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Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Baby Session Types

Programs

P ::= k?j .P | k !j .P | P ‖ P | inact

Types

α, β ::= ![α];β | ?[α];β | end

Co-Types

![α];β =?[α];β ?[α];β =![α];β end = end
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Baby Session Types (BST)

Baby Session Types

Typing Context
I ∆ ranges over finite multisets of variable/type pairs

I ∆ is consistent when channels occur at most twice and are
co-types of each other

I ∆ is said to be complete if end is the only type that appears in it
and it is denoted by Φ.

I ∆ ◦∆′ is multiset union, where we write ∆ � ∆′ to mean that
∆ ◦∆′ is consistent.

Typing

P .∆
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Baby Session Types (BST)

Proof Rules for BST

[Consequence]
∆1 ` ∆2 P .∆2

P .∆1

[Inact]
inact . ∅ [Par]

P1 .∆1 P2 .∆2

P1 ‖ P2 .∆1 ◦∆2

[Receive]
P .∆ ◦ k : β ◦ j : α

k?j .P .∆ ◦ k : ?[α];β
[Send]

P .∆ ◦ k : β

k !j .P .∆ ◦ k : ![α];β ◦ j : α
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Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k !x .inact) ‖ (k !y .inact) .∆

⇒ ∆ is not consistent

Example (2 - Ownership Transfer)
Let H = ![α];end

{h : H, h′ : H, k :![H];end, j :![H];end} {k :?[H];end, w : end} j :?[H];end}

k !h k?(x) j?(y)

{h′ : H, k : end, j :![H];end} {x : H, k : end, w : end} {y : H, j : end}

j!h′ x!w y?(z)

{k : end, j : end} {k : end, x : end} {j : end, y : end, z : end}

Process 1 Process 2 Process 3

9



Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k !x .inact) ‖ (k !y .inact) .∆

⇒ ∆ is not consistent

Example (2 - Ownership Transfer)
Let H = ![α];end

{h : H, h′ : H, k :![H];end, j :![H];end} {k :?[H];end, w : end} j :?[H];end}

k !h k?(x) j?(y)

{h′ : H, k : end, j :![H];end} {x : H, k : end, w : end} {y : H, j : end}

j!h′ x!w y?(z)

{k : end, j : end} {k : end, x : end} {j : end, y : end, z : end}

Process 1 Process 2 Process 3

9



Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k !x .inact) ‖ (k !y .inact) .∆

⇒ ∆ is not consistent

Example (2 - Ownership Transfer)
Let H = ![α];end

{h : H, h′ : H, k :![H];end, j :![H];end} {k :?[H];end, w : end} j :?[H];end}

k !h k?(x) j?(y)

{h′ : H, k : end, j :![H];end} {x : H, k : end, w : end} {y : H, j : end}

j!h′ x!w y?(z)

{k : end, j : end} {k : end, x : end} {j : end, y : end, z : end}

Process 1 Process 2 Process 3

9



Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k !x .inact) ‖ (k !y .inact) .∆

⇒ ∆ is not consistent

Example (2 - Ownership Transfer)
Let H = ![α];end

{h : H, h′ : H, k :![H];end, j :![H];end} {k :?[H];end, w : end} {j :?[H];end}

k !h k?(x) j?(y)

{h′ : H, k : end, j :![H];end} {x : H, k : end, w : end} {y : H, j : end}

j!h′ x!w y?(z)

{k : end, j : end} {k : end, x : end} {j : end, y : end, z : end}

Process 1 Process 2 Process 3

10



Preliminaries Session Instantiation Model Connecting Triples

Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k !x .inact) ‖ (k !y .inact) .∆

⇒ ∆ is not consistent

Example (2 - Ownership Transfer)
Let H = ![α];end

{h : H, h′ : H, k :![H];end, j :![H];end} {k :?[H];end, w : end} j :?[H];end}

k !h k?(x) j?(y)

{h′ : H, k : end, j :![H];end} {x : H, k : end, w : end} {y : H, j : end}

j!h′ x!w y?(z)

{k : end, j : end} {k : end, x : end} {j : end, y : end, z : end}

Process 1 Process 2 Process 3

11



Preliminaries Session Instantiation Model Connecting Triples

Basic Concurrent Separation Logic (BCSL)

Outline

1 Preliminaries
Baby Session Types (BST)
Basic Concurrent Separation Logic (BCSL)
Algebra

2 Session Instantiation of BCSL
BCSL/ST
Translation

3 Model
Predicate Transformer Model

4 Connecting Triples
Dijkstra & Plotkin Triples

12



Preliminaries Session Instantiation Model Connecting Triples

Basic Concurrent Separation Logic (BCSL)

