On Separation, Session Types and Algebra

Akbar Hussain
Peter W. O'Hearn
Rasmus L. Petersen

Department of Computer Science
Queen Mary University of London

Dublin Concurrency Workshop, 2011

Formalisms

Modularity

Formalisms

Modularity

Session Types

- Process Calculi
- Message Passing

Formalisms

Modularity

Session Types

- Process Calculi
- Message Passing

Concurrent Separation Logic

- Imperative Programs
- Shared Resource

Formalisms

Modularity

Session Types

- Process Calculi
- Message Passing

Concurrent Separation Logic

- Imperative Programs
- Shared Resource

Algebra

Outline

(1) Preliminaries

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra
(2) Session Instantiation of BCSL
- BCSL/ST
- Translation
(3) Model
- Predicate Transformer Model

4 Connecting Triples

- Dijkstra \& Plotkin Triples

Outline

(1) Preliminaries

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra
(2) Session Instantiation of BCSL
- BCSL/ST
- Translation
(3) Model
- Predicate Transformer Model
(4) Connecting Triples
- Dijkstra \& Plotkin Triples

Baby Session Types (BST)

Baby Session Types

Programs

$$
P::=k ? j . P|k!j . P| P \| P \mid \text { inact }
$$

Baby Session Types (BST)

Baby Session Types

Programs

$$
P::=k ? j . P|k!j . P| P \| P \mid \text { inact }
$$

Types

$$
\alpha, \beta::=![\alpha] ; \beta|?[\alpha] ; \beta| \text { end }
$$

Baby Session Types (BST)

Baby Session Types

Programs

$$
P::=k ? j . P|k!j . P| P \| P \mid \text { inact }
$$

Types

$$
\alpha, \beta::=![\alpha] ; \beta|?[\alpha] ; \beta| \text { end }
$$

Co-Types

$$
\overline{![\alpha] ; \beta}=?[\alpha] ; \bar{\beta} \quad \bar{?}[\alpha] ; \beta=![\alpha] ; \bar{\beta} \quad \overline{\text { end }}=\text { end }
$$

Baby Session Types (BST)

Baby Session Types

Typing Context

- Δ ranges over finite multisets of variable/type pairs

Baby Session Types (BST)

Baby Session Types

Typing Context

- Δ ranges over finite multisets of variable/type pairs
- Δ is consistent when channels occur at most twice and are co-types of each other

Baby Session Types (BST)

Baby Session Types

Typing Context

- Δ ranges over finite multisets of variable/type pairs
- Δ is consistent when channels occur at most twice and are co-types of each other
- Δ is said to be complete if end is the only type that appears in it and it is denoted by Φ.

Baby Session Types (BST)

Baby Session Types

Typing Context

- Δ ranges over finite multisets of variable/type pairs
- Δ is consistent when channels occur at most twice and are co-types of each other
- Δ is said to be complete if end is the only type that appears in it and it is denoted by Φ.
- $\Delta \circ \Delta^{\prime}$ is multiset union, where we write $\Delta \asymp \Delta^{\prime}$ to mean that $\Delta \circ \Delta^{\prime}$ is consistent.

Baby Session Types (BST)

Baby Session Types

Typing Context

- Δ ranges over finite multisets of variable/type pairs
- Δ is consistent when channels occur at most twice and are co-types of each other
- Δ is said to be complete if end is the only type that appears in it and it is denoted by Φ.
- $\Delta \circ \Delta^{\prime}$ is multiset union, where we write $\Delta \asymp \Delta^{\prime}$ to mean that $\Delta \circ \Delta^{\prime}$ is consistent.

