Sound Bisimulations for Higher-Order Distributed Process Calculus

Adrien PIÉRARD, Eijiro SUMII
Tohoku University

Motivation

- Today's computing is distributed (mobile computing, cloud computing, etc)
- Running programs can be moved or stored as data

It is hard to prove that such systems have no bug
 (i.e. behave as expected)

Real-Life Examples

Distribution and program passing are commonly used with

- Load balancing (distribution of computations across computers)
- Fault tolerance (resumption of computations from a saved state after a crash)
- Remote execution (webmails, web video players, smartphone applications)
- You and your laptop/smartphone!

Reasoning About Distributed Systems

Correctness of a system / program can be stated as an equivalence (e.g. reductionclosed barbed equivalence) by comparing it to its specification (in a model like a process calculus)
E.g. a fault-tolerant program behaves functionally like its "ideal" infallible version

Outline

- Modeling higher-order and distribution
- Correctness as equivalence
- Environmental bisimulations
- Example
- Conclusion

Our Model: HOтP

The higher-order π-calculus with passivation
(HOTP) [Lenglet et al. 09]

- A dialect of the π-calculus, with
- Process-passing
- Distribution

Can express various behaviours of distribution

Higher-Order in HOtP

Output

$$
\bar{a}\langle P\rangle . Q \xrightarrow{\bar{a}\langle P\rangle} \quad Q
$$

Input

$$
a(X) \cdot(X \mid X) \xrightarrow{a(P)} P \mid P
$$

Reaction $\bar{a}\langle P\rangle|a(X) \cdot(X \mid X) \quad \xrightarrow{\tau} \quad 0| P \mid P$

Higher-Order in HOtP

Output

Input

Reaction $\bar{a}\langle P\rangle|a(X) \cdot(X \mid X) \xrightarrow{\tau} \quad 0| P \mid P$

Distribution in HOTP

Distribution: location dependent behaviour

Distribution in HOTP

$$
\frac{P \xrightarrow[\rightarrow]{a} P^{\prime}}{a[P] \xrightarrow{a} a\left[P^{\prime}\right]^{\text {TRANsP }}}
$$

Distribution in HOTP

$$
\mathrm{a}[\mathrm{P}] \underset{\substack{\text { higher-order } \\ \text { output }}}{\overline{\mathrm{a}<\mathrm{P}>} \mathrm{O}^{\text {PASSIV }}}
$$

Failure in HOTP

$$
a[P]|a(X) . \overline{\text { fail }} \xrightarrow{\tau} 0| \overline{\text { fail }}
$$

Migration in HOTP

$$
b[P]|b(X) . c[X] \xrightarrow{\tau} 0| c[P]
$$

Example

$$
\nu f .(f[P] \mid!f(X) . f[X])
$$

\square

Example

$$
\begin{aligned}
& \nu f \cdot(f[P] \mid!f(X) \cdot f[X]) \\
\rightarrow & \nu f \cdot\left(f\left[P^{\prime}\right] \mid!f(X) \cdot f[X]\right)
\end{aligned}
$$

\square

Example

$$
\begin{array}{ll}
& \nu f \cdot(f[P] \mid!f(X) \cdot f[X]) \\
\rightarrow & \nu f \cdot\left(f\left[P^{\prime}\right] \mid!f(X) \cdot f[X]\right) \\
\equiv & \nu f \cdot\left(f\left[P^{\prime}\right] \mid!f(X) \cdot f[X]\right. \\
& \mid f(Y) \cdot f[Y])
\end{array}
$$

\square

Example

$$
\begin{aligned}
& \nu f .(f[P] \mid!f(X) . f[X]) \\
& \xrightarrow{\alpha} \quad \nu f .\left(f\left[P^{\prime}\right] \mid!f(X) \cdot f[X]\right) \\
& \equiv \nu f \cdot\left(f\left[P^{\prime}\right] \mid!f(X) . f[X]\right. \\
& \mid f(Y) . f[Y]) \\
& \xrightarrow{\tau} \quad \nu f .\left(0|!f(X) \cdot f[X]| f\left[P^{\prime}\right]\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \nu f \cdot(f[P] \mid!f(X) \cdot f[X]) \\
& \xrightarrow[\rightarrow]{\alpha} \nu f \cdot\left(f\left[P^{\prime}\right] \mid!f(X) \cdot f[X]\right) \\
& \equiv \nu f \cdot\left(f\left[P^{\prime}\right] \mid!f(X) \cdot f[X]\right. \\
&\mid f(Y) \cdot f[Y]) \\
& \xrightarrow{\tau} \nu f \cdot\left(0|!f(X) \cdot f[X]| f\left[P^{\prime}\right]\right) \\
& \xrightarrow{\alpha} \nu f \cdot\left(0|!f(X) \cdot f[X]| f\left[P^{\prime \prime}\right]\right) \\
& \square
\end{aligned}
$$

Outline

- Modeling higher-order and distribution
- Correctness as equivalence
- Environmental bisimulations
- Example
- Conclusion

Correctness of Our Example

The system $\nu f .(f[P] \mid!f(X) . f[X])$ looks equivalent to the ideal system P (if $f \notin f n(P)$)

- The f cannot be observed from outside
- nor react with P
- Both P's have the same transitions

Formally, what equivalence? Does it hold?

