
SOS 2005 Preliminary Version

Adding recursion to Dpi
(Extended abstract)

Samuel Hym

PPS, Université Paris 7 & CNRS

Matthew Hennessy

Department of Informatics, University of Sussex

Abstract

Dpi is a distributed version of the pi-calculus, in which processes are explicitly
located, and a migration construct may be used for moving between locations. We
argue that adding a recursion operator to the language increases significantly its
descriptive power. But typing recursive processes requires the use of potentially
infinite types.

We show that the capability-based typing system of Dpi can be extended to co-
inductive types so that recursive processes can be successfully supported. We also
show that, as in the pi-calculus, recursion can be implemented via iteration. This
translation improves on the standard ones by being compositional but still comes
with a significant migration overhead in our distributed setting.

1 Introduction

The pi-calculus, [7,8], is a well-known formal calculus for describing, and
reasoning about, the behaviour of concurrent processes which interact via
two-way communication channels. Dpi, [4], is one of a number of extensions
in which processes are located, and may migrate between locations, or sites,
by executing an explicit migrate command; the agent goto k.P , executing at
a site l, will continue with the execution of P at the site k. This extension
comes equipped with a sophisticated capability-based type system, and a co-
inductive behavioural theory which takes into account the constraints imposed
by these types, [3,4]. The types informally correspond to sets of capabilities,
and the use a process may make of an entity, such as a location or a channel,
depends on the current type at which the process owns the entity. More-
over this type may change over time, reflecting the fact that processes may
gradually accumulate capabilities over entities.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Hym & Hennessy

The most common formulations of the pi-calculus use iteration (written
∗ P for the iteration of P) to describe repetitive processes. Thus

∗ c ?(x) d !〈x〉

represents a process which repeatedly inputs a value on channel c and outputs
it at d. An alternative would be to use an explicit recursion operator, leading
to definitions such as

rec Z. c ?(x) d !〈x〉Z

But it has been argued that explicit recursion is unnecessary, because it offers
no extra convenience over iteration; indeed it is well-known that such a re-
cursion operator can easily be implemented using iteration; see pages 132–138
in [8].

However the situation changes when we move to the distributed world of
Dpi. In Section 2 we demonstrate that the addition of explicit recursion leads
to powerful programming techniques; in particular it leads to simple natural
descriptions of processes for searching the underlying network for sites with
particular properties.

Unfortunately this increase in descriptive power is obtained at a price.
In order for these recursive processes to be accommodated within the typed
framework of Dpi, we need to extend the type system with co-inductive types,
that is types of potentially infinite depth.

The purpose of this paper is to

• demonstrate the descriptive power of recursion when added to Dpi;

• develop a system of co-inductive types which support recursive processes;

• prove that at the cost of significant migration costs recursion in Dpi can
still be implemented by purely iterative processes, in the absence of network
failures.

In Section 2 we describe the extension to Dpi, called recDpi, and demon-
strate the power of recursion by a series of prototypical examples. This is
followed in Section 3 with an outline of how the co-inductive types are de-
fined, and how the typing system for Dpi can be easily extended to handle
these new types. The translation of recursive processes into iterative processes
is explained in Section 4, and we outline the proof of correctness in Section 5.
This requires the use of a typed bisimulation equivalence to accommodate the
typed labelled transition system for recDpi.

The paper relies heavily on existing work on Dpi, and the reader is referred
to papers such as [3,4] for detailed explanations of both the semantics of Dpi
and its typing system.

2

Hym & Hennessy

Fig. 1 Syntax of recDpi

M, N ::= Systems
lJP K Located Process
M |N Composition
(new e : E) M Name Creation
0 Termination

P, Q ::= Processes
u !〈V 〉P Output
u ?(X : T) P Input
goto v.P Migration
if u1 = u2 then P else Q Matching
(newc c : C) P Channel creation
(newreg n : N) P Global name creation
(newloc k : K) P Location creation
P |Q Composition
stop Termination
∗ P Iteration
here [x] P Location look up
rec (Z : R). P Recursion
Z Recursion variable

2 The language recDpi

The syntax of recDpi is given in Figure 1, and is a simple extension of that
of Dpi; the new constructs are highlighted in bold font. As usual it assumes
a set of names, ranged over by letters such as a, b, c, k, l, . . ., and a separate
set of variables, ranged over by x, y, z, . . .; to handle recursive processes we
use another set of recursion variables, ranged over by X, Y, Z, . . . The values
in the language include identifiers, that is names or variables, and addresses,
of the form u@w; intuitively w stands for a location and u a channel located
there. In the paper we will consider only closed terms, where all variables
(recursion included) are bound.