Basic Concurrent Separation Logic

A preordered commutative monoid of propositions

(Props, `, ∗, emp)

A set of commands (Com)
Equipped with total binary operations c ‖ c′ and c; c′ with skip ∈ Com
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Basic Concurrent Separation Logic (BCSL)

Proof Rules for BCSL

[Skip] {X}skip {X} [Frame]
{X} c {Y}

{X ∗ F} c {Y ∗ F}

[Seq]
{X} c1 {Y} {Y} c2 {Z}

{X} c1; c2 {Z}
[Par]

{X1} c1 {Y1} {X2} c2 {Y2}
{X1 ∗ X2} c1 ‖ c2 {Y1 ∗ Y2}

[Consequence]
X ′ ` X {X} c {Y} Y ` Y ′

{X ′} c {Y ′}
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Basic Concurrent Separation Logic (BCSL)

Parallel Rules

[BST]
P1 .∆1 P2 .∆2

P1 ‖ P2 .∆1 ◦∆2

[BCSL]
{X1} c1 {Y1} {X2} c2 {Y2}
{X1 ∗ X2} c1 ‖ c2 {Y1 ∗ Y2}
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Basic Concurrent Separation Logic (BCSL)

Heap Model Instantiation

Structure of propositions

(Props, `, ∗, emp) = (P(Heaps), ⊆, ∗, {u})

I Heaps: N ⇀f N
I P(Heaps): Powerset
I u: Empty partial function.
I X ∗ Y = {hX • hY | hX ∈ X ∧ hY ∈ Y ∧ hX • hY ↓} where h • h′

denotes the union of disjoint heap.

Mutation statement [n] := m where m,n ∈ N.

{n 7→ –}[n] := m{n 7→ m}
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Basic Concurrent Separation Logic (BCSL)

Examples

Example (1 - Racey programs)

[10] := 23 ‖ [10] := 44

10 7→ − ∗ 10 7→ − is false

Example (2 - Ownership Transfer via Shared Buffer)
{emp}

{emp ∗ emp}
{emp} {emp}

x := cons(a,b); getWhenFull(y);
{x 7→ −,−} {y 7→ −,−}

putWhenEmpty(x); use(y);
{emp} {y 7→ −,−}

dispose(y)
{emp} {emp}

{emp ∗ emp}
{emp}
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Algebra

Algebra for Concurrency (Hoare et al 2009)

I Two ordered monoids (S,v, ∗,u) and (S,v, ; , skip) representing
parallel and sequential composition, where ∗, ; are montone and ∗
is commutative.

I Parallel and Sequencing are related by the Exchange Law

(p ∗ r); (q ∗ s) v (p; q) ∗ (r ; s) p,q, r , s ∈ S

'

&

$

%
��
;

∗

p

r

q

s

v

'

&

$

%
��

;

;

∗

p

r

q

s
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Algebra

Exchange Law

Validates Plotkin Triple (to come)
I Concurrency Rule
I Frame Rule (when P ∗ skip = P)

{P}C {Q} ⇔ P w C; Q

Proof:

P w C; Q ∧ P ′ w C′; Q′

⇒ P ∗ P ′ w (C; Q) ∗ (C′; Q′) monotonicity of ∗
⇒ P ∗ P ′ w (C ∗ C′); (Q ∗Q′) exchange Law
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BCSL/ST

Structure

(Props,`, ∗,emp)

I Props to be the set of session typing contexts ∆

I ∆ ∗∆′ to be ∆ ◦∆′

I emp is the empty context ∅
I X ` Y where X ` Y iff X is inconsistent or ∃Φ. X = Y ◦ Φ

Commands

C ::= k?j .C | k !j | C ‖ C | C; C | skip
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BCSL/ST

Specialised Rules for Session Instantiation

[Send] {k : ![α];β ∗ j : α} k !j {k : β}

[Receive]
{A ∗ k : β ∗ j : α}P {B}
{A ∗ k : ?[α];β} k?j .P {B}
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Translation

Translation

BST to BSCL

〈〈inact〉〉 = skip

〈〈P ‖ Q〉〉 = 〈〈P〉〉 ‖ 〈〈Q〉〉

〈〈k?j .P〉〉 = k?j .〈〈P〉〉

〈〈k !j .P〉〉 = (k !j) ; 〈〈P〉〉

Theorem 1 - Soundness & Completeness
P .∆ is provable in BST if and only if {∆} 〈〈P〉〉 {emp} is provable in
BCSL/ST
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Predicate Transformer Model

