
Preliminaries Session Instantiation Model Connecting Triples

On Separation, Session Types and Algebra

Akbar Hussain Peter W. O’Hearn Rasmus L. Petersen

Department of Computer Science
Queen Mary University of London

Dublin Concurrency Workshop, 2011

1

Preliminaries Session Instantiation Model Connecting Triples

Formalisms

Modularity

Session Types
I Process Calculi
I Message Passing

Concurrent Separation Logic
I Imperative Programs
I Shared Resource

Algebra

2

Preliminaries Session Instantiation Model Connecting Triples

Formalisms

Modularity

Session Types
I Process Calculi
I Message Passing

Concurrent Separation Logic
I Imperative Programs
I Shared Resource

Algebra

2

Preliminaries Session Instantiation Model Connecting Triples

Formalisms

Modularity

Session Types
I Process Calculi
I Message Passing

Concurrent Separation Logic
I Imperative Programs
I Shared Resource

Algebra

2

Preliminaries Session Instantiation Model Connecting Triples

Formalisms

Modularity

Session Types
I Process Calculi
I Message Passing

Concurrent Separation Logic
I Imperative Programs
I Shared Resource

Algebra

2

Preliminaries Session Instantiation Model Connecting Triples

Outline

1 Preliminaries
Baby Session Types (BST)
Basic Concurrent Separation Logic (BCSL)
Algebra

2 Session Instantiation of BCSL
BCSL/ST
Translation

3 Model
Predicate Transformer Model

4 Connecting Triples
Dijkstra & Plotkin Triples

3

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Outline

1 Preliminaries
Baby Session Types (BST)
Basic Concurrent Separation Logic (BCSL)
Algebra

2 Session Instantiation of BCSL
BCSL/ST
Translation

3 Model
Predicate Transformer Model

4 Connecting Triples
Dijkstra & Plotkin Triples

4

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Baby Session Types

Programs

P ::= k?j .P | k !j .P | P ‖ P | inact

Types

α, β ::= ![α];β | ?[α];β | end

Co-Types

![α];β =?[α];β ?[α];β =![α];β end = end

5

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Baby Session Types

Programs

P ::= k?j .P | k !j .P | P ‖ P | inact

Types

α, β ::= ![α];β | ?[α];β | end

Co-Types

![α];β =?[α];β ?[α];β =![α];β end = end

5

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Baby Session Types

Programs

P ::= k?j .P | k !j .P | P ‖ P | inact

Types

α, β ::= ![α];β | ?[α];β | end

Co-Types

![α];β =?[α];β ?[α];β =![α];β end = end

5

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Baby Session Types

Typing Context
I ∆ ranges over finite multisets of variable/type pairs

I ∆ is consistent when channels occur at most twice and are
co-types of each other

I ∆ is said to be complete if end is the only type that appears in it
and it is denoted by Φ.

I ∆ ◦∆′ is multiset union, where we write ∆ � ∆′ to mean that
∆ ◦∆′ is consistent.

Typing

P .∆

6

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Baby Session Types

Typing Context
I ∆ ranges over finite multisets of variable/type pairs
I ∆ is consistent when channels occur at most twice and are

co-types of each other

I ∆ is said to be complete if end is the only type that appears in it
and it is denoted by Φ.

I ∆ ◦∆′ is multiset union, where we write ∆ � ∆′ to mean that
∆ ◦∆′ is consistent.

Typing

P .∆

6

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Baby Session Types

Typing Context
I ∆ ranges over finite multisets of variable/type pairs
I ∆ is consistent when channels occur at most twice and are

co-types of each other
I ∆ is said to be complete if end is the only type that appears in it

and it is denoted by Φ.

I ∆ ◦∆′ is multiset union, where we write ∆ � ∆′ to mean that
∆ ◦∆′ is consistent.

Typing

P .∆

6

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Baby Session Types

Typing Context
I ∆ ranges over finite multisets of variable/type pairs
I ∆ is consistent when channels occur at most twice and are

co-types of each other
I ∆ is said to be complete if end is the only type that appears in it

and it is denoted by Φ.
I ∆ ◦∆′ is multiset union, where we write ∆ � ∆′ to mean that

∆ ◦∆′ is consistent.

