Akbar Hussain Peter W. O’'Hearn Rasmus L. Petersen

Department of Computer Science
Queen Mary University of London

Dublin Concurrency Workshop, 2011

On Separation, Session Types and Algebra

Session Types
» Process Calculi

» Message Passing

Session Types Concurrent Separation Logic
» Process Calculi » Imperative Programs
» Message Passing » Shared Resource

Session Types Concurrent Separation Logic
» Process Calculi » Imperative Programs
» Message Passing » Shared Resource

0 Preliminaries
@ Baby Session Types (BST)
@ Basic Concurrent Separation Logic (BCSL)
@ Algebra

9 Session Instantiation of BCSL
@ BCSL/ST
@ Translation

© Model

@ Predicate Transformer Model

0 Connecting Triples
@ Dijkstra & Plotkin Triples

Preliminaries
©0000000

Baby Session Types (BST)

Outline

0 Preliminaries
@ Baby Session Types (BST)

Preliminaries
0@000000

Baby Session Types (BST)

Baby Session Types

Programs

7 =

K2.P | kKiji.P | P| P | inact

Preliminaries
0@000000

Baby Session Types (BST)

Baby Session Types

Programs

P := K¥.P|Kj.P|P|P | inact

a,B ==!a];B [?e];B | end

Preliminaries
0@000000

Baby Session Types (BST)

Baby Session Types

Programs

P := K¥.P|Kj.P|P|P | inact

a,f ==a];8 | ?[a];8 | end

Co-Types

Ifo]; 6 =?[a]; B ?a]; 3 =![e]: 8 end=end

A

Preliminaries
00@00000

Baby Session Types (BST)

Baby Session Types

Typing Context

» A ranges over finite multisets of variable/type pairs

Preliminaries
00@00000

Baby Session Types (BST)

Baby Session Types

Typing Context

» A ranges over finite multisets of variable/type pairs

» A is consistent when channels occur at most twice and are
co-types of each other

Preliminaries
00@00000

Baby Session Types (BST)

Baby Session Types

Typing Context

» A ranges over finite multisets of variable/type pairs
» A is consistent when channels occur at most twice and are
co-types of each other

» A is said to be complete if end is the only type that appears in it
and it is denoted by ¢.

Preliminaries
00@00000

Baby Session Types (BST)

Baby Session Types

Typing Context

» A ranges over finite multisets of variable/type pairs

» A is consistent when channels occur at most twice and are
co-types of each other

» A is said to be complete if end is the only type that appears in it
and it is denoted by ¢.

» Ao A’is multiset union, where we write A =< A’ to mean that
A o A is consistent.

Preliminaries
00@00000

Baby Session Types (BST)

Baby Session Types

Typing Context

» A ranges over finite multisets of variable/type pairs

» A is consistent when channels occur at most twice and are
co-types of each other

» A is said to be complete if end is the only type that appears in it
and it is denoted by ¢.

» Ao A’is multiset union, where we write A =< A’ to mean that
A o A is consistent.

P> A

Preliminaries
00080000

Baby Session Types (BST)

Proof Rules for BST

A1 H AQ Pr Ag
[Consequence] —(p5 71—

PDA1
P1I>A1 PQI>A2
[Inact inact0 [Par] Pi || Po>AqoAp
P>Aok:f[oj:a P>Aok:j

[Receive] Yo poack:2als B kijPsack: o] Bo): a

Preliminaries
00008000

Baby Session Types (BST)

Proof Rules for BST

A1 H AQ Pr Ag
[Consequence] —(p5 71—

PDA1
P1I>A1 PQI>A2
[Inact inact0 [Par] Pi || Po>AqoAp
P>Aok:fBoj:« P>Aok:j

[Receive] Yo ponok: 2ai5 S kPoAck: l[aff0): a

Preliminaries
00000000

Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k!x.inact) || (kly.inact)> A

Preliminaries
00000000

Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k!x.inact) || (kly.inact)> A

= A is not consistent

Preliminaries
00000000

Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k!x.inact) || (kly.inact)> A

= A is not consistent)

Example (2 - Ownership Transfer)

Let H =![a];end

{h:H, W :H, k:\[H];end, j:![H];end} | {k:?[H];end, w:end} j :?[H]; end}
kih k2(x) ()
{H :H, k:end, j:![H];end} {x:H, k:end, w:end} {y :H, j:end}
Jilid x'w y(2)
{k : end, j:end} {k : end, x: end} {j:end, y:end, z:end}
Process 1 Process 2 Process 3

