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Fig. 1. Reconstructed sample from Labeled Faces in the
Wild (LFW) dataset using 200 holistic eigenfaces compared
to only 20 cell eigenfaces.

ABSTRACT

In this study, we propose an efficient approach for mod-
elling and compressing large-scale datasets. The main idea
is to subdivide each sample into smaller partitions where
each partition constitutes a particular subset of attributes and
then apply PCA to each partition separately. This simple
approach enjoys several key advantages over the traditional
holistic scheme in terms of reduced computational cost and
enhanced reconstruction quality. We study two variants of
this approach, namely, cell-based PCA for image datasets
where samples are spatially divided into smaller blocks and
the more general band-based PCA where attributes are parti-
tioned based on their values distribution.

Index Terms— Large-scale Data, PCA, Pattern Extrac-
tion, Image Data Representation, Compression.

1. INTRODUCTION AND MODEL DESCRIPTION

Principal Component Analysis (PCA) is one of the most
well-known unsupervised learning techniques used for di-
mensionality reduction and pattern extraction. The main task
of PCA is to compute low-dimensional basis vectors that cap-
ture most variability of the input dataset X € R%*"™. These
basis vectors correspond to the & most significant eigenvec-
tors V. € R¥* k < min(n,d) of the covariance matrix
C = ﬁXCXcT where X is the dataset after subtracting the
sample mean. Such holistic linear representation is optimal
in terms of the mean-squared-error [1]. However, finding
such basis vectors requires O(nd min(n, d)) FLOPs of com-

putation and O(min(n, d)?) memory space. Hence, analyz-
ing large-scale datasets (of very large min(n,d)) becomes
computationally infeasible. ~Almost all machine learning
approaches nowadays (such as Autoencoders, CNNs, etc.)
suffer such scalability problems. Our solution is to subdi-
vide each sample into smaller partitions where each partition
constitutes a particular subset of attributes and then apply
PCA to each partition separately. While this idea is simple,
it enjoys many major advantages over the traditional holistic
approach. By subdividing samples into p partitions of equal
sizes, one can note that the resulting p covariance matrices
are smaller than the holistic one since p.(d/p)? = d*/p < d?
and the computational complexity becomes O(nd?/p) in-
stead of O(nd?) (assuming d < n) reducing both space and
computational cost. Moreover, since each partition is pro-
cessed independently, the approach is embarrassingly parallel
and the computation can be further reduced to O(n(d/p)?).
Having these advantages on hand, such mode of computation
raises two main questions. First of all, on what basis are at-
tributes mapped to different partitions? The second question
concerns the relation between the partitioned eigenvectors
and the holistic ones. We propose two different strategies for
assigning attributes to different partitions which we refer to
as cell-based PCA and band-based PCA. We asses each strat-
egy in terms of the average mean-squared-error and SSIM
between reconstructed samples and their original counter-
parts in addition to the average run-time per cell using CPU
and GPU implementations. We find that using the proposed
partitioning strategies significantly enhances reconstruction
and dramatically reduces the run-time. In addition, experi-
mental results indicate that when assigning attributes to each
partition randomly, the combination of the resulting partial
eigenvectors becomes analogous to the holistic solution.

2. RELATED WORK

Partitioning-based PCA has become an active research area in
the last two decades specifically for applications in distributed
data analysis and computer graphics. Partitioning-based PCA
algorithms can be categorized into two types: Sample-based
partitioning and attribute-based partitioning. The sample-
based partitioning is the most commonly used approach with