Typing

P .∆

6

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Baby Session Types

Typing Context
I ∆ ranges over finite multisets of variable/type pairs
I ∆ is consistent when channels occur at most twice and are

co-types of each other
I ∆ is said to be complete if end is the only type that appears in it

and it is denoted by Φ.
I ∆ ◦∆′ is multiset union, where we write ∆ � ∆′ to mean that

∆ ◦∆′ is consistent.

Typing

P .∆

6

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Proof Rules for BST

[Consequence]
∆1 ` ∆2 P .∆2

P .∆1

[Inact]
inact . ∅ [Par]

P1 .∆1 P2 .∆2

P1 ‖ P2 .∆1 ◦∆2

[Receive]
P .∆ ◦ k : β ◦ j : α

k?j .P .∆ ◦ k : ?[α];β
[Send]

P .∆ ◦ k : β

k !j .P .∆ ◦ k : ![α];β ◦ j : α

7

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Proof Rules for BST

[Consequence]
∆1 ` ∆2 P .∆2

P .∆1

[Inact]
inact . ∅ [Par]

P1 .∆1 P2 .∆2

P1 ‖ P2 .∆1 ◦∆2

[Receive]
P .∆ ◦ k : β ◦ j : α

k?j .P .∆ ◦ k : ?[α];β
[Send]

P .∆ ◦ k : β

k !j .P .∆ ◦ k : ![α];β ◦ j : α

8

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k !x .inact) ‖ (k !y .inact) .∆

⇒ ∆ is not consistent

Example (2 - Ownership Transfer)
Let H = ![α];end

{h : H, h′ : H, k :![H];end, j :![H];end} {k :?[H];end, w : end} j :?[H];end}

k !h k?(x) j?(y)

{h′ : H, k : end, j :![H];end} {x : H, k : end, w : end} {y : H, j : end}

j!h′ x!w y?(z)

{k : end, j : end} {k : end, x : end} {j : end, y : end, z : end}

Process 1 Process 2 Process 3

9

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k !x .inact) ‖ (k !y .inact) .∆

⇒ ∆ is not consistent

Example (2 - Ownership Transfer)
Let H = ![α];end

{h : H, h′ : H, k :![H];end, j :![H];end} {k :?[H];end, w : end} j :?[H];end}

k !h k?(x) j?(y)

{h′ : H, k : end, j :![H];end} {x : H, k : end, w : end} {y : H, j : end}

j!h′ x!w y?(z)

{k : end, j : end} {k : end, x : end} {j : end, y : end, z : end}

Process 1 Process 2 Process 3

9

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k !x .inact) ‖ (k !y .inact) .∆

⇒ ∆ is not consistent

Example (2 - Ownership Transfer)
Let H = ![α];end

{h : H, h′ : H, k :![H];end, j :![H];end} {k :?[H];end, w : end} j :?[H];end}

k !h k?(x) j?(y)

{h′ : H, k : end, j :![H];end} {x : H, k : end, w : end} {y : H, j : end}

j!h′ x!w y?(z)

{k : end, j : end} {k : end, x : end} {j : end, y : end, z : end}

Process 1 Process 2 Process 3

9

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k !x .inact) ‖ (k !y .inact) .∆

⇒ ∆ is not consistent

Example (2 - Ownership Transfer)
Let H = ![α];end

{h : H, h′ : H, k :![H];end, j :![H];end} {k :?[H];end, w : end} {j :?[H];end}

k !h k?(x) j?(y)

{h′ : H, k : end, j :![H];end} {x : H, k : end, w : end} {y : H, j : end}

j!h′ x!w y?(z)

{k : end, j : end} {k : end, x : end} {j : end, y : end, z : end}

Process 1 Process 2 Process 3

10

Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k !x .inact) ‖ (k !y .inact) .∆

⇒ ∆ is not consistent

Example (2 - Ownership Transfer)
Let H = ![α];end

{h : H, h′ : H, k :![H];end, j :![H];end} {k :?[H];end, w : end} j :?[H];end}

k !h k?(x) j?(y)

{h′ : H, k : end, j :![H];end} {x : H, k : end, w : end} {y : H, j : end}

j!h′ x!w y?(z)