Structure

Propositions
Suppose we have an ordered total commutative monoid
(Props,`, ∗,emp) with a least element ⊥

Predicates
I Model built from predicate transformers on non-empty

down-wards closed subsets of Props (Preds).
I (Preds,⊆) has a total commutative monoid structure

(Preds,⊆,⊗, I)

X ⊗ Y = {p | p ` x ∗ y ∧ x ∈ X ∧ y ∈ Y}
I = {p | p ` emp}
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Predicate Transformer Model

Structure

Commands
Montone functions space Preds → Preds

(F ‖ G)X =
⋃
{FX1 ⊗GX2 | X1 ⊗ X2 ⊆ X}

nothingX = if X ⊇ I then I else false

(F ; G)X = F (G(X ))

skipX = X

X ∈ Preds

Order

F v G ⇐⇒ ∀X .FX ⊇ GX .

28
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Predicate Transformer Model

Algebraic Structure

Monoids
(Preds,v, ‖,nothing) and (Preds,v, ; , skip) form monoids where ‖, ;
are monotone and ‖ is commutative.

Exchange Law
The predicates transformers satisfy

(F1 ‖ F2); (G1 ‖ G2) v (F1; G1) ‖ (F2; G2)

29



Preliminaries Session Instantiation Model Connecting Triples

Predicate Transformer Model

Algebraic Structure

Monoids
(Preds,v, ‖,nothing) and (Preds,v, ; , skip) form monoids where ‖, ;
are monotone and ‖ is commutative.

Exchange Law
The predicates transformers satisfy

(F1 ‖ F2); (G1 ‖ G2) v (F1; G1) ‖ (F2; G2)

29



Preliminaries Session Instantiation Model Connecting Triples

Dijkstra & Plotkin Triples

Outline
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Dijkstra & Plotkin Triples

Futuristic pre/post spec in Algebra

Plotkin Triple

{P}C {Q} ⇐⇒ P w C; Q

Session Types

{∆}C {∆′} ⇐⇒ [[∆]] w [[C]]; [[∆′]]

Predicate Transformer Dijkstra Triple

〈Y 〉F 〈Z 〉 ⇐⇒ Y ⊆ FZ

Predicate Transformer Plotkin Triple

trans[Y ] w F ; trans[Z ]
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{P}C {Q} ⇐⇒ P w C; Q
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Dijkstra & Plotkin Triples

Dijkstra & Plotkin Triples

Theorem 2: Predicate Transformers and Proof Theory Agree
Assuming that a local and monotone predicate transformer [[cprim]] is
given for a collection of primitive commands, then

p ∈ [[c]]X ⇐⇒ ∃q ∈ X . {p} c {q}

holds for all c, as long as it holds for primitive commands.

Theorem 3: Predicate Transformers and Algebra Agree
For all Y ,Z ∈ Preds and monotone F : Preds → Preds,

Y ⊆ FZ ⇐⇒ trans[Y ] w F ; trans[Z ]
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Modularity

Session Types
I Process Calculi
I Message Passing

Concurrent Separation Logic
I Imperative Programs
I Shared Memory

Algebra

Questions...

www.eecs.qmul.ac.uk/∼akbar/OnSeparationSessionTypesAlgebra.pdf
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Exchange Law Proof

(F1 ‖ F2); (G1 ‖ G2) v (F1; G1) ‖ (F2; G2)

The validity of the exchange law can be seen from the following
calculation.

((F1 ‖ F2); (G1 ‖ G2))X
=

⋃
{F1Y1 ⊗ F2Y2 | Y1 ⊗ Y2 ⊆ (G1 ‖ G2)X}

=
⋃
{F1Y1 ⊗ F2Y2 | Y1 ⊗ Y2 ⊆

⋃
{G1X1 ⊗G2X2 | X1 ⊗ X2 ⊆ X}}

⊇
⋃
{F1(G1X1)⊗ F2(G2X2) | X1 ⊗ X2 ⊆ X}

=
⋃
{(F1; G1)X1 ⊗ (F2; G2)X2 | X1 ⊗ X2 ⊆ X}

= ((F1; G1) ‖ (F2; G2))X

In the ⊇ step we take Y1 = G1X1,Y2 = G2X2. This step uses that
X1 ⊗ X2 ⊆ X ⇒ G1X1 ⊗G2X2 ⊆

⋃
{G1X1 ⊗G2X2 | X1 ⊗ X2 ⊆ X}.
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Predicate Converter (Trans)

do-after[Y ]X = if X = Props then Y else false
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