The most important new construct is that for typed recursive processes,
rec (Z : R). P ; as we shall see the type R dictates the requirements on any site
wishing to host this process. We also have a new construct here [x] P , which
allows a process to know its current location.

Example 2.1 [Searching a network] Consider the following recursive process,
which searches a network for certain values satisfying some unspecified predi-
cate p:

Search , rec Z : S. test ?(x)if p(x) then goto home.report !〈x〉
else neigh ?(y) goto y.Z

3

Hym & Hennessy

When placed at a specific site such as k, giving the system

kJSearchK,

the process first gets the local value from the channel test. If it satisfies the test
the search is over; the process returns home, and reports the value. Otherwise
it uses the local channel neigh to find a neighbour to the current site, migrates
there and launches a recursive call at this new site. �

We refrain from burdening the reader with a formal reduction semantics
for recDpi, as it is a minor extension of that of Dpi. However in Section 4 we
give a typed labelled transition system for the language, the τ -moves of which
provides our reduction semantics (see Figure 3). For the current discussion
we can focus on the following rules:

(lts-here)

kJhere [x] P K τ−→ kJP [k/x]K
(lts-iter)

kJ∗ P K τ−→ kJ∗ P K | kJP K
(lts-rec)

kJrec (Z : R). P K τ−→ kJP{rec (Z:R). P/Z}K

The first simply implements the capture of the current location by the con-
struct here. The second states that the iterative process at k, kJ∗ P K can
spawn a new copy kJP K, while retaining the iterated process. This means
that every new copy of this process will be located in k. The final one, (lts-
rec), implements recursion in the standard manner by unwinding the body,
which is done by replacing every free occurrence of the recursion variable Z in
P by the recursive process itself. This takes an explicit τ -reduction to match
the rule (lts-iter).

Example 2.2 [Self-locating processes] We give an example to show why the
construct here is particularly interesting for recursive processes. Consider the
system kJQuestK where

Quest , rec Z : R. here [x] (newc ans) neigh ?(y : R)
(ans ?(news) . . . | goto y.req !〈data, ans@x〉Z)

After determining its current location x, this process generates a new local
channel ans at the current site k, and sets up a listener on this channel to await
news. Concurrently it finds a neighbour, via the local channel neigh. It then
migrates to this neighbour and poses a question there, via the channel req, and
fires a new recursive call, this time at the neighbouring site. The neighbour’s
request channel req requires some data, data, and a return address, which in
this case is given via the value ans@x.

Note that at runtime the occurrence of x in the value proffered to the
channel req is substituted by the originating site k. After the first three steps

4

Hym & Hennessy

Fig. 2 Recursive pre-types

Base Types: B ::= int | bool | unit . . .
Local Channel Types: A ::= r〈U〉 | w〈T〉 | rw〈U, T〉
Capability Types: C ::= u : A
Location Types: K ::= loc[C1, . . . , Cn], n ≥ 0 | µY.K | Y
Registered Name Types: G ::= rc〈A〉
Value Types: V ::= B | A | (Ã)@u | (Ã)@K
Transmission Types: T, U ::= (V1, . . . , Vn), n ≥ 0

in the reduction of the system kJQuestK, we get to

(new ans) kJneigh ?(y : R) (goto y.req !〈data, ans@k〉Quest | ans ?(news) . . .)K

If k’s neighbour is l, this further reduces to (up to some reorganisation)

(new ans) kJans ?(news) . . .K | lJQK
| (new ans′) lJneigh ?(y : R) (goto y.req !〈data, ans′@l〉Quest | ans′ ?(news) . . .)K

with Q some code running at l to answer the request brought by Quest.

The here construct can also be used to write a process initialising a doubly
linked list starting from a simply linked one. We assume for this that the cells
are locations containing two specific channels: n to get the name of the next
cell in the list, p for the previous. The initial state of our system is

l0Jn !〈l1〉K | l1Jn !〈l2〉K | . . .

and we run the following code in the first cell of this network to initialise the
list:

rec Z : R. n ?(n′) here [p′] (n !〈n′〉 | goto n′.(p !〈p′〉 |Z))

�

Now we need to look more closely at the types, like R, involved in the
recursive construct.