{k : end, j : end} {k : end, x : end} {j : end, y : end, z : end}

Process 1 Process 2 Process 3

11

Preliminaries Session Instantiation Model Connecting Triples

Basic Concurrent Separation Logic (BCSL)

Outline

1 Preliminaries
Baby Session Types (BST)
Basic Concurrent Separation Logic (BCSL)
Algebra

2 Session Instantiation of BCSL
BCSL/ST
Translation

3 Model
Predicate Transformer Model

4 Connecting Triples
Dijkstra & Plotkin Triples

12

Preliminaries Session Instantiation Model Connecting Triples

Basic Concurrent Separation Logic (BCSL)

Basic Concurrent Separation Logic

A preordered commutative monoid of propositions

(Props, `, ∗, emp)

A set of commands (Com)
Equipped with total binary operations c ‖ c′ and c; c′ with skip ∈ Com

13

Preliminaries Session Instantiation Model Connecting Triples

Basic Concurrent Separation Logic (BCSL)

Proof Rules for BCSL

[Skip] {X}skip {X} [Frame]
{X} c {Y}

{X ∗ F} c {Y ∗ F}

[Seq]
{X} c1 {Y} {Y} c2 {Z}

{X} c1; c2 {Z}
[Par]

{X1} c1 {Y1} {X2} c2 {Y2}
{X1 ∗ X2} c1 ‖ c2 {Y1 ∗ Y2}

[Consequence]
X ′ ` X {X} c {Y} Y ` Y ′

{X ′} c {Y ′}

14

Preliminaries Session Instantiation Model Connecting Triples

Basic Concurrent Separation Logic (BCSL)

Parallel Rules

[BST]
P1 .∆1 P2 .∆2

P1 ‖ P2 .∆1 ◦∆2

[BCSL]
{X1} c1 {Y1} {X2} c2 {Y2}
{X1 ∗ X2} c1 ‖ c2 {Y1 ∗ Y2}

15

Preliminaries Session Instantiation Model Connecting Triples

Basic Concurrent Separation Logic (BCSL)

Heap Model Instantiation

Structure of propositions

(Props, `, ∗, emp) = (P(Heaps), ⊆, ∗, {u})

I Heaps: N ⇀f N
I P(Heaps): Powerset
I u: Empty partial function.
I X ∗ Y = {hX • hY | hX ∈ X ∧ hY ∈ Y ∧ hX • hY ↓} where h • h′

denotes the union of disjoint heap.

Mutation statement [n] := m where m,n ∈ N.

{n 7→ –}[n] := m{n 7→ m}

16

Preliminaries Session Instantiation Model Connecting Triples

Basic Concurrent Separation Logic (BCSL)

Heap Model Instantiation

Structure of propositions

(Props, `, ∗, emp) = (P(Heaps), ⊆, ∗, {u})

I Heaps: N ⇀f N
I P(Heaps): Powerset
I u: Empty partial function.
I X ∗ Y = {hX • hY | hX ∈ X ∧ hY ∈ Y ∧ hX • hY ↓} where h • h′

denotes the union of disjoint heap.

Mutation statement [n] := m where m,n ∈ N.

{n 7→ –}[n] := m{n 7→ m}

16

Preliminaries Session Instantiation Model Connecting Triples

Basic Concurrent Separation Logic (BCSL)

Heap Model Instantiation

Structure of propositions

(Props, `, ∗, emp) = (P(Heaps), ⊆, ∗, {u})

I Heaps: N ⇀f N
I P(Heaps): Powerset
I u: Empty partial function.
I X ∗ Y = {hX • hY | hX ∈ X ∧ hY ∈ Y ∧ hX • hY ↓} where h • h′

denotes the union of disjoint heap.

Mutation statement [n] := m where m,n ∈ N.