Reduction-Closed Barbed Equivalence (RCBE)

Largest relation such that $P \approx Q$ implies

1. if $P \rightarrow P^{\prime}$ then $Q \Rightarrow Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$
2. if $P \xrightarrow{\mu}$ then $Q \stackrel{\mu}{\Rightarrow}($ for $\mu=a, \bar{a})$
3. the converse of the two above on Q, and
4. for all $R, P|R \approx Q| R$

Reduction-Closed Barbed Equivalence (RCBE)

Outline

- Modeling higher-order and distribution
- Correctness as equivalence
- Environmental bisimulations
- Example
- Conclusion

Alternative to RCBE

We want another equivalence

- Practical to use
- Implying reduction-closed barbed equivalence

We consider environmental bisimulations [SumiiPierce '04, Sumii-Pierce '05, Sangiorgi-Kobayashi-Sumii '07,...]

Environmental Relation

- A set of (E, P, Q) where
- P and Q are processes
- E the environment, is a binary relation on processes
environment \leftrightarrow "knowledge"

Environmental Bisimulation (EB)

An environmental relation such that if P and Q are related:

- Whatever P can do, Q must be able to do
- Weakly and conversely
- If P (and thus Q) outputs, the environment learns the outputs
- If P inputs, Q must be able to input any input composed from the environment (i.e. attacker's knowledge)

EB and Output

Whenever $(\mathcal{E}, P, Q) \in \mathcal{X}$ and $P \xrightarrow{\bar{\alpha}\langle M\rangle} P^{\prime}$,

- $Q \stackrel{\bar{a}(N)}{\Longrightarrow} Q^{\prime}$, and
- $\left(\mathcal{E} \cup\{(M, N)\}, P^{\prime}, Q^{\prime}\right) \in \mathcal{X}$

EB and Input

Whenever $(\mathcal{E}, P, Q) \in \mathcal{X}$ and $P \xrightarrow{a(C[\widetilde{M}])} P^{\prime}$,

- for all $(\widetilde{M}, \widetilde{N}) \in \mathcal{E}, Q \xrightarrow{a(C[\widetilde{N}])} Q^{\prime}$, and
- $\left(\mathcal{E}, P^{\prime}, Q^{\prime}\right) \in \mathcal{X}$

EB and Spawn

The attacker can

- spawn processes next to those tested
- use previous observations (the environment)

Whenever $(\mathcal{E}, P, Q) \in \mathcal{X}$, for all $(\widetilde{M}, \widetilde{N}) \in \mathcal{E}$,
$(\mathcal{E}, P|C[\widetilde{M}], Q| C[\widetilde{N}]) \in \mathcal{X}$
Even stronger than RCBE!! :-(

EB and Spawn

Previous research [Sangiorgi et al. '07, Sato et al. '09] used
$(\mathcal{E}, P|M, Q| N) \in \mathcal{X}$ for all $(M, N) \in \mathcal{E}$

However, it leads to unsound bisimulations in our settings

Unsoundness of the Previous Condition

The attacker can spawn processes, but also passivate them en route when spawned under a location

Problematic during the evaluation of a sequential process

On Unsoundness

$\bar{a}\langle 0\rangle .!l c k . u n l$
$\bar{a}\langle l c k . u n l\rangle .!l c k . u n l$

On Unsoundness

$\bar{a}\langle 0\rangle .!l c k . u n l$
output

On Unsoundness

$\bar{a}\langle 0\rangle .!l c k . u n l$
output
!lck.unl
!lck.unl

On Unsoundness

$\bar{a}\langle 0\rangle .!l c k . u n l$
output
!lck.unl

On Unsoundness

$\bar{a}\langle 0\rangle .!l c k . u n l$
output
!lck.unl
!lck.unl
spawn
$!l c k . u n l \mid a[0]$
$!l c k . u n l \mid a[l c k . u n l]$

On Unsoundness

$\bar{a}\langle 0\rangle .!l c k . u n l$ $\bar{a}\langle l c k . u n l\rangle .!l c k . u n l$ output
!lck.unl
spawn
$!l c k . u n l \mid a[0]$
$!l c k . u n l \mid a[l c k . u n l]$
input