Typing

$$
P \triangleright \Delta
$$

Baby Session Types (BST)

Proof Rules for BST

$$
\begin{array}{r}
{\left[\text { Consequence] } \frac{\Delta_{1} \vdash \Delta_{2} P \triangleright \Delta_{2}}{P \triangleright \Delta_{1}}\right.} \\
{\left[\text { Inact } \frac{}{\text { inact } \triangleright \emptyset}\right.} \\
{\left[\text { [Par] } \frac{P_{1} \triangleright \Delta_{1} \quad P_{2} \triangleright \Delta_{2}}{P_{1} \| P_{2} \triangleright \Delta_{1} \circ \Delta_{2}}\right.} \\
{\left[\text { Receive } \frac{P \triangleright \Delta \circ k: \beta \circ j: \alpha}{k ? j . P \triangleright \Delta \circ k: ?[\alpha] ; \beta}\right.} \\
{\left[\text { [Send] } \frac{P \triangleright \Delta \circ k: \beta}{k!j . P \triangleright \Delta \circ k:![\alpha] ; \beta \circ j: \alpha}\right.}
\end{array}
$$

Baby Session Types (BST)

Proof Rules for BST

$$
\begin{array}{r}
{\left[\text { Consequence] } \frac{\Delta_{1} \vdash \Delta_{2} P \triangleright \Delta_{2}}{P \triangleright \Delta_{1}}\right.} \\
{\left[\text { Inact } \frac{}{\text { inact } \triangleright \emptyset}\right.} \\
{\left[\text { [Par] } \frac{P_{1} \triangleright \Delta_{1} \quad P_{2} \triangleright \Delta_{2}}{P_{1} \| P_{2} \triangleright \Delta_{1} \circ \Delta_{2}}\right.} \\
{[\text { Receive }] \frac{P \triangleright \Delta \circ k: \beta \circ j: \alpha}{k ? j . P \triangleright \Delta \circ k: ?[\alpha] ; \beta} \quad[\text { Send }] \frac{P \triangleright \Delta \circ k: \beta}{k!j . P \triangleright \Delta \circ k:![\alpha] ; \beta \circ j: \alpha}}
\end{array}
$$

Baby Session Types (BST)

Examples

Example (1-Racey programs do not type check)

$$
(k!x . i n a c t)|\mid(k!y . \text { inact }) \triangleright \Delta
$$

Baby Session Types (BST)

Examples

Example (1-Racey programs do not type check)

$(k!x$. inact $) \|(k!y$. inact $) \triangleright \Delta$
$\Rightarrow \Delta$ is not consistent

Baby Session Types (BST)

Examples

Example (1-Racey programs do not type check)

(k!x.inact) || (k!y.inact) $\triangleright \Delta$
$\Rightarrow \Delta$ is not consistent

Example (2 - Ownership Transfer)

Let $H=![\alpha] ;$ end
$\left\{h: H, h^{\prime}: \bar{H}, k:![H] ;\right.$ end, $j:![\bar{H}] ;$ end $\}$
$k!h$
$\left\{h^{\prime}: \bar{H}, k:\right.$ end, $j:![\bar{H}] ;$ end $\}$
$j!h^{\prime}$
$\{k:$ end, $j:$ end $\}$
Process 1

Baby Session Types (BST)

Examples

Example (1-Racey programs do not type check)

(k!x.inact) || (k!y.inact) $\triangleright \Delta$
$\Rightarrow \Delta$ is not consistent

Example (2-Ownership Transfer)

Let $H=![\alpha]$; end		
$\left\{h: H, h^{\prime}: \bar{H}, \boldsymbol{k}:![H] ;\right.$ end, $j:![\bar{H}]$; end $\}$	$\{k: ?[H] ;$ end, $w:$ end $\}$	$\{j: ?[\bar{H}]$; end $\}$
$k!h$	$k ?(x)$	$j ?(y)$
$\left\{h^{\prime}: \bar{H}, k\right.$: end, $j:![\bar{H}] ;$ end $\}$	$\{x: H, k:$ end, $w:$ end $\}$	$\{y: \bar{H}, j:$ end $\}$
$j!h^{\prime}$	$x!w$	$y ?(z)$
$\{k$: end, j : end $\}$	$\{k$: end, x : end $\}$	nd, \boldsymbol{y} : end, \boldsymbol{z}
Process 1	Process 2	Process 3

Baby Session Types (BST)

Examples

Example (1-Racey programs do not type check)

(k!x.inact) || (k!y.inact) $\triangleright \Delta$
$\Rightarrow \Delta$ is not consistent

Example (2 - Ownership Transfer)