{n 7→ –}[n] := m{n 7→ m}

16

Preliminaries Session Instantiation Model Connecting Triples

Basic Concurrent Separation Logic (BCSL)

Examples

Example (1 - Racey programs)

[10] := 23 ‖ [10] := 44

10 7→ − ∗ 10 7→ − is false

Example (2 - Ownership Transfer via Shared Buffer)
{emp}

{emp ∗ emp}
{emp} {emp}

x := cons(a,b); getWhenFull(y);
{x 7→ −,−} {y 7→ −,−}

putWhenEmpty(x); use(y);
{emp} {y 7→ −,−}

dispose(y)
{emp} {emp}

{emp ∗ emp}
{emp}

17

Preliminaries Session Instantiation Model Connecting Triples

Basic Concurrent Separation Logic (BCSL)

Examples

Example (1 - Racey programs)

[10] := 23 ‖ [10] := 44

10 7→ − ∗ 10 7→ − is false

Example (2 - Ownership Transfer via Shared Buffer)
{emp}

{emp ∗ emp}
{emp} {emp}

x := cons(a,b); getWhenFull(y);
{x 7→ −,−} {y 7→ −,−}

putWhenEmpty(x); use(y);
{emp} {y 7→ −,−}

dispose(y)
{emp} {emp}

{emp ∗ emp}
{emp}

17

Preliminaries Session Instantiation Model Connecting Triples

Basic Concurrent Separation Logic (BCSL)

Examples

Example (1 - Racey programs)

[10] := 23 ‖ [10] := 44

10 7→ − ∗ 10 7→ − is false

Example (2 - Ownership Transfer via Shared Buffer)
{emp}

{emp ∗ emp}
{emp} {emp}

x := cons(a,b); getWhenFull(y);
{x 7→ −,−} {y 7→ −,−}

putWhenEmpty(x); use(y);
{emp} {y 7→ −,−}

dispose(y)
{emp} {emp}

{emp ∗ emp}
{emp}

17

Preliminaries Session Instantiation Model Connecting Triples

Algebra

Outline

1 Preliminaries
Baby Session Types (BST)
Basic Concurrent Separation Logic (BCSL)
Algebra

2 Session Instantiation of BCSL
BCSL/ST
Translation

3 Model
Predicate Transformer Model

4 Connecting Triples
Dijkstra & Plotkin Triples

18

Preliminaries Session Instantiation Model Connecting Triples

Algebra

Algebra for Concurrency (Hoare et al 2009)

I Two ordered monoids (S,v, ∗,u) and (S,v, ; , skip) representing
parallel and sequential composition, where ∗, ; are montone and ∗
is commutative.

I Parallel and Sequencing are related by the Exchange Law

(p ∗ r); (q ∗ s) v (p; q) ∗ (r ; s) p,q, r , s ∈ S

'

&

$

%
��
;

∗

p

r

q

s

v

'

&

$

%
��

;

;

∗

p

r

q

s

19

Preliminaries Session Instantiation Model Connecting Triples

Algebra

Algebra for Concurrency (Hoare et al 2009)

I Two ordered monoids (S,v, ∗,u) and (S,v, ; , skip) representing
parallel and sequential composition, where ∗, ; are montone and ∗
is commutative.

I Parallel and Sequencing are related by the Exchange Law

(p ∗ r); (q ∗ s) v (p; q) ∗ (r ; s) p,q, r , s ∈ S

'

&

$

%
��
;

∗

p

r

q

s

v

'

&

$

%
��

;

;

∗

p

r

q

s

19

Preliminaries Session Instantiation Model Connecting Triples

Algebra

Exchange Law

Validates Plotkin Triple (to come)
I Concurrency Rule
I Frame Rule (when P ∗ skip = P)

{P}C {Q} ⇔ P w C; Q

Proof:

P w C; Q ∧ P ′ w C′; Q′

⇒ P ∗ P ′ w (C; Q) ∗ (C′; Q′) monotonicity of ∗
⇒ P ∗ P ′ w (C ∗ C′); (Q ∗Q′) exchange Law

20

Preliminaries Session Instantiation Model Connecting Triples

Algebra

Exchange Law

Validates Plotkin Triple (to come)
I Concurrency Rule
I Frame Rule (when P ∗ skip = P)

{P}C {Q} ⇔ P w C; Q

Proof:

P w C; Q ∧ P ′ w C′; Q′

⇒ P ∗ P ′ w (C; Q) ∗ (C′; Q′) monotonicity of ∗
⇒ P ∗ P ′ w (C ∗ C′); (Q ∗Q′) exchange Law