On Unsoundness

$\bar{a}\langle 0\rangle .!l c k . u n l$
$\bar{a}\langle l c k . u n l\rangle .!l c k . u n l$
output
!lck.unl
!lck.unl
spawn
$!l c k . u n l \mid a[0]$
$!l c k . u n l|u n l| a[0]$
$!l c k . u n l \mid a[l c k . u n l]$
input

$$
!l c k . u n l \mid a[u n l]
$$

On Unsoundness

$\bar{a}\langle 0\rangle .!l c k . u n l$
$\bar{a}\langle l c k . u n l\rangle .!l c k . u n l$
output
!lck.unl
!lck.unl
spawn
$!l c k . u n l \mid a[0]$
$!l c k . u n l|u n l| a[0]$
!lck.unl |a[lck.unl]
input
passiv

On Unsoundness

$\bar{a}\langle 0\rangle .!l c k . u n l$
output
!lck.unl
$\bar{a}\langle l c k . u n l\rangle .!l c k . u n l$
spawn
!lck.unl $\mid a[0]$
$!l c k . u n l|u n l| a[0]$
passiv
input
$!l c k . u n l \mid a[l c k . u n l]$ $!l c k . u n l \mid a[u n l]$
!lck.unl| 0

On Unsoundness

$\bar{a}\langle 0\rangle .!l c k . u n l$
$\bar{a}\langle l c k . u n l\rangle .!l c k . u n l$
output
!lck.unl
spawn

$$
!l c k . u n l \mid a[0]
$$

$!l c k . u n l|u n l| a[0]$
!lck.unl|unl|0
passiv
!lck.unl |a[lck.unl]
input $!l c k . u n l \mid a[u n l]$!lck.unl| 0
input

On Unsoundness

$\bar{a}\langle 0\rangle .!l c k . u n l$
output
!lck.unl
$\bar{a}\langle l c k . u n l\rangle .!l c k . u n l$
spawn
$!l c k . u n l \mid a[0]$
$!l c k . u n l|u n l| a[0]$
passiv
!lck.unl|unl| 0 0

EB and Spawn: Our Solution

Whenever $(\mathcal{E}, P, Q) \in \mathcal{X}$, for all $(M, N) \in \mathcal{E}$, $(\mathcal{E}, P|a[M], Q| a[N]) \in \mathcal{X}$

Summary

Environment bisimulation is an environmental relation preserved by

- Reductions
- Inputs of arguments composed from the environment
- Outputs (extending the environment)
- Spawning of related processes under a location

EB: Improvements

Actual proofs become simpler when we use environmental bisimulations up-to

- structural congruence
- context
- environment, and
- restriction

See [Piérard \& Sumii, FoSSaCS '11] for details

Soundness

If $(\emptyset, P, Q) \in \mathcal{X}$ then $P \approx Q$

with a "simplicity" restriction on X for technical reasons (fixing this is ongoing work)

"Simplicity"

- Simple process: no subprocess has the form $v x . P$ nor $a(X) . P$ with $X \in f v(P)$
- Simple environment: made of simple processes
- Simple environmental relation: has only simple environments

Soundness (bis)

Soundness holds for simple EBs

Thanks to up-to techniques, we can actually handle some non-simple (and non-trivial) processes

Bonus Result

Reduction-closed barbed congruence \approx_{c} (standard definition)

If $(\emptyset, \bar{a}\langle P\rangle, \bar{a}\langle Q\rangle) \in \mathcal{X}$ then $P \approx_{c} Q$
Compare with context bisimulations, where testing $\bar{a}<P>$ and $\bar{a}<Q>$ would imply testing P and Q in any context!

Outine

- Modeling higher-order and distribution
- Correctness as equivalence
- Environmental bisimulations
- Example
- Conclusion

Equivalence of Example, Reviewed

\square

Equivalence of Example, Reviewed

 \square

Equivalence of Example, Reviewed

Equivalence of Example, Reviewed

Equivalence of Example, Reviewed

Equivalence of Example with EB
 $$
P \approx v f .(f[P] \mid!f(X) . f[X]) ?
$$

Proof: find an EB
$X \ni(\varnothing, P, v f .(f[P] \mid!f(X) . f[X]))$

Take
$X=\{(\varnothing, P, v f .(f[P] \mid!f(X) . f[X])) \mid f \notin f n(P)\}$ and check clauses of EB

Transitions (Input)

$$
X=\{(\varnothing, P, v f .([[P] \mid!f(X) . f[\mathrm{IX}])) \mid f \notin \operatorname{fn}(P)\}
$$