Let $H=![\alpha] ;$ end
$\left\{h: H, h^{\prime}: \bar{H}, k:![H] ;\right.$ end, $j:![\bar{H}] ;$ end $\}$
$k!h$
$\left\{h^{\prime}: \bar{H}, k:\right.$ end, $j:![\bar{H}] ;$ end $\}$
$j!h^{\prime}$
$\{k:$ end, $j:$ end $\}$
Process 1

Outline

(1) Preliminaries

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra

2) Session Instantiation of BCSL

- BCSL/ST
- Translation
(3) Model
- Predicate Transformer Model
(4) Connecting Triples
- Dijkstra \& Plotkin Triples

Basic Concurrent Separation Logic (BCSL)

Basic Concurrent Separation Logic

A preordered commutative monoid of propositions

$$
(\text { Props }, \vdash, *, \text { emp })
$$

A set of commands (Com)

Equipped with total binary operations $c \| c^{\prime}$ and c; c^{\prime} with $s k i p \in C o m$

Basic Concurrent Separation Logic (BCSL)

Proof Rules for BCSL

[Skip] $\overline{\{X\} \text { skip }\{X\}}$

$$
\text { [Frame] } \frac{\{X\} c\{Y\}}{\{X * F\} c\{Y * F\}}
$$

$$
\begin{gathered}
\text { [Seq] } \frac{\{X\} c_{1}\{Y\}\{Y\} c_{2}\{Z\}}{\{X\} c_{1} ; c_{2}\{Z\}} \quad \text { PPar } \frac{\left\{X_{1}\right\} c_{1}\left\{Y_{1}\right\} \quad\left\{X_{2}\right\} c_{2}\left\{Y_{2}\right\}}{\left\{X_{1} * X_{2}\right\} c_{1} \| c_{2}\left\{Y_{1} * Y_{2}\right\}} \\
\text { [Consequence] } \frac{X^{\prime} \vdash X\{X\} c\{Y\} \quad Y \vdash Y^{\prime}}{\left\{X^{\prime}\right\} c\left\{Y^{\prime}\right\}}
\end{gathered}
$$

Basic Concurrent Separation Logic (BCSL)

Parallel Rules

$$
[\mathrm{BST}] \frac{P_{1} \triangleright \Delta_{1} \quad P_{2} \triangleright \Delta_{2}}{P_{1} \| P_{2} \triangleright \Delta_{1} \circ \Delta_{2}}
$$

[BCSL] $\frac{\left\{X_{1}\right\} c_{1}\left\{Y_{1}\right\} \quad\left\{X_{2}\right\} c_{2}\left\{Y_{2}\right\}}{\left\{X_{1} * X_{2}\right\} c_{1} \| c_{2}\left\{Y_{1} * Y_{2}\right\}}$

Basic Concurrent Separation Logic (BCSL)

Heap Model Instantiation

Structure of propositions

$$
(\text { Props }, \vdash, *, \text { emp })=(P(\text { Heaps }), \subseteq, *,\{u\})
$$

- Heaps: $\mathbb{N} \rightharpoonup_{f} \mathbb{N}$
- P(Heaps): Powerset
- u : Empty partial function.
- $X * Y=\left\{h_{X} \bullet h_{Y} \mid h_{X} \in X \wedge h_{Y} \in Y \wedge h_{X} \bullet h_{Y} \downarrow\right\}$ where $h \bullet h^{\prime}$ denotes the union of disjoint heap.

Basic Concurrent Separation Logic (BCSL)

Heap Model Instantiation

Structure of propositions

$$
(\text { Props, } \vdash, *, \text { emp })=(P(\text { Heaps }), \subseteq, *,\{u\})
$$

- Heaps: $\mathbb{N} \rightarrow_{f} \mathbb{N}$
- P(Heaps): Powerset
- u : Empty partial function.
- $X * Y=\left\{h_{X} \bullet h_{Y} \mid h_{X} \in X \wedge h_{Y} \in Y \wedge h_{X} \bullet h_{Y} \downarrow\right\}$ where $h \bullet h^{\prime}$ denotes the union of disjoint heap.

Mutation statement $[n]:=m$ where $m, n \in \mathbb{N}$.