20

Preliminaries Session Instantiation Model Connecting Triples

BCSL/ST

Outline

1 Preliminaries
Baby Session Types (BST)
Basic Concurrent Separation Logic (BCSL)
Algebra

2 Session Instantiation of BCSL
BCSL/ST
Translation

3 Model
Predicate Transformer Model

4 Connecting Triples
Dijkstra & Plotkin Triples

21

Preliminaries Session Instantiation Model Connecting Triples

BCSL/ST

Structure

(Props,`, ∗,emp)

I Props to be the set of session typing contexts ∆

I ∆ ∗∆′ to be ∆ ◦∆′

I emp is the empty context ∅
I X ` Y where X ` Y iff X is inconsistent or ∃Φ. X = Y ◦ Φ

Commands

C ::= k?j .C | k !j | C ‖ C | C; C | skip

22

Preliminaries Session Instantiation Model Connecting Triples

BCSL/ST

Structure

(Props,`, ∗,emp)

I Props to be the set of session typing contexts ∆

I ∆ ∗∆′ to be ∆ ◦∆′

I emp is the empty context ∅
I X ` Y where X ` Y iff X is inconsistent or ∃Φ. X = Y ◦ Φ

Commands

C ::= k?j .C | k !j | C ‖ C | C; C | skip

22

Preliminaries Session Instantiation Model Connecting Triples

BCSL/ST

Specialised Rules for Session Instantiation

[Send] {k : ![α];β ∗ j : α} k !j {k : β}

[Receive]
{A ∗ k : β ∗ j : α}P {B}
{A ∗ k : ?[α];β} k?j .P {B}

23

Preliminaries Session Instantiation Model Connecting Triples

Translation

Outline

1 Preliminaries
Baby Session Types (BST)
Basic Concurrent Separation Logic (BCSL)
Algebra

2 Session Instantiation of BCSL
BCSL/ST
Translation

3 Model
Predicate Transformer Model

4 Connecting Triples
Dijkstra & Plotkin Triples

24

Preliminaries Session Instantiation Model Connecting Triples

Translation

Translation

BST to BSCL

〈〈inact〉〉 = skip

〈〈P ‖ Q〉〉 = 〈〈P〉〉 ‖ 〈〈Q〉〉

〈〈k?j .P〉〉 = k?j .〈〈P〉〉

〈〈k !j .P〉〉 = (k !j) ; 〈〈P〉〉

Theorem 1 - Soundness & Completeness
P .∆ is provable in BST if and only if {∆} 〈〈P〉〉 {emp} is provable in
BCSL/ST

25

Preliminaries Session Instantiation Model Connecting Triples

Translation

Translation

BST to BSCL

〈〈inact〉〉 = skip

〈〈P ‖ Q〉〉 = 〈〈P〉〉 ‖ 〈〈Q〉〉

〈〈k?j .P〉〉 = k?j .〈〈P〉〉

〈〈k !j .P〉〉 = (k !j) ; 〈〈P〉〉

Theorem 1 - Soundness & Completeness
P .∆ is provable in BST if and only if {∆} 〈〈P〉〉 {emp} is provable in
BCSL/ST

25

Preliminaries Session Instantiation Model Connecting Triples

Predicate Transformer Model

Outline

1 Preliminaries
Baby Session Types (BST)
Basic Concurrent Separation Logic (BCSL)
Algebra

2 Session Instantiation of BCSL
BCSL/ST
Translation

3 Model
Predicate Transformer Model

4 Connecting Triples
Dijkstra & Plotkin Triples

26

Preliminaries Session Instantiation Model Connecting Triples

Predicate Transformer Model

Structure

Propositions
Suppose we have an ordered total commutative monoid
(Props,`, ∗,emp) with a least element ⊥

Predicates
I Model built from predicate transformers on non-empty

down-wards closed subsets of Props (Preds).
I (Preds,⊆) has a total commutative monoid structure

(Preds,⊆,⊗, I)

X ⊗ Y = {p | p ` x ∗ y ∧ x ∈ X ∧ y ∈ Y}
I = {p | p ` emp}

27

Preliminaries Session Instantiation Model Connecting Triples

Predicate Transformer Model

Structure

Propositions
Suppose we have an ordered total commutative monoid
(Props,`, ∗,emp) with a least element ⊥