3 Co-inductive types for recDpi

There is a well-established capability-based type system for Dpi, [4], which
we can adapt to recDpi.

3.1 The Types

In this type system local channels have read/write types of the form r〈U〉,
w〈T〉, or rw〈U, T〉 (meaning that values are written at type T and read at

5

Hym & Hennessy

type U on a channel of that type), provided the object types U and T “agree”,
as will be explained later. Locations have record types, of the form

loc[u1 : A1, . . . , un : An]

indicating that the local channels ui may be used at the corresponding type Ai.

However with recursive processes it turns out that we need to consider
infinite location types. To see this consider again the searching process Search
from Example 2.1. Any site, such as k, which can support this process needs
to have a local channel called neigh from which values can be read. These
values must be locations, and let us consider their type, that is the object
type of neigh. These locations must have a local channel called test, of an
appropriate type, and a local channel called neigh; the object type of this
local channel must be in turn the same as the type we are trying to describe.
Using a recursion operator µ, this type can be described as

µY.loc[test : r〈Tt〉, neigh : r〈Y〉]

which will be used as the type S in the definition of Search; it describes precisely
the requirements on any site wishing to host this process.

The set of recursive pre-types is given in Figure 2, and is obtained by
adding the operator µY.K as a constructor to the type formation rules for Dpi.
Following [8] we can associate with each recursive pre-type T a co-inductive
pre-type denoted Tree(T), which takes the form of a finite-branching, but
possibly infinite, tree whose nodes are labelled by the type constructors. For
example Tree(S) is the infinite tree represented by the following graph:

loc

test

r〈·〉

Tt

neigh

r〈·〉

Definition 3.1 [Contractive and Tree pre-type] We call a recursive pre-type
S contractive if for every µY.S′ it contains, Y can only appear in S′ under an
occurrence of loc. In the paper we will only consider contractive pre-types.

For every contractive S we can define Tree(S), the unique tree satisfying
by the following equations:

• unwinding recursive pre-types Tree(µY.S′) = Tree(S′{|µY.S′
/Y|})

• not modifying any other construct; for instance Tree(r〈U〉) = r〈Tree(U)〉
We call Tree(S) the tree pre-type associated with the recursive pre-type S. �

6

Hym & Hennessy

Note that Tree(S) might not be defined when the recursive pre-type S is
not contractive.

To go from pre-types to types, we need to get rid of meaningless pre-types
like rw〈r〈〉, int〉, which would be the type of a channel on which integers are
written but channels are read. This is achieved using a notion of subtype, and
demanding that, in types of the form rw〈U, T〉, T must be a subtype of U.

In Figure A.1 (in the appendix) we give the standard set of rules which
define the subtyping relation used in Dpi; a typical rule, an instance of
(sub-chan), takes the form

T <: U <: U′

rw〈U, T〉 <: r〈U′〉

However here we interpret these rules co-inductively, [2]. Formally they give
rise to a transformation on relations over tree pre-types. IfR is such a relation,
then Sub(R) is the relation given by:

Sub(R) = {(base, base)}
∪ {(u : A, u : B) if (A, B) is in R}
∪ {((C̃), (C̃′)) if (Ci, C

′
i) is in R for all i}

∪ . . .

Intuitively, if the hypotheses of any rule of Figure A.1 are in R the conclusion
is in Sub(R).

Definition 3.2 [Subtyping and types] We define the subtyping relation be-
tween tree pre-types to be the greatest fixpoint of the function Sub, written
νSub. For convenience we often write T <: T′ to mean that (T, T′) is in νSub.

Then a tree pre-type is called a tree type if every occurrence of rw〈U, T〉
it contains satisfies T <: U.

Finally this is lifted to recursive pre-types. A pre-type T from Figure 2 is
called a recursive type if Tree(T) is a tree type. �

The co-inductive definition of subtyping gives rise to a natural co-inductive
proof method, the dual of the usual inductive proof method used for sub-typing
in Dpi. This can be employed to derive many of the required properties of
sub-typing in recDpi. Here is a typical example. Let us write T1 ↓ T2 to
mean that there is some T such that T <: T1 and T <: T2, that is T1 and T2

are compatible.

Lemma 3.3 The set of tree types, ordered by <:, has partial meets. That is
T1 ↓ T2 implies T1 and T2 have a meet, denoted T1 u T2.