Basic Concurrent Separation Logic (BCSL)

Heap Model Instantiation

Structure of propositions

$$
(\text { Props, } \vdash, *, \text { emp })=(P(\text { Heaps }), \subseteq, *,\{u\})
$$

- Heaps: $\mathbb{N} \rightarrow_{f} \mathbb{N}$
- P(Heaps): Powerset
- u : Empty partial function.
- $X * Y=\left\{h_{X} \bullet h_{Y} \mid h_{X} \in X \wedge h_{Y} \in Y \wedge h_{X} \bullet h_{Y} \downarrow\right\}$ where $h \bullet h^{\prime}$ denotes the union of disjoint heap.

Mutation statement $[n]:=m$ where $m, n \in \mathbb{N}$.

$$
\overline{\{n \mapsto-\}[n]:=m\{n \mapsto m\}}
$$

Examples

Example (1-Racey programs)

$$
[10]:=23| |[10]:=44
$$

Examples

Example (1-Racey programs)

$$
\begin{gathered}
{[10]:=23 \|[10]:=44} \\
10 \mapsto-* 10 \mapsto-\text { is false }
\end{gathered}
$$

Basic Concurrent Separation Logic (BCSL)

Examples

Example (1-Racey programs)

$$
\begin{gathered}
{[10]:=23 \|[10]:=44} \\
10 \mapsto-* 10 \mapsto-\text { is false }
\end{gathered}
$$

Example (2-Ownership Transfer via Shared Buffer)

$\begin{gathered} \{e m p\} \\ \{e m p * e m p\} \end{gathered}$	
$x:=\begin{gathered} \{e m p\} \\ x: \operatorname{cons}(\mathrm{a}, \mathrm{~b}) ; \end{gathered}$	$\begin{gathered} \{\text { emp\} } \\ \text { getWhenFull(} y \text {); } \end{gathered}$
$\{x \mapsto-,-\}$	$\{y \mapsto-,-\}$
putWhenEmpty (x);	use(y);
\{emp\}	$\{y \mapsto-,-\}$
	dispose(y)
\{emp\}	\{emp\}
\{emp * emp \}	
\{emp\}	

Outline

(1) Preliminaries

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra
(2) Session Instantiation of BCSL
- BCSL/ST
- Translation
(3) Model
- Predicate Transformer Model
(4) Connecting Triples
- Dijkstra \& Plotkin Triples

Algebra for Concurrency (Hoare et al 2009)

- Two ordered monoids ($S, \sqsubseteq, *, u$) and ($S, \sqsubseteq, ;$, skip) representing parallel and sequential composition, where $*$, ; are montone and $*$ is commutative.
- Parallel and Sequencing are related by the Exchange Law

$$
(p * r) ;(q * s) \sqsubseteq(p ; q) *(r ; s) \quad p, q, r, s \in S
$$

Algebra

Algebra for Concurrency (Hoare et al 2009)

- Two ordered monoids ($S, \sqsubseteq, *, u$) and ($S, \sqsubseteq, ;$, skip) representing parallel and sequential composition, where $*$, ; are montone and $*$ is commutative.
- Parallel and Sequencing are related by the Exchange Law

$$
(p * r) ;(q * s) \sqsubseteq(p ; q) *(r ; s) \quad p, q, r, s \in S
$$

Exchange Law

Validates Plotkin Triple (to come)

- Concurrency Rule
- Frame Rule (when P * skip $=P$)

Algebra

Exchange Law

Validates Plotkin Triple (to come)

- Concurrency Rule
- Frame Rule (when P *skip $=P$)

$$
\{P\} C\{Q\} \Leftrightarrow P \sqsupseteq C ; Q
$$

Proof:

$$
\begin{aligned}
& P \sqsupseteq C ; Q \wedge P^{\prime} \sqsupseteq C^{\prime} ; Q^{\prime} \\
\Rightarrow & P * P^{\prime} \sqsupseteq(C ; Q) *\left(C^{\prime} ; Q^{\prime}\right) \quad \text { monotonicity of } * \\
\Rightarrow & P * P^{\prime} \sqsupseteq\left(C * C^{\prime}\right) ;\left(Q * Q^{\prime}\right) \quad \text { exchange Law }
\end{aligned}
$$