extensive use in domain applications including subspace clus-
tering and distributed systems. In such approaches, the data
is divided into smaller subsets of samples for two different
goals depending on the type of application. In subspace clus-
tering, the aim is to compute a set of subspaces where each
subspace optimally fits a subset of samples based on their dis-
tribution [2]. On the other hand, distributed PCA addresses
the problem of analyzing data partitioned across multiple
distributed servers. It can be either used as sample based par-
titioning where each server possesses n; < n samples of high
dimension or attribute-based partitioning where each server
streams d; < d channels of partial attributes to a global co-
ordinator. The first scenario is typical when considering very
high dimensional data distributed in star-topology networks
where each machine performs a local SVD on their samples
followed by global processing using the center coordinator.
Such a problem has been accentuated by the machine learn-
ing community in [3, 4, 5]. A more challenging scenario is
that when servers are connected in mesh-topology networks
which was discussed by Wu et al. [6] and Fellus et al. [7]. In
this setting, the power iteration is applied where after each
local update a globalization procedure is performed using
a Gossip communication protocol [8, 9, 10]. One can note
that in the sample-based partitioning in distributed PCA, the
general problem remains a batch type of learning. On the
other hand, attribute-based distributed PCA is more com-
monly used in streaming applications particularly in the field
of multi-sensor signal processing. Attribute-based partition-
ing was also investigated for learning appearance of 3D mesh
models using eigen-textures [11] where PCA is applied to
each texture segment of a rotating object.

3. CELL-BASED PCA

In this section, we address the first strategy for assigning
attributes to partitions, which we refer to as cell-based PCA.
The technique is inspired by the JPEG compression stan-
dard [12] where images are subdivided into small blocks
(cells) of size 8 x 8. Each block is then projected onto
the 2D Discrete Cosine Transform (DCT) basis functions.
These basis functions form a global representation for any
8 x 8 gray-scale images by defining spatial frequencies in the
2D space. Each block is represented in terms of its projec-
tion values on these 64 basis functions. In order to achieve
compression, only a few projection values are chosen for
representation, those corresponding to lower frequency basis
functions. One can note that the main drawback in such rep-
resentation is the difficulty of prioritizing the low frequency
basis functions in the X and Y directions. This becomes even
more problematic when dealing with larger block sizes.
Unlike JPEG compression, cell-based PCA is a data-
driven representation and compression approach. In this case,
basis functions of each individual block are computed by
applying PCA to pixels within the region occupied by a cor-

responding cell (block). This brings with it the advantage of
finding optimal basis functions of each block appropriately
ordered based on their significance leading to minimal re-
construction errors (in terms of MSE) [1] for fixed number
of basis functions (eigencells). The downside of this method
is that each block will have its own basis functions (eigen-
vectors) based on the distribution of the input dataset. In our
implementation, we include all color channels for comput-
ing eigencells. This is a somehow trivial choice since one
would expect the distribution of colors in a single block to be
consistent. Computing cell eigenvectors for larger cell sizes
may not be possible using batch PCA. For such scenarios,
streaming PCA approaches can be applied instead [13].

4. MODELLING NON-SPATIALLY LOCALIZED
DATA USING BAND-BASED PCA

One main limitation of cell-based PCA is that it works only
for spatially localized samples of image format. In this sec-
tion, we present an alternative partitioning technique that
can be applied to more general types of datasets. The main
premise is to assign attributes to non-spatialized partitions,
called bands, based on their values distribution instead of
their spatial locations. We will discuss two strategies for
assigning attributes in the following subsections.

4.1. Mapping Attributes Based on Sample Mean

A key assumption in JPEG and cell-based PCA is that neigh-
boring pixels usually have similar values. However, if the
data on hand is not spatially organized, this assumption is
no longer valid. In this section, we make no spatial assump-
tions when assigning attributes to their corresponding bands.
Rather, we group attributes that are close in terms of their
mean values which can be formally described as follows

B={acz|lg<E(a) <ugp},

where a is an attribute value of x and /g and up are lower
and upper bounds defining the interval of the corresponding
band. Typically, the difference between these bounds should
be small. This can be done by subdividing the range of val-
ues in the sample mean into s sub-intervals. This will lead
to a non-uniform number of attributes per interval. In order
to limit the number of attributes per band, attributes belong-
ing to the same interval are further sorted based on their mean
values and then grouped into bands with maximum allowed
length L. The main problem is that computing the sample
mean requires a pre-processing data pass which is prohibitive
in the case of large-scale and streaming data scenarios. One
can solve this problem by computing such statistics from a
single mini-batch of the input data assuming samples are in-
dependent and identically distributed.