In the full version of the paper, [5], we go on to show that this result also
applies to recursive types, and moreover give a procedure for calculating the
meet of any two compatible recursive types.

7

Hym & Hennessy

3.2 Typing Systems

With these types we can now adapt the typing system for Dpi to recDpi. At
the system level the judgements take the form

Γ ` M

and the rules used are identical to those for Dpi, see Figure 11 in the full
version of this paper, [5], where they are restated. The main rule, there, is

(t-proc)

Γ `k P

Γ ` kJP K

which in turn requires a set of inference rules for the judgements

Γ `k P

indicating that the process P is well-typed to run at location k. Once more
most of these rules are inherited from Dpi, see Figure 12 in [5], and we con-
centrate here on explaining the three new rules required for recursion and the
here construct. The latter is straightforward:

(t-here)

Γ `w P [w/x]

Γ `w here [x] P

However in order to derive judgements about recursive processes, such as

Γ `k rec (Z : R). P (1)

we need to augment the type environments used in Dpi with entries for re-
cursion variables. Recall that here the type R is a location type, such as
loc[u1 : A1, . . . un : An], indicating the minimal requirements on any location
wishing to host a call to the recursive procedure. So in some way we want to
consider recursion variables in the same manner as locations. But we must be
careful as subtyping can not be allowed on these variables, unlike locations.
Therefore we only allow unique entries of the form Z : K, where K is a location
type, in type environments. Then the natural rule for typechecking a recursive
call, that is an occurrence of a recursion variable, is given by:

(t-recvar)

Γ ` w : Γ(Z)

Γ `w Z

In order to typecheck a recursive definition, such as (1) above, we need to

• check that k has at least the capabilities required in R, that is Γ ` k : R;

8

Hym & Hennessy

• ensure that the body P only uses the resources given in R.

To check this second point we again look at recursion variables as locations,
and check that P is well-typed to run “in the location Z”, which has all the
resources mentioned in the type R. The final rule is

(t-rec)

Γ ` w : R
Γ,〈〈Z : R〉〉 `Z P

Γ `w rec (Z : R). P

where Γ,〈〈Z : R〉〉 is a notation extending Γ with the information that Z has
all the capabilities in R.

Example 3.4 Referring back to Example 2.1 let us see how these rules can
be used to infer Γ `k Search, assuming that Γ knows about locations home, k,
etc. and their channels. So, by (t-rec), this will amount to:

Γ,〈〈Z : S〉〉 `Z test ?(x)if p(x) then goto home.report !〈x〉
else neigh ?(y) goto y.Z

which, in turn, will mainly consist of proving:

Γ,〈〈Z : S〉〉 ` test : r〈Tt〉@Z
Γ,〈〈Z : S〉〉, x : Tt ` neigh : r〈S〉@Z
Γ,〈〈Z : S〉〉, x : Tt, y : S `y Z

These statements are provable since S is µY.loc[test : r〈Tt〉, neigh : r〈Y〉];
the first one is obvious, while the second will be true by unfolding once the
recursive type, which means in turn that the third will also be true. �

The partial view of recursion variables as locations complicates somewhat
the formal rules for the construction of valid environments. In this extended
abstract we do not go into the details. But for completeness sake we give
the formation rules in the appendix, in Figure A.2, together with these for
value typing, in Figure A.3. Notice that value typing rules allow statements
of the form Γ ` Z : loc, required when typing a process “at Z”, even if,
syntactically, recursion variables cannot be used as values.

The main new technical property of the type inference system is given by:

Lemma 3.5 (Recursion Variable Substitution) Let us suppose that Γ `w

rec Z : R. P . Then Γ `w P{rec Z:R. P/Z}.

This in turn leads to:

Lemma 3.6 (Subject Reduction) Γ ` M and M τ−→M ′ implies that Γ `
M ′.

9

Hym & Hennessy

4 Implementing recursion using iteration

The problem of implementing recursion using iteration in Dpi, contrary to the
pi-calculus, is that any code of the form kJ∗ P K will force every instance of P
to be launched at the originating site k; this is in contrast to kJrec (Z : R). P K
where the initial instance of the body P is launched at k but subsequent
instances may be launched at arbitrary sites, provided they are appropriately
typed.