Predicates
I Model built from predicate transformers on non-empty

down-wards closed subsets of Props (Preds).
I (Preds,⊆) has a total commutative monoid structure

(Preds,⊆,⊗, I)

X ⊗ Y = {p | p ` x ∗ y ∧ x ∈ X ∧ y ∈ Y}
I = {p | p ` emp}

27

Preliminaries Session Instantiation Model Connecting Triples

Predicate Transformer Model

Structure

Commands
Montone functions space Preds → Preds

(F ‖ G)X =
⋃
{FX1 ⊗GX2 | X1 ⊗ X2 ⊆ X}

nothingX = if X ⊇ I then I else false

(F ; G)X = F (G(X))

skipX = X

X ∈ Preds

Order

F v G ⇐⇒ ∀X .FX ⊇ GX .

28

Preliminaries Session Instantiation Model Connecting Triples

Predicate Transformer Model

Structure

Commands
Montone functions space Preds → Preds

(F ‖ G)X =
⋃
{FX1 ⊗GX2 | X1 ⊗ X2 ⊆ X}

nothingX = if X ⊇ I then I else false

(F ; G)X = F (G(X))

skipX = X

X ∈ Preds

Order

F v G ⇐⇒ ∀X .FX ⊇ GX .

28

Preliminaries Session Instantiation Model Connecting Triples

Predicate Transformer Model

Algebraic Structure

Monoids
(Preds,v, ‖,nothing) and (Preds,v, ; , skip) form monoids where ‖, ;
are monotone and ‖ is commutative.

Exchange Law
The predicates transformers satisfy

(F1 ‖ F2); (G1 ‖ G2) v (F1; G1) ‖ (F2; G2)

29

Preliminaries Session Instantiation Model Connecting Triples

Predicate Transformer Model

Algebraic Structure

Monoids
(Preds,v, ‖,nothing) and (Preds,v, ; , skip) form monoids where ‖, ;
are monotone and ‖ is commutative.

Exchange Law
The predicates transformers satisfy

(F1 ‖ F2); (G1 ‖ G2) v (F1; G1) ‖ (F2; G2)

29

Preliminaries Session Instantiation Model Connecting Triples

Dijkstra & Plotkin Triples

Outline

1 Preliminaries
Baby Session Types (BST)
Basic Concurrent Separation Logic (BCSL)
Algebra

2 Session Instantiation of BCSL
BCSL/ST
Translation

3 Model
Predicate Transformer Model

4 Connecting Triples
Dijkstra & Plotkin Triples

30

Preliminaries Session Instantiation Model Connecting Triples

Dijkstra & Plotkin Triples

Futuristic pre/post spec in Algebra

Plotkin Triple

{P}C {Q} ⇐⇒ P w C; Q

Session Types

{∆}C {∆′} ⇐⇒ [[∆]] w [[C]]; [[∆′]]

Predicate Transformer Dijkstra Triple

〈Y 〉F 〈Z 〉 ⇐⇒ Y ⊆ FZ

Predicate Transformer Plotkin Triple

trans[Y] w F ; trans[Z]

31

Preliminaries Session Instantiation Model Connecting Triples

Dijkstra & Plotkin Triples

Futuristic pre/post spec in Algebra

Plotkin Triple

{P}C {Q} ⇐⇒ P w C; Q

Session Types

{∆}C {∆′} ⇐⇒ [[∆]] w [[C]]; [[∆′]]

Predicate Transformer Dijkstra Triple

〈Y 〉F 〈Z 〉 ⇐⇒ Y ⊆ FZ

Predicate Transformer Plotkin Triple

trans[Y] w F ; trans[Z]

31

Preliminaries Session Instantiation Model Connecting Triples

Dijkstra & Plotkin Triples

Futuristic pre/post spec in Algebra

Plotkin Triple

{P}C {Q} ⇐⇒ P w C; Q

Session Types

{∆}C {∆′} ⇐⇒ [[∆]] w [[C]]; [[∆′]]

Predicate Transformer Dijkstra Triple

〈Y 〉F 〈Z 〉 ⇐⇒ Y ⊆ FZ

Predicate Transformer Plotkin Triple

trans[Y] w F ; trans[Z]