Preliminaries
00000000

Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k!x.inact) || (kly.inact)> A

= A is not consistent)

Example (2 - Ownership Transfer)

Let H =![a];end

{h:H, W :H, k:\[H];end, j:![H;end} | {k:?[H];end, w:end} {j :?[H]; end}
k'h k?(x) 72y
{H : H, k:end, j:![H];end} {x:H, k:end, w:end} {y : H, j:end}
JI x'w y?(2)
{k : end, j:end} {k : end, x: end} {j:end, y:end, z:end}
Process 1 Process 2 Process 3

Preliminaries
0000000®

Baby Session Types (BST)

Examples

Example (1 - Racey programs do not type check)

(k!x.inact) || (kly.inact)> A

= A is not consistent)

Example (2 - Ownership Transfer)

Let H =![a];end

{h:H, W :H, k:\[H];end, j:![H;end} | {k:?[H];end, w:end} j :?[H]; end}
klh K?(x) J2(y)
{H :H, k:end, j:![H];end} {x:H, k:end, w:end} {y :H, j:end}
Jilid xlw y(2)
{k : end, j:end} {k : end, x: end} {j:end, y:end, z:end}
Process 1 Process 2 Process 3

Preliminaries
©00000

Basic Concurrent Separation Logic (BCSL)

Outline

0 Preliminaries

@ Basic Concurrent Separation Logic (BCSL)

Preliminaries
0®0000

Basic Concurrent Separation Logic (BCSL)

Basic Concurrent Separation Logic

A preordered commutative monoid of propositions

(Props, +, %, emp)

A set of commands (Com)
Equipped with total binary operations ¢ || ¢’ and c; ¢’ with skip € Com

Preliminaries
00®000

Basic Concurrent Separation Logic (BCSL)

Proof Rules for BCSL

{(X}e{Y}

[SKip] 37 sxip (X7 [Frame] 3 " o1y« F
S Xt {Y}r {Yie{Z} b {Xitei {Y1} {Xe}ea{Ya}
[Sed] (XTcr o (2} Parl X Yot o1 [ca{ Vs + Yo}

X=X {X}c{Y} YRHY
[Consequence] (X' c{Y

Preliminaries
000800

Basic Concurrent Separation Logic (BCSL)

Parallel Rules

P1 I>A1 P2 DAZ
[BST] P1 || P21>A1 o Ag

{Xite{Yi} {X}c{Ye}
{X1 * Xg} Cq H CQ{Y1 * YQ}

[BCSL]

Preliminaries
000000

Basic Concurrent Separation Logic (BCSL)

Heap Model Instantiation

Structure of propositions

(Props, +, *, emp) = (P(Heaps), C, *, {u})

» Heaps: N —¢ N
» P(Heaps): Powerset
» u: Empty partial function.

» XxY={hxehy|hxe XAhyc Y/\hXOhyl}Wherehoh/
denotes the union of disjoint heap.

Preliminaries
000000

Basic Concurrent Separation Logic (BCSL)

Heap Model Instantiation

Structure of propositions

(Props, -, x, emp) = (P(Heaps), C, *, {u})

» Heaps: N —¢ N

» P(Heaps): Powerset

» u: Empty partial function.

» XxY ={hxehy|hxe XANhy € YA\ hxehy|} where he i
denotes the union of disjoint heap.

Mutation statement [n] := m where m, n € N.

Preliminaries
000000

Basic Concurrent Separation Logic (BCSL)

Heap Model Instantiation

Structure of propositions

(Props, -, x, emp) = (P(Heaps), C, *, {u})

» Heaps: N —¢ N

» P(Heaps): Powerset

» u: Empty partial function.

» XxY ={hxehy|hxe XANhy € YA\ hxehy|} where he i
denotes the union of disjoint heap.

Mutation statement [n] := m where m, n € N.