Nevertheless, at the expense of repeated migrations, we can mimic the
behaviour of a recursive process using iteration by designating a home base to
which the process must return before a new instance is launched. For example
if home is deemed to be the home base then we can implement our example
kJSearchK using

homeJ∗ IterSearchK | kJFireOneK

where

IterSearch , ping ?(l) goto l.test ?(x) if p(x) then goto home.report !〈x〉
else neigh ?(y) goto y.FireOne

FireOne , here [l] goto home.ping !〈l〉

With this example, we can easily see how the translation will mimic the
original process step by step: the body of the process is left unmodified, only
the recursion parts are changed, by implementing the recursive call with a
few reductions. FireOne is the “translation” for the recursive calls, which
means going to the home base and firing a new instance. This shows why the
construct here is necessary: the translation for recursive calls needs to detect
its current location to indeed trigger the new instance in the “proper” context.
Then the replicated IterSearch starts off by migrating to the actual location
where it will run.

This approach underlies our general translation of recursive processes into
iterative processes, which we now explain.

As we want to ensure that our translation will be compositional, we will
have to dynamically generate the home bases for iterative processes where, in
the example IterSearch, the home base and the replicated process were already
set up. We will also dynamically generate the registered channel ping used
to provide to a new instance of the process the name of the location where
the recursive call took place. The last thing to do when the recursion is
unwound for the first time is to start the iterative process, which means two
things: move the code that will be replicated to its home base and fire the
first instance. As we explained with the example, the replicated code will just
have to wait for the name of a location when the recursion is unwound, go

10

Hym & Hennessy

there and behave as the recursive process. So our translation looks like this:

unrec(rec Z : R. P) = (newreg pingZ : rc〈rw〈R〉〉)
(newloc homeZ : loc[pingZ : rc〈rw〈R〉〉])

(unrec(Z) |
goto homeZ . ∗ pingZ ?(l : R) goto l.unrec(P))

unrec(Z) = here [x] goto homeZ .pingZ !〈x〉

Of course, any construct other than recursion is left unmodified by this
translation; for example unrec(u !〈V 〉P) = u !〈V 〉unrec(P).

We stress the fact that this translation heavily relies on migration to mimic
the original process. We conjecture that in a Dpi setting where locations or
links can fail, like in [1], it would not be possible to get a reasonable encoding
of recursion into iteration.

We could also give another translation, which would be closer to the one
proposed for the pi-calculus in [8] by:

• closing the free names of recursive processes, and then communicating their
actual values through the channel ping, at the same time as the location;

• creating all the home bases at the top-level of the process, once and for all.

But such an approach would not be compositional.

Now that we have described our translation, we want to prove that the
translation and the original process are “equivalent”, in some sense. Since we
are in a typed setting, the first property we need to check is the following.

Lemma 4.1 Γ ` M if and only if Γ ` unrec(M)

We can also show that the behaviour of M and that of its translation
unrec(M) are closely related. Intuitively we want to show that whenever
Γ ` M then any observer, or indeed other system, which uses names ac-
cording to the type constraints given in Γ can not differentiate between M
and unrec(M). This idea has been formalised in [3] as a typed version of
reduction barbed congruence, giving rise to the judgements

Γ |= M ∼=rbc N

The reader is referred to [3] for the formal details.

Theorem 4.2 Suppose Γ ` M . Then Γ |= M ∼=rbc unrec(M).

The proof uses a characterisation of this relation as a bisimulation equiv-
alence in a labelled transition system in which:

• the states are configurations of the form Γ � M ;

• the actions take the form Γ�M µ−→Γ′�M ′; these are based on the labelled
transitions system given in Figure 3 and 4.

11

Hym & Hennessy

Fig. 3 Labelled transition semantics. Internal actions.

(lts-go)

Γ � kJgoto l.P K τ−→β Γ � lJP K
(lts-split)

Γ � kJP |QK τ−→β Γ � kJP K | kJQK
(lts-iter)

Γ � kJ∗ P K τ−→β Γ � kJ∗ P K | kJP K
(lts-here)

Γ � kJhere [x] P K τ−→β Γ � kJP [k/x]K
(lts-rec)

Γ � kJrec (Z : R). P K τ−→β Γ � kJP{rec (Z:R). P/Z}K
(lts-l-create)

Γ � kJ(newloc l : L) P K τ−→β Γ � (new l : L) kJP K | lJCK
(lts-n-create)

Γ � kJ(newreg n : N) P K τ−→β Γ � (new n : N) kJP K
(lts-c.create)