Outline

(1) Preliminaries

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra
(2) Session Instantiation of BCSL - BCSL/ST
- Translation
(3) Model
- Predicate Transformer Model
(4) Connecting Triples
- Dijkstra \& Plotkin Triples

Structure

(Props, $\vdash, *$, emp)

- Props to be the set of session typing contexts Δ
- $\Delta * \Delta^{\prime}$ to be $\Delta \circ \Delta^{\prime}$
- emp is the empty context \emptyset
- $X \vdash Y$ where $X \vdash Y$ iff X is inconsistent or $\exists \Phi . X=Y \circ \Phi$

BCSLST

Structure

(Props, $\vdash, *$, emp)

- Props to be the set of session typing contexts Δ
- $\Delta * \Delta^{\prime}$ to be $\Delta \circ \Delta^{\prime}$
- emp is the empty context \emptyset
- $X \vdash Y$ where $X \vdash Y$ iff X is inconsistent or $\exists \Phi$. $X=Y \circ \Phi$

Commands

$$
C::=k ? j . C|k!j| C \| C|C ; C| \text { skip }
$$

BCSLST

Specialised Rules for Session Instantiation

[Send] $\overline{\{k:![\alpha] ; \beta * j: \alpha\} k!j\{k: \beta\}}$
[Receive] $\frac{\{A * k: \beta * j: \alpha\} P\{B\}}{\{A * k: ?[\alpha] ; \beta\} k ? j . P\{B\}}$

Outline

(1) Preliminaries

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra

(2) Session Instantiation of BCSL

- BCSL/ST
- Translation
(3) Model
- Predicate Transformer Model
(4) Connecting Triples
- Dijkstra \& Plotkin Triples

Translation

Translation

BST to BSCL

$$
\begin{aligned}
\langle\langle\text { inact }\rangle & =\text { skip } \\
\langle\mid P \| Q\rangle & =\langle\langle P\rangle\rangle \|\langle\| Q\rangle \\
\langle\langle k ? j \cdot P\rangle & =k ? j .\langle\langle P\rangle \\
\langle\langle k!j \cdot P\rangle & =(k!j) ;\langle\langle P\rangle
\end{aligned}
$$

Translation

Translation

BST to BSCL

$$
\begin{aligned}
\langle\langle\text { inact }\rangle & =\text { skip } \\
\langle\langle P \| Q\rangle & =\langle\langle P\rangle\rangle \|\langle Q Q\rangle \\
\langle\langle k ? j \cdot P\rangle & =k ? j \cdot\langle\mid P\rangle \\
\langle k!j \cdot P\rangle\rangle & =(k!j) ;\langle\langle P\rangle
\end{aligned}
$$

Theorem 1 - Soundness \& Completeness

$P \triangleright \Delta$ is provable in BST if and only if $\{\Delta\}\langle\langle P\rangle\rangle\{e m p\}$ is provable in BCSL/ST

Outline

(1) Preliminaries

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra
(2) Session Instantiation of BCSL
- BCSL/ST
- Translation
(3) Model
- Predicate Transformer Model
(4) Connecting Triples
- Dijkstra \& Plotkin Triples

Structure

Propositions

Suppose we have an ordered total commutative monoid (Props, $\vdash, *, e m p$) with a least element \perp

Predicate Transformer Model

Structure

Propositions

Suppose we have an ordered total commutative monoid (Props, $\vdash, *, e m p$) with a least element \perp

Predicates

- Model built from predicate transformers on non-empty down-wards closed subsets of Props (Preds).
- (Preds, \subseteq) has a total commutative monoid structure (Preds, \subseteq, \otimes, I)

$$
\begin{aligned}
X \otimes Y & =\{p \mid p \vdash x * y \wedge x \in X \wedge y \in Y\} \\
I & =\{p \mid p \vdash e m p\}
\end{aligned}
$$