Transitions (Output)

$$
X=\{(\varnothing, P, v f .(f[P] \mid!f(X) . f[X])) \mid f \notin f n(P)\}
$$

$$
\begin{array}{lll}
(\emptyset, & P, \quad \nu f \cdot(f[P] \mid!f(X) \cdot f[X]) & \in \mathcal{X} \\
& \mid \stackrel{\rightharpoonup}{\mathrm{a}}<\mathrm{R}> & \stackrel{\rightharpoonup}{\mathrm{a}}<\mathrm{R}> \\
(\emptyset, & P^{\prime}, \quad \nu f \cdot\left(f\left[\stackrel{P}{P}^{\prime}\right] \mid!f(X) \cdot f[X]\right) & \in \mathcal{X}
\end{array}
$$

Identical outputs are cancelled up-to context

Transitions (Reaction)

$$
X=\{(\varnothing, P, v f .([[P] \mid!f(X) . f[\mathrm{IX}])) \mid f \notin \operatorname{fn}(P)\}
$$

$$
\begin{array}{ccc}
(\emptyset, & \left.\left\lvert\, \begin{array}{ll}
P, & \nu f \cdot(f[P] \mid!f(X) \cdot f[X]) \\
& \left\lvert\, \begin{array}{l}
\tau \\
\tau \\
P^{\prime}
\end{array}\right. \\
(\emptyset, & \nu f \cdot\left(f\left[P^{\prime}\right] \mid!f(X) \cdot f[X]\right)
\end{array}\right.\right) \in \mathcal{X}
\end{array}
$$

Transitions (Reaction)

$$
(\emptyset, \quad P, \quad \nu f \cdot(f[P] \mid!f(X) \cdot f[X])) \in \mathcal{X}
$$

$(\emptyset, \quad P, \nu f \cdot(0|!f(X) \cdot f[X]| f[P])) \in \mathcal{X}$

$(\emptyset, \quad P, \quad \nu f \cdot(f[P] \mid!f(X) \cdot f[X])) \in \mathcal{X}$
Use up-to structural congruence

Spawn Clause

$$
X=\{(\varnothing, P, v f .(f[P] \mid!f(X) . f[X])) \mid f \notin f n(P)\}
$$

Vacuously satisfied as the environment is empty

Result

$$
X=\{(\varnothing, P, v f .([[P] \mid!f(X) . f[\mathrm{f}]]) \mid f \notin \operatorname{fn}(P)\}
$$

X is an EB (up-to context, etc)
hence

$$
\text { P } \approx \operatorname{vf} .(f[P] \mid!f(X) . f[X])
$$

Outline

- Modeling higher-order and distribution
- Proving equivalence
- Environmental bisimulations
- Example
- Conclusion

Related Work

- The Kell calculus [Schmitt and Stefani '04]
- Uses context bisimulations
- HOTP [Lenglet et al. '09]
- Uses context bisimulations
- Homer [Hildebrandt et al. '04]
- Uses Howe's method

Future Work

- Completeness
- Improve the spawn clause (remove the simplicity restriction)
- More up-to techniques (eg. up-to bisimilarity)
- EBs for more expressive languages, for better modeling of realistic systems
- Kell calculus?
- Other?

Should you remember just one thing, let it be the following slide!

Conclusion

Higher-order distributed computing is ubiquitous, but hard

Environmental bisimulations enable correctness proof (or disproofs)

Thank you for your attention!

The Spawn Clause: The Problems Strike Back

The spawn clause gives us for some (, P | a[A1] | b[A2], Q | $a[B 1] \mid b[B 2]) \in X$, (,P | vx(a[A1']|b[A2']),Q | vy(a[B1']|b[B2'])) $\in \mathrm{X}$

But it does not account for reactions of $(, P|m[A 1 \mid A 2], Q| m[B 1 \mid B 2]) \in X$, giving (,P | m[vx.(A1'|A2')], Q | m[vy.(B1'|B2')])

The Spawn Clause: The Problems Strike Back

P \| m[vx.(A1'|A2')] X Q | m[vy.(B1'|B2')]
Passivation of $m[\ldots]$ would keep the names x, y bound in the environment
$\mathrm{P}\left|\mathrm{vx}\left(\mathrm{a}\left[\mathrm{A} 1^{\prime}\right] \mid \mathrm{b}\left[\mathrm{A} 2^{\prime}\right]\right) \times \mathrm{Q}\right| \mathrm{vy}\left(\mathrm{a}\left[\mathrm{B} 1^{\prime}\right] \mid \mathrm{b}\left[\mathrm{B} 2^{\prime}\right]\right)$
Passivations of a[...] and b[...] would extrude the names x and $y . .$.
This poses technical problems in reductions in up-to context proofs, and doubt in our minds