Γ � kJ(newc c : C) P K τ−→β Γ � (new c : C@k) kJP K
(lts-eq)

Γ � kJif u = u then P else QK τ−→β Γ � kJP K
(lts-neq)

Γ � kJif u = v then P else QK τ−→β Γ � kJQK when u 6= v
(lts-comm)

ΓM � M (ñ:T̃)k.a!V−−−−−−→ Γ′
M � M ′

ΓN � N (ñ:Ũ)k.a?V−−−−−−→ Γ′
N � N ′

Γ � M |N τ−→ Γ � (new ñ : T̃) M ′ |N ′

Γ � N |M τ−→ Γ � (new ñ : T̃) N ′ |M ′

ñ ∩ fn(N) = ∅

Definition 4.3 [Actions] For configurations C of the form (Γ � M), we say
that they can do the following actions:

• C τ−→ C′ or C (ñ:T̃)k.a?V−−−−−−→ C′ if we can prove so with a derivation in the LTS;

• C (ñ)k.a!V−−−−→C′ if there exists some derivation proving C (m̃:T̃′)k.a!V−−−−−−→C′ in the LTS
with (ñ) the names that are both in V and (m̃). �

Again we refer the reader to [3] for further motivation; this paper also
contains the result that

(Γ � M)≈bis (Γ � N) implies Γ |= M ∼=rbc N

whenever Γ ` M and Γ ` N . So we establish Theorem 4.2 by showing

Γ ` M implies (Γ � M)≈bis (Γ � unrec(M)) (2)

12

Hym & Hennessy

Fig. 4 Labelled transition semantics. External actions.

(lts-out)

Γ ` k : loc
a : r〈T〉@k ∈ Γ
Γ,〈V : T〉 @k ` env

Γ � kJa !〈V 〉P K k.a!V−−−→ Γ,〈V : T〉 @k � kJP K
(lts-in)

Γ ` k : loc
a : w〈U〉@k ∈ Γ
Γ ` V : U@k

Γ � kJa ?(X : T) P K k.a?V−−−→ Γ � kJP{|V/X|}K
(lts-new)

Γ � M µ−→ Γ′ � M ′

Γ � (new n : T) M µ−→ Γ′ � (new n : T) M ′ n 6∈ µ

(lts-open)

Γ � M (ñ:T̃)k.a!V−−−−−−→ Γ′ � M ′

Γ � (new n : T) M (nñ:TT̃)k.a!V−−−−−−−→ Γ′ � M ′
n 6∈ {a, k}
n ∈ fn(V) ∪ n(T̃)

(lts-weak)

Γ,〈n : T〉� M (ñ:T̃)k.a?V−−−−−−→ Γ′ � M ′

Γ � M (n:T,ñ:T̃)k.a?V−−−−−−−−→ Γ′ � M ′ n 6∈ {a, k}

(lts-par)

Γ � M µ−→ Γ′ � M ′

Γ � M |N µ−→ Γ′ � M ′ |N bn(µ) ∩ fn(N) = ∅

5 Proof of recursion implementability

Let us see the problems encountered in trying to prove the equation (2) on an
example. For this, let us consider a parameterised server version of our Search
process that would be exploring a binary tree instead of a list:

PSearch , search req ?(x, client)

goto k0.rec Z : S. test ?(y)if p(x, y) then goto client.report !〈y〉
else neigh ?(n1, n2) goto n1.Z | goto n2.Z

used in the system ServerJ∗ PSearchK. So this sets up a search server, at Server;
but the difference with Search from Example 2.1 is the fact that the data to
search for in the network is given in the search request on search req, and is
subsequently used as a parameter by the testing predicate p.

13

Hym & Hennessy

Our translation of this process gives the following Dpi code:

IPSearch , search req ?(x, client)
goto k0. (newreg ping) (newloc base) F | goto base. ∗ Inst

Inst , ping ?(k) goto k.test ?(y) if p(x, y) then goto client.report !〈y〉
else neigh ?(n1, n2) goto n1.F | goto n2.F

F , here [l] goto base.ping !〈l〉

with Inst an instance of the iterative process, and F the triggering process,
written FireOne is the example in the previous section.

Since IPSearch is replicated, it will generate a new home base for Inst for
every request on search req. This means that, after servicing a number of such
requests we will end up with a system of the form:

(new ping1) (new base1) (new ping2) (new base2) . . .

