
A Methodology for Developing
Integrated Multi-domain Service Management Systems

Vincent Wade Trinity College Dublin, David Lewis University College London , Mark
Sheppard Broadcom Eireann Research Ltd, Michael Tschichholz & Jane Hall GMD Fokus

Contact: Vincent.Wade@cs.tcd.ie
Abstract

This paper presents a methodology for designing and implementing Intra and Inter Domain
(end-to-end) service management systems. In particular the methodology considers the
integration & cooperation of management services from different service providers. The
methodology uses enterprise modelling techniques and object oriented design for
requirements capture and description, system development, implementation and
deployment. It also supports the generation of service management system specifications
based on ODP viewpoints. The methodology facilitates the reuse pre-existing computational
components e.g. TINA C service architecture components in developing and implementing
management solutions. To illustrate this methodology a case study is presented based on the
development of subscription management services where the final delivered management
service is based on the co-operation of different provider service management systems.
The methodology was developed and is being trialled within the PROSPECT ACTS
project.

1. Scope
With the deregulation of telecommunication network services in Europe, there is
increasing interest in telecommunication services being offered by third party service
providers over different network providers. The benefit of such an open service
environment would be ‘one-stop-shopping’ delivery of ‘tailored’ services to end
customers without these customers having to deal with the multiplicity of underlying
telecommunication services and network providers. The difficulty with such an
environment is the complexity of managing the services across the different service
provider organisations (administrative domains) i.e. integrating co-operative
management services spanning individual service and network providers, value
added service providers and final end users. The design facilitates both the design
and development of individual management services and their co-operation and
interoperation to support source-to-destination telecommunication services. The
methodology facilitates the usage of Open Distributed Processing standards for the
generation of system specification & the re-use of management component designs
and implementations based on the TINA C standards. However the methodology
itself is independent of these standards.
The paper first identifies the current trends in system analysis/design techniques and
ODP based distributed systems development techniques. In accordance with these
trends the paper describes the Prospect Design cycle which is at the center of the
methodology. The paper also describes how ODP based specifications can be
generated from stages in this design cycle. To illustrate the usage of the methodology
the design of a multi domain subscription management service which spans several
service and network providers is described. Finally conclusions are drawn as to the
usage and benefits of the methodology.

2. Designing Multidomain Management Services
The late eighties and early nineties has seen the increased usage of ‘second
generation’ object oriented analysis and design techniques. Principle among these

methodologies are Rumbaugh’s Object Modelling Technique (OMT) [Rumb-91],
Ivar Jacobson’s Use-Case driven OO software Engineering Model [Jacob-92] and
Grady Booch’s Object Oriented Analysis and Design (OOAD) methodology. Another
more recent object oriented methodology has been the FUSION methodology
developed by HP Labs. The current trend in object oriented methodologies is to
harmonise existing approaches rather than develop brand new modelling techniques.
An example of this trend is the proposal