4.2. Mapping Attributes Based on Mean and Variance

Using only sample mean as a basis for mapping attributes
may neglect important criteria that attributes of the same
band must share. Furthermore, using the mean by itself does
not constitute the distribution of values that a particular at-
tribute may have. It is well-known that PCA is most efficient
when samples obey a multivariate normal distribution [14].
Hence, we may assume that attributes of the same band are
normally distributed and share similar parameter values in
terms of mean and standard deviation. More formally, this
can be expressed as follows

B={a~N(n,0%) €|l <p<uf Al <o<uy}

where ;1 = E(a) and 0® = Var(a) are mean and variance
respectively of the attribute a. In order to achieve such con-
ditions, we subdivide the range of values in the sample mean
into s sub-intervals. Then, we sort attributes within the same
sub-interval based on the variance (instead of the mean) and
then group each L ordered attributes into one band.

5. RESULTS

We will evaluate the performance of the aforementioned
techniques on two large-scale face datasets, namely, Labeled
Faces in the Wild (LFW) [15] and CelebA [16]. While gener-
alizable to more general types of datasets, our choice of such
datasets is to build upon an application where the impact of
the holistic PCA has a well-earned reputation. In addition,
this allows for visual inspection of reconstruction quality. It
is worth mentioning that computing the holistic eigenspace
for such datasets is infeasible. However, we approximated the
first eigenfaces (eigenvectors of face images) using state-of-
the-art reduced-complexity streaming PCA according to [17].

5.1. Reconstruction Quality for Different Cell Sizes

We first study the effect of varying the cell-size on the qual-
ity of reconstruction when maintaining the same compression
ratio of 15:1. Table 1 contains the average MSE and SSIM
scores for different cell sizes compared to the reconstruction
of 1,000 holistic eigenfaces. We can clearly note that the cell-
based PCA results are much better than the holistic scheme.
This is consistent with Fig. 1 which shows reconstructed sam-
ple from LFW using 200 holistic eigenfaces compared to the
reconstruction of only 20 cell eigenfaces (eigenvectors per
cell) of cell-size 10 x 10 x 3. It is also apparent that for a
fixed compression ratio, expanding the cell size enhances the
reconstruction quality at the expense of increasing the num-
ber of cell eigenvectors. This is well-reflected in Fig. 2 where
cell boundary artifacts are reduced when increasing cell-size
from 5 x 5 to 25 x 25.

Table 1. Cell-based PCA vs. holistic PCA in terms of recon-
struction quality.

LFW CelebA
Partition-size 25x 25 <3 || 1,875 ]| Holistic 25 » 3 [ 1,875 ] Holistic
# of eigenvectors per part 125 125 1,000 125 125 1,000
MSE 0.00027__|[ 0.00062 || 0.0029 0.0007 | 0.0011 | 0.003
SSIM 0.9425 0.89 0.71 0.89 085 0.72

|
b

5.2. Computation Run-time

We compare performance of CPU and GPU implementations
in terms of average run-time per cell in order to reflect the
speedup that can be gained when considering a perfect par-
allel setting (with no overhead communications). The tests
were run on a workstation equipped with a 2.6 GHz Intel Core
17-6700HQ CPU and GeForce GTX 960M GPU. We find that
for small cell-sizes the CPU takes shorter run-times than the
GPU. For larger cell-sizes, the GPU implementation becomes
faster. This is depicted in Table 2 where average run-times per
cell are reported. While computing the holistic eigenvectors
for such datasets is infeasible using standard PCA, approxi-
mating the top 1,000 eigenvectors using accelerated version
of PCA costs 21.2 hours for LFW and 4.6 days for CelebA.

Table 2. CPU vs. GPU average run-times per cell in seconds.

