FZ \iff trans[Y] \supseteq F; trans[Z]$$





Questions...

www.eecs.qmul.ac.uk/~akbar/OnSeparationSessionTypesAlgebra.pdf

| Preliminaries | Session Instantiation | Model<br>0000 | Connecting Triples |
|---------------|-----------------------|---------------|--------------------|
|               |                       |               |                    |

#### **Exchange Law Proof**

$$(F_1 \parallel F_2); (G_1 \parallel G_2) \sqsubseteq (F_1; G_1) \parallel (F_2; G_2)$$

The validity of the exchange law can be seen from the following calculation.

$$\begin{array}{l} ((F_1 \parallel F_2); (G_1 \parallel G_2))X \\ = & \bigcup \{F_1 Y_1 \otimes F_2 Y_2 \mid Y_1 \otimes Y_2 \subseteq (G_1 \parallel G_2)X\} \\ = & \bigcup \{F_1 Y_1 \otimes F_2 Y_2 \mid Y_1 \otimes Y_2 \subseteq \bigcup \{G_1 X_1 \otimes G_2 X_2 \mid X_1 \otimes X_2 \subseteq X\}\} \\ \supseteq & \bigcup \{F_1 (G_1 X_1) \otimes F_2 (G_2 X_2) \mid X_1 \otimes X_2 \subseteq X\} \\ = & \bigcup \{(F_1; G_1) X_1 \otimes (F_2; G_2) X_2 \mid X_1 \otimes X_2 \subseteq X\} \\ = & ((F_1; G_1) \parallel (F_2; G_2))X \end{array}$$

In the  $\supseteq$  step we take  $Y_1 = G_1X_1$ ,  $Y_2 = G_2X_2$ . This step uses that  $X_1 \otimes X_2 \subseteq X \Rightarrow G_1X_1 \otimes G_2X_2 \subseteq \bigcup \{G_1X_1 \otimes G_2X_2 \mid X_1 \otimes X_2 \subseteq X\}.$ 

| Preliminaries | Session Instantiation | Model<br>0000 | Connecting Triples |
|---------------|-----------------------|---------------|--------------------|
|               |                       |               |                    |

#### **Predicate Converter (Trans)**

## do-after[Y]X = if X = Props then Y else false