ServerJ. . .K | base1J. . .K | k1
1J. . . F1K | k2

1J. . . F1K | . . . | base2J. . .K | k1
2J. . . F2K . . .

(3)

Of course, this will correspond to the recDpi system:

ServerJ. . .K | k1
1J. . . rec Z. P K | k2

1J. . . rec Z. P K | . . . | k1
2J. . . rec Z. P K . . .

On this example, we can see quite clearly the main difference at runtime
between our translation and the standard, but non-compositional, one used in
the pi-calculus we previously mentioned (see [8]), which arises because of the
replication of rec Z. P . A translation following the lines of that in [8], would
give rise to the following state, corresponding to (3) above:

(new ping) (new base) ServerJ∗ search req ?(x, client) goto k0.F(x, client)K
| baseJ∗ ping ?(k, x, client) goto k.test ?(y) . . .K
| k1

1J. . . F(x1, client1)K | k2
1J. . . F(x1, client1)K | . . . | k1

2J. . . F(x2, client2)K . . .

F(x, client) , here [l] goto base.ping !〈l, x, client〉

Note that here all the free names used in the recursive process are closed
and the actual parameters are obtained when an instance is called via ping.
But more importantly only one home base is ever created. Thus the loss of
compositionality allows an easier proof of equivalence, since there is only one
base per recursion variable.

To return to the discussion of our translation, we have here a recDpi
process containing a number of recursive constructs but the way they are to
be translated to get the Dpi system (3) depends on the system history. That
is why our proof of (2) is based on an extended version of the translation
in which we specify whether a given occurrence of rec Z. P has already been
attributed a home base. If not, it should generate a new one; if it has, then the

14

Hym & Hennessy

actual home base needs to be recorded. In the example, we need to attribute
the same home base to the rec Z. P in every ki

1, and different ones for the
other ki

j.

Let us write unrecP(M) for the translation of M parameterised by P ,
with P specifying how each rec Z. P should be translated in M . Then to
prove the equation (2), we would like to exhibit a bisimulation containing the
pair

(Γ � M, Γ � unrecP(M))

for any term M , any environment Γ such that Γ � M is well-formed configu-
ration and any parameter P .

But we still have a major problem in trying to exhibit this bisimulation:
there are a lot of possible states in the translation corresponding to only one
state in the original process, since we introduce numerous extra reductions.
To deal with those extra steps, we will resort to a proof technique given in [6],
namely bisimulation up-to-β. This is based on the remark that, among the
reductions added by the translation, only the communication on the channel
ping is “dangerous”, because it could fail if one of the two agents involved
in the communication were absent. Every other step is a so-called β-move,
written τ−→β in the LTS, in Figure 3. Thanks to bisimulations up-to-β we
can focus only on the communication moves, by using a new variant of the
translation, written unrecβ

P(M), meaning that every β-move required for the
bisimulation has been done. Then by considering that the ping-communication
(which is a τ -move) in the translation corresponds to the recursion unwinding
in recDpi, we can prove that the relation

(Γ � M, Γ � unrecβ
P(M))

is a bisimulation-up-to-β.

6 Conclusion

In this paper we gave an extension of the Dpi-calculus with recursive pro-
cesses. In particular we described why this construct was more suited to
programming in the distributed setting, by allowing the description of agents
migrating through network, visiting and interrogating different locations. We
also gave a typing system for this extended calculus, which involved recursive
types, dealt with by using co-inductive proof techniques, and showed that
Subject Reduction remains valid. Finally we showed how to encode our re-
cursive processes into standard Dpi which uses iteration, by resorting to the
addition of extra migrations in the network. The encoding was proved to be
sound and complete, in the sense that the original and translated processes
are indistinguishable in a typed version of reduction barbed congruence.

It would now be interesting to study the behaviour of recursive processes in
a setting where some parts of the network could fail (either locations or links),

15

Hym & Hennessy

since failures are of major importance in the study of distributed computa-
tions. We conjecture that in such a setting there is no translation of recursive
processes into iterative ones, which preserve their behaviour.

References

[1] Francalanza, A. and M. Hennessy, Location and link failure in a distributed pi-
calculus, Computer Science Report 2005:01, University of Sussex (2005).