Predicate Transformer Model

Structure

Commands

Montone functions space Preds \rightarrow Preds

$$
\begin{array}{ll}
(F \| G) X & =\bigcup\left\{F X_{1} \otimes G X_{2} \mid X_{1} \otimes X_{2} \subseteq X\right\} \\
\text { nothing } X & =\text { if } X \supseteq I \text { then } I \text { else false } \\
(F ; G) X & =F(G(X)) \\
\text { skip } X & =X
\end{array}
$$

$X \in$ Preds

Predicate Transformer Model

Structure

Commands

Montone functions space Preds \rightarrow Preds

$$
\begin{array}{ll}
(F \| G) X & =\bigcup\left\{F X_{1} \otimes G X_{2} \mid X_{1} \otimes X_{2} \subseteq X\right\} \\
\text { nothing } X & =\text { if } X \supseteq I \text { then } I \text { else false } \\
(F ; G) X & =F(G(X)) \\
\text { skip } X & =X
\end{array}
$$

$X \in$ Preds

Order

$$
F \sqsubseteq G \Longleftrightarrow \forall X . F X \supseteq G X .
$$

Predicate Transformer Model

Algebraic Structure

Monoids

(Preds, $\sqsubseteq, \|$, , nothing) and (Preds, $\sqsubseteq, ~ ;$, skip) form monoids where \|, ; are monotone and $\|$ is commutative.

Predicate Transformer Model

Algebraic Structure

Monoids

(Preds, $\sqsubseteq, \|$, , nothing) and (Preds, $\sqsubseteq, ;$, skip) form monoids where $\|$, ; are monotone and $\|$ is commutative.

Exchange Law

The predicates transformers satisfy

$$
\left(F_{1} \| F_{2}\right) ;\left(G_{1} \| G_{2}\right) \sqsubseteq\left(F_{1} ; G_{1}\right) \|\left(F_{2} ; G_{2}\right)
$$

Dijkstra \& Plotkin Triples

Outline

(1) Preliminaries

- Baby Session Types (BST)
- Basic Concurrent Separation Logic (BCSL)
- Algebra
(2) Session Instantiation of BCSL
- BCSL/ST
- Translation
(3) Model
- Predicate Transformer Model
(4) Connecting Triples
- Dijkstra \& Plotkin Triples

Dijkstra \& Plotkin Triples

Futuristic pre/post spec in Algebra

Plotkin Triple

$$
\{P\} C\{Q\} \quad \Longleftrightarrow \quad P \sqsupseteq C ; Q
$$

Dijkstra \& Plotkin Triples

Futuristic pre/post spec in Algebra

Plotkin Triple

$$
\{P\} C\{Q\} \quad \Longleftrightarrow \quad P \sqsupseteq C ; Q
$$

Session Types

$$
\{\Delta\} C\left\{\Delta^{\prime}\right\} \quad \Longleftrightarrow \quad \llbracket \Delta \rrbracket \sqsupseteq \llbracket C \rrbracket ; \llbracket \Delta^{\prime} \rrbracket
$$

Futuristic pre/post spec in Algebra

Plotkin Triple

$$
\{P\} C\{Q\} \quad \Longleftrightarrow \quad P \sqsupseteq C ; Q
$$

Session Types

$$
\{\Delta\} C\left\{\Delta^{\prime}\right\} \quad \Longleftrightarrow \quad \llbracket \Delta \rrbracket \sqsupseteq \llbracket C \rrbracket ; \llbracket \Delta^{\prime} \rrbracket
$$

Predicate Transformer Dijkstra Triple

$$
\langle Y\rangle F\langle Z\rangle \quad \Longleftrightarrow \quad Y \subseteq F Z
$$

Dijkstra \& Plotkin Triples

Futuristic pre/post spec in Algebra

Plotkin Triple

$$
\{P\} C\{Q\} \quad \Longleftrightarrow \quad P \sqsupseteq C ; Q
$$

Session Types

$$
\{\Delta\} C\left\{\Delta^{\prime}\right\} \quad \Longleftrightarrow \quad \llbracket \Delta \rrbracket \sqsupseteq \llbracket C \rrbracket ; \llbracket \Delta^{\prime} \rrbracket
$$