{n— =}[n] := m{n— m}

Preliminaries
00000@

Basic Concurrent Separation Logic (BCSL)

Examples

Example (1 - Racey programs)

[10] := 23 || [10] := 44

Preliminaries
00000@

Basic Concurrent Separation Logic (BCSL)

Examples

Example (1 - Racey programs)
[10] :=23 || [10] := 44

10— — x 10 — — is false

Preliminaries
00000@

Basic Concurrent Separation Logic (BCSL)

Examples

Example (1 - Racey programs)

[10] := 23 || [10] := 44

10— — x 10 — — is false

v

Example (2 - Ownership Transfer via Shared Buffer)

{emp}
{emp x emp}
{emp} {emp}
X := cons(a,b); getWhenFull(y);
fxim ==} -}
putWhenEmpty(x); use(y);
{emp} y——--}
dispose(y)
{emp} {emp}
{emp x emp}

{emp}

Preliminaries

Algebra

Outline

0 Preliminaries

@ Algebra

Preliminaries

Algebra

Algebra for Concurrency (Hoare et al 2009)

» Two ordered monoids (S, C, *, u) and (S,C, ;, skip) representing
parallel and sequential composition, where %, ; are montone and x
is commutative.

» Parallel and Sequencing are related by the Exchange Law

(p*r);(g*s)C (p;q)+(r;s) p,q,r,s€S

Preliminaries

Algebra

Algebra for Concurrency (Hoare et al 2009)

» Two ordered monoids (S, C, *, u) and (S,C, ;, skip) representing
parallel and sequential composition, where %, ; are montone and x
is commutative.

» Parallel and Sequencing are related by the Exchange Law

(p*r);(g*s)C (p;q)+(r;s) p,q,r,s€S

1M

Preliminaries

Algebra

Exchange Law

Validates Plotkin Triple (to come)
» Concurrency Rule

» Frame Rule (when P x skip = P)

Preliminaries
ooe

Algebra

Exchange Law

Validates Plotkin Triple (to come)
» Concurrency Rule
» Frame Rule (when P x skip = P)

{(PrC{Q}=P1CQ

Proof:
PICQANPIC; Q@
= PxP 3(C,Q)*(C;Q) monotonicity of
= PxP 3(CxC);(QxQ) exchange Law
|

Session Instantiation
@00

BCSL/ST

Outline

9 Session Instantiation of BCSL
@ BCSL/ST

Session Instantiation
oeo

BCSL/ST

Structure

(Props, -, x, emp)
» Props to be the set of session typing contexts A
» AxA’tobe Ao A’

» emp is the empty context ()
» X Ywhere XF Y iff Xisinconsistentor 3. X = Yo ¢

Session Instantiation
oeo

BCSL/ST

Structure

(Props, -, x, emp)
» Props to be the set of session typing contexts A
» AxA'tobe Ao A’
» emp is the empty context ()
» X+ Y where X Y iff Xisinconsistentor 3¢. X = Yo ¢

C:=k?.C|klj|C| C|C;C|skip

Session Instantiation
[ofe]]

BCSL/ST

Specialised Rules for Session Instantiation

Send] Tl B+ o Kl K- 5}

{Axk: Bxj: a} P{B}

[Receive] T4k 7(a], 5} k7/.P (B}

Session Instantiation
o0

Translation

Outline

9 Session Instantiation of BCSL

@ Translation

Session Instantiation
oe

Translation

Translation

BST to BSCL

{(inact
(Pl Q
(k?j.P
(KklYy.P

)
)

)

)

)

skip

(P Il (Q)
k?j.(P)
(KY): (P)

Session Instantiation
oe

Translation

Translation

BST to BSCL

{(inact) = skip
(Play = (P)I Q)
(k?j.P) = K?.(P)
(kY. P) = (kY): (P))

Theorem 1 - Soundness & Completeness

P> Ais provable in BST if and only if {A} ((P)) {emp} is provable in
BCSL/ST

v

Predicate Transformer Model

Outline

© Model

@ Predicate Transformer Model

Predicate Transformer Model

Structure

Propositions

Suppose we have an ordered total commutative monoid
(Props, -, x, emp) with a least element L

Predicate Transformer Model

Structure

Propositions

Suppose we have an ordered total commutative monoid
(Props, -, x, emp) with a least element L

» Model built from predicate transformers on non-empty
down-wards closed subsets of Props (Preds).

» (Preds, C) has a total commutative monoid structure
(Preds, C,®, 1)

XY {plpExxyAnxeXAyeY}
/ = {pl|pt emp}

Predicate Transformer Model

Structure

Commands

Montone functions space Preds — Preds
(FIIaX = U{FXi®@GXe| X1 ® Xz C X}
nothingX = if X D /then /else false
(F;@X = F(G(X))
skipX = X

X € Preds

Predicate Transformer Model

Structure

Commands

Montone functions space Preds — Preds

(FIIGX = U{FXi®GXs | X; ® Xo C X}
nothingX = 1if X D /then /else false
(F;G)X = F(G(X))

X € Preds

v

FCG < VX.FXDGX.