[2] Gapeyev, V., M. Levin and B. Pierce, Recursive subtyping revealed, Journal
of Functional Programming 12 (2003), pp. 511–548, preliminary version in
International Conference on Functional Programming (ICFP), 2000. Also
appears as Chapter 21 of Types and Programming Languages by Benjamin C.
Pierce (MIT Press, 2002).

[3] Hennessy, M., M. Merro and J. Rathke, Towards a behavioural theory of access
and mobility control in distributed systems, Theoretical Computer Science 322
(2003), pp. 615–669.

[4] Hennessy, M. and J. Riely, Resource access control in systems of mobile agents,
Information and Computation 173 (2002), pp. 82–120.

[5] Hym, S. and M. Hennessy, Adding recursion to Dpi, Computer science report,
University of Sussex (2005).

[6] Jeffrey, A. and J. Rathke, A theory of bisimulation for a fragment of concurrent
ml with local names, Theoretical Computer Science 323 (2004), pp. 1–48.

[7] Milner, R., “Communicating and Mobile Systems: the π-Calculus,” Cambridge
University Press, 1999.

[8] Sangiorgi, D. and D. Walker, “The π-calculus,” Cambridge University Press,
2001.

16

Hym & Hennessy

A Dpi subtyping and typing rules

Fig. A.1 Subtyping rules

(sub-base)

base <: base

(sub-cap)

A <: B

u : A <: u : B

(sub-tuple)

Ci <: C′
i

(C̃) <: (C̃′)

(sub-chan)

T2 <: T1 <: U1 <: U2

w〈T1〉 <: w〈T2〉
r〈U1〉 <: r〈U2〉
rw〈U1, T1〉 <: r〈U2〉
rw〈U1, T1〉 <: w〈T2〉
rw〈U1, T1〉 <: rw〈U2, T2〉

(sub-hom)

A1 <: A2

K1 <: K2

A1@K1 <: A2@K2

A1@u <: A2@u
rc〈A1〉 <: rc〈A2〉

(sub-loc)

Ai <: A′
i, 1 ≤ i ≤ n

loc[u1 : A1, . . . , un : An, . . . , un+p : An+p] <: loc[u1 : A′
1, . . . , un : A′

n]

17

Hym & Hennessy

Fig. A.2 Well-formed environments

(e-empty)

` env

(e-base)

Γ ` env

Γ, u : base ` env
Γ(u) ↓ base

(e-new-lchan)

Γ ` env

Γ ` w : loc
Γ(u) = {Ai@vi}
Γ, u : A@w ` env

{vi, w} contains at
most one location
{Ai} ↓ A

(e-ref-lchan)

Γ ` env

Γ ` w : loc
Γ ` u : rc〈B〉, B <: A

Γ, u : A@w ` env

(e-rchan)

Γ ` env

Γ, u : rc〈A〉 ` env
u 6∈ Γ

(e-loc)

Γ ` env

Γ, v : loc ` env
Γ(v) ↓ loc

(e-rec)

Γ ` env

Γ(ui) = {rc〈Aij〉, Aik@vk}
Γ, Z : loc[(ui : Ai)] ` env

Z 6∈ Γ
{Aij ,Aik} ↓ Ai

(e-dec-at-rec)

Γ ` env

Γ(Z) = loc[. . . , u : A, . . .]

Γ, u : A@Z ` env

Fig. A.3 Typing values

(v-meet)

Γ ` u : T1

Γ ` u : T2

Γ ` u : T1 u T2

(v-name)

Γ, u : T, Γ′ ` env

Γ, u : T, Γ′ ` u : T′ T <: T′

(v-tuple)

Γ ` ui : Ti

Γ ` (ũ) : (T̃)
(v-located-channel)

Γ ` ui : Ai@v
Γ ` v : K

Γ ` (ũ)@v : (Ã)@K

(v-loc)

Γ ` v : loc
Γ ` ui : Ai@v

Γ ` v : loc[u1 : A1, . . . , un : An]

(v-located-tuple)

Γ ` ui : Ai@k

Γ ` (ũ) : (Ã)@k

(v-dec-loc)

Γ ` v : loc
Γ ` ui : Ai@v
Γ ` ui : rc〈Di〉, Di <: Ai

Γ `dec v : loc[u1 : A1, . . . , un : An]

18

	Introduction
	The language recDpi
	Co-inductive types for recDpi
	The Types
	Typing Systems

	Implementing recursion using iteration
	Proof of recursion implementability
	Conclusion
	References
	Dpi subtyping and typing rules