31

Preliminaries Session Instantiation Model Connecting Triples

Dijkstra & Plotkin Triples

Futuristic pre/post spec in Algebra

Plotkin Triple

{P}C {Q} ⇐⇒ P w C; Q

Session Types

{∆}C {∆′} ⇐⇒ [[∆]] w [[C]]; [[∆′]]

Predicate Transformer Dijkstra Triple

〈Y 〉F 〈Z 〉 ⇐⇒ Y ⊆ FZ

Predicate Transformer Plotkin Triple

trans[Y] w F ; trans[Z]

31

Preliminaries Session Instantiation Model Connecting Triples

Dijkstra & Plotkin Triples

Dijkstra & Plotkin Triples

Theorem 2: Predicate Transformers and Proof Theory Agree
Assuming that a local and monotone predicate transformer [[cprim]] is
given for a collection of primitive commands, then

p ∈ [[c]]X ⇐⇒ ∃q ∈ X . {p} c {q}

holds for all c, as long as it holds for primitive commands.

Theorem 3: Predicate Transformers and Algebra Agree
For all Y ,Z ∈ Preds and monotone F : Preds → Preds,

Y ⊆ FZ ⇐⇒ trans[Y] w F ; trans[Z]

32

Preliminaries Session Instantiation Model Connecting Triples

Dijkstra & Plotkin Triples

Dijkstra & Plotkin Triples

Theorem 2: Predicate Transformers and Proof Theory Agree
Assuming that a local and monotone predicate transformer [[cprim]] is
given for a collection of primitive commands, then

p ∈ [[c]]X ⇐⇒ ∃q ∈ X . {p} c {q}

holds for all c, as long as it holds for primitive commands.

Theorem 3: Predicate Transformers and Algebra Agree
For all Y ,Z ∈ Preds and monotone F : Preds → Preds,

Y ⊆ FZ ⇐⇒ trans[Y] w F ; trans[Z]

32

Preliminaries Session Instantiation Model Connecting Triples

Modularity

Session Types
I Process Calculi
I Message Passing

Concurrent Separation Logic
I Imperative Programs
I Shared Memory

Algebra

Questions...

www.eecs.qmul.ac.uk/∼akbar/OnSeparationSessionTypesAlgebra.pdf

33

Preliminaries Session Instantiation Model Connecting Triples

Modularity

Session Types
I Process Calculi
I Message Passing

Concurrent Separation Logic
I Imperative Programs
I Shared Memory

Algebra

Questions...

www.eecs.qmul.ac.uk/∼akbar/OnSeparationSessionTypesAlgebra.pdf
33

Preliminaries Session Instantiation Model Connecting Triples

Exchange Law Proof

(F1 ‖ F2); (G1 ‖ G2) v (F1; G1) ‖ (F2; G2)

The validity of the exchange law can be seen from the following
calculation.

((F1 ‖ F2); (G1 ‖ G2))X
=

⋃
{F1Y1 ⊗ F2Y2 | Y1 ⊗ Y2 ⊆ (G1 ‖ G2)X}

=
⋃
{F1Y1 ⊗ F2Y2 | Y1 ⊗ Y2 ⊆

⋃
{G1X1 ⊗G2X2 | X1 ⊗ X2 ⊆ X}}

⊇
⋃
{F1(G1X1)⊗ F2(G2X2) | X1 ⊗ X2 ⊆ X}

=
⋃
{(F1; G1)X1 ⊗ (F2; G2)X2 | X1 ⊗ X2 ⊆ X}

= ((F1; G1) ‖ (F2; G2))X

In the ⊇ step we take Y1 = G1X1,Y2 = G2X2. This step uses that
X1 ⊗ X2 ⊆ X ⇒ G1X1 ⊗G2X2 ⊆

⋃
{G1X1 ⊗G2X2 | X1 ⊗ X2 ⊆ X}.

34

Preliminaries Session Instantiation Model Connecting Triples

Predicate Converter (Trans)

do-after[Y]X = if X = Props then Y else false

35

	Preliminaries
	Baby Session Types (BST)
	Basic Concurrent Separation Logic (BCSL)
	Algebra

	Session Instantiation of BCSL
	BCSL/ST
	Translation

	Model
	Predicate Transformer Model

	Connecting Triples
	Dijkstra & Plotkin Triples

	