Predicate Transformer Dijkstra Triple

$$
\langle Y\rangle F\langle Z\rangle \quad \Longleftrightarrow \quad Y \subseteq F Z
$$

Predicate Transformer Plotkin Triple

$$
\operatorname{trans}[Y] \sqsupseteq F ; \operatorname{trans}[Z]
$$

Dijkstra \& Plotkin Triples

Dijkstra \& Plotkin Triples

Theorem 2: Predicate Transformers and Proof Theory Agree

Assuming that a local and monotone predicate transformer $\llbracket c_{\text {prim }} \rrbracket$ is given for a collection of primitive commands, then

$$
p \in \llbracket c \rrbracket X \quad \Longleftrightarrow \quad \exists q \in X .\{p\} c\{q\}
$$

holds for all c, as long as it holds for primitive commands.

Dijkstra \& Plotkin Triples

Theorem 2: Predicate Transformers and Proof Theory Agree

Assuming that a local and monotone predicate transformer $\llbracket C_{\text {prim }} \rrbracket$ is given for a collection of primitive commands, then

$$
p \in \llbracket c \rrbracket X \quad \Longleftrightarrow \quad \exists q \in X \cdot\{p\} c\{q\}
$$

holds for all c, as long as it holds for primitive commands.

Theorem 3: Predicate Transformers and Algebra Agree

For all $Y, Z \in$ Preds and monotone $F:$ Preds \rightarrow Preds,

$$
Y \subseteq F Z \quad \Longleftrightarrow \quad \operatorname{trans}[Y] \sqsupseteq F ; \operatorname{trans}[Z]
$$

Modularity

Session Types

- Process Calculi
- Message Passing

Concurrent Separation Logic

- Imperative Programs
- Shared Memory

Algebra

Modularity

Session Types

Concurrent Separation Logic

- Process Calculi
- Message Passing
- Imperative Programs
- Shared Memory

Algebra

Questions...

www.eecs.qmul.ac.uk/~akbar/OnSeparationSessionTypesAlgebra.pdf

Exchange Law Proof

$$
\left(F_{1} \| F_{2}\right) ;\left(G_{1} \| G_{2}\right) \sqsubseteq\left(F_{1} ; G_{1}\right) \|\left(F_{2} ; G_{2}\right)
$$

The validity of the exchange law can be seen from the following calculation.

$$
\begin{aligned}
& \left(\left(F_{1} \| F_{2}\right) ;\left(G_{1} \| G_{2}\right)\right) X \\
= & \bigcup\left\{F_{1} Y_{1} \otimes F_{2} Y_{2} \mid Y_{1} \otimes Y_{2} \subseteq\left(G_{1} \| G_{2}\right) X\right\} \\
= & \bigcup\left\{F_{1} Y_{1} \otimes F_{2} Y_{2} \mid Y_{1} \otimes Y_{2} \subseteq \bigcup\left\{G_{1} X_{1} \otimes G_{2} X_{2} \mid X_{1} \otimes X_{2} \subseteq X\right\}\right\} \\
\supseteq & \bigcup\left\{F_{1}\left(G_{1} X_{1}\right) \otimes F_{2}\left(G_{2} X_{2}\right) \mid X_{1} \otimes X_{2} \subseteq X\right\} \\
= & \bigcup\left\{\left(F_{1} ; G_{1}\right) X_{1} \otimes\left(F_{2} ; G_{2}\right) X_{2} \mid X_{1} \otimes X_{2} \subseteq X\right\} \\
= & \left(\left(F_{1} ; G_{1}\right) \|\left(F_{2} ; G_{2}\right)\right) X
\end{aligned}
$$

In the \supseteq step we take $Y_{1}=G_{1} X_{1}, Y_{2}=G_{2} X_{2}$. This step uses that $X_{1} \otimes X_{2} \subseteq X \Rightarrow G_{1} X_{1} \otimes G_{2} X_{2} \subseteq \bigcup\left\{G_{1} X_{1} \otimes G_{2} X_{2} \mid X_{1} \otimes X_{2} \subseteq X\right\}$.

Predicate Converter (Trans)

do-after $[Y] X=$ if $X=$ Props then Y else false