Predicate Transformer Model

Algebraic Structure

(Preds,C, ||,nothing) and (Preds, C, ; , skip) form monoids where ||, ;
are monotone and || is commutative.

Predicate Transformer Model

Algebraic Structure

(Preds,C, ||,nothing) and (Preds, C, ; , skip) form monoids where ||, ;
are monotone and || is commutative.

Exchange Law
The predicates transformers satisfy

(F1 || F2); (G1 || G2) C (F1: Gy) || (F2; G2)

Connecting Triples
®00

Dijkstra & Plotkin Triples

Outline

0 Connecting Triples
@ Dijkstra & Plotkin Triples

Connecting Triples
o] 1}

Dijkstra & Plotkin Triples

Futuristic pre/post spec in Algebra

Plotkin Triple
{P}C{Q} <= PICQ

Connecting Triples
o] 1}

Dijkstra & Plotkin Triples

Futuristic pre/post spec in Algebra

Plotkin Triple

(PLC{Q} < PICQ

V.

Session Types

{arc{a’l — [Aal2[C): (AT

§

Connecting Triples
o] 1}

Dijkstra & Plotkin Triples

Futuristic pre/post spec in Algebra

Plotkin Triple
{PrC{Q} = PICQ

Session Types

{arc{a’l — [Aal2[C): (AT

v

Predicate Transformer Dijkstra Triple

(Y)F(Z) <= YCFZ

.

Connecting Triples
o] 1}

Dijkstra & Plotkin Triples

Futuristic pre/post spec in Algebra

Plotkin Triple

{PrC{Q} = PICQ

{arc{a’l — [Aal2[C): (AT

Predicate Transformer Dijkstra Triple

(Y)F(Z) <= YCFZ

v

Predicate Transformer Plotkin Triple

trans[Y] O F; trans|Z]

v

Connecting Triples
ooe
Dijkstra & Plotkin Triples

Dijkstra & Plotkin Triples

Theorem 2: Predicate Transformers and Proof Theory Agree

Assuming that a local and monotone predicate transformer [Cprim] is
given for a collection of primitive commands, then

pelc]X <= 3FqgeX {p}c{q}

holds for all ¢, as long as it holds for primitive commands.

Connecting Triples
ooe

Dijkstra & Plotkin Triples

Dijkstra & Plotkin Triples

Theorem 2: Predicate Transformers and Proof Theory Agree

Assuming that a local and monotone predicate transformer [Cprim] is
given for a collection of primitive commands, then

pelc]X <= 3FqgeX {p}c{q}

holds for all ¢, as long as it holds for primitive commands.

Theorem 3: Predicate Transformers and Algebra Agree

For all Y, Z € Preds and monotone F : Preds — Preds,

YCFZ <« trans[Y] 2 F;trans[Z]

Session Types Concurrent Separation Logic
» Process Calculi » Imperative Programs
» Message Passing » Shared Memory

Session Types Concurrent Separation Logic
» Process Calculi » Imperative Programs
» Message Passing » Shared Memory

Algebra

Questions...

www.eecs.qmul.ac.uk/~akbar/OnSeparationSessionTypesAlgebra.pdf

Exchange Law Proof

(F1 || F2); (G1 || G2) C (F1: Gy) || (F2; G2)

The validity of the exchange law can be seen from the following
calculation.

((F 1l F2)i (G1 || G2))X

U{F1 Yi®@ FoYo ‘ Yi® Ys C (G1 H GZ)X}

U{FRY1@ Y2 | Yi@ Yo CUH{GIX: ® G Xo | X1 @ Xo € X}
U{F1(G1X1) @ Fa(GaXo) | X1 @ Xo € X}

U{(F1; G1) X1 @ (F2; G2)Xo | X1 @ Xo € X}

((F1: Gy1) || (F2: G2))X

Iy

In the D step we take Y; = G Xj, Yo = GoX5. This step uses that
Xt Xo CX= G X1®GXo CU{GIX1®GXo | X1 @ Xo C X}

Predicate Converter (Trans)
do-after]Y]X = i£ X = Props then Y else false

	Preliminaries
	Baby Session Types (BST)
	Basic Concurrent Separation Logic (BCSL)
	Algebra

	Session Instantiation of BCSL
	BCSL/ST
	Translation

	Model
	Predicate Transformer Model

	Connecting Triples
	Dijkstra & Plotkin Triples

	