LFW CelebA
Cell-size 5x5x3 [ 10x10x3 | 25x25x 3 || 5x5x3 | 10x 10 x 3 | 25x 25 x 3
CPU run-time/cell 0.0427 0.16 7.87 0.44 1.92 63.3
GPU run-time/cell 0.3273 0.295 3.19 0.9 1.2845 4.39

5.3. Comparing Band-based PCA Performance for Dif-
ferent Mapping Strategies

We now compare the two mapping strategies for band-based
PCA. For image datasets, due to the redundancy in the color
channels, we assign pixels to different bands based on one
color channel (in this paper, we used the R channel but a
more general approach would be to use a grayscale transfor-
mation). Since we are addressing streaming and large-scale
data in this study, we estimate the sample mean and variance
using a subset of the dataset which we refer to as an estimat-
ing subset. We study the reconstruction quality for different
estimating subset sizes. As we found earlier in this section
that increasing cell size enhances reconstruction results, we
set the maximum pixels allowed per band, L, to 625 and num-
ber of intervals, s, to 50. We report reconstruction quality in
terms of MSE and SSIM when using 125 band eigenfaces.
Due to the way our mapping strategy assigns attributes, the
number of pixels per band may be smaller than L for many
bands resulting in different compression ratios than the de-
sired target (15:1). We also tested band-based PCA when
applying random mapping where attributes are assigned to
different bands in random manner. Table 3 compares recon-
struction results between baseline random mapping and the
two proposed mapping strategies when applied to the LFW
dataset. Clearly, the proposed mapping techniques are much



10 X 10 X 3

25 X 25 X 3 original

Fig. 2. Two reconstructed samples from LFW and CelebA
datasets when maintaining 15:1 compression ratio using cell
eigenfaces of different cell-sizes.

better at reconstruction than the baseline model. It is also ev-
ident that mapping attributes using mean and variance gives
better quality results than the mean-based technique. In ad-
dition, increasing the estimating subset size enhances the re-
sults. However, the reconstruction results for cell-based PCA
are still better despite using lower compression ratio. Fig. 3
shows many images reconstructed using different mapping
strategies of band based PCA. Clearly, random mapping re-
sults in poor reconstruction quality whereas mean mapping
produces some dithering artifacts. These dithering artifacts
are reduced when applying mean-variance mapping.

5.4. Analogy with the Holistic Eigenspace

Fig. 4 presents a comparison between holistic eigenfaces
and combined band eigenvectors (band eigenfaces) resulting
from the random mapping. Interestingly, the random map-
ping eigenfaces have a high resemblance to the holistic ones.
This suggests that the worst case instance of band-based PCA,
achieved when applying the baseline random mapping model,
produces an eigenspace that is analogous to the holistic solu-
tion. Both models were shown to produce poor reconstruction
results in comparison to the other techniques.

6. CONCLUSION

We proposed two methods for modelling large-scale datasets
by dividing data attributes into smaller subsets and then ap-
plying PCA to each partition separately. We show that these
have several advantages over the standard holistic approach

Table 3. Reconstruction performance using different band-
based PCA strategies.

\ [ LFW [ CelebA |
| band size | 1875 |

1875 \
# of eigenfaces 125 125
MSE 0.00062 || 0.0011
SSIM 0.89 0.85

mean-based mapping

mean-variance mapping original

random-based mapping

Fig. 3. Reconstructed samples from the LFW dataset using
different mapping strategies for band-based PCA.

including enhanced reconstruction quality and increased com-
putation speed, parallelism and scalability. The first model,
cell-based PCA, is inspired by the JPEG standard but en-
joys better guarantees in terms of reconstruction errors. The
second approach, band-based PCA, maps attributes based on
their values distribution rather than their spatial locations. We
show that mapping pixels using the mean and variance is bet-
ter in terms of reconstruction quality than mapping based only
on sample mean. Both mappings were shown to be superior to
the random mapping model. We also found that the baseline
performance produced using random mapping is analogous to
the holistic PCA solution, but entails lower memory costs and
computation run time. Not only are our proposed methods
beneficial for data compression, but they may also provide
light-weight data representation for further learning tasks. In-
vestigating other partitioning strategies for non-normally dis-
tributed data is an interesting avenue for future research.

Fig. 4. Comparison of the first five holistic (top row) and
random-mapping band eigenfaces of the LWF dataset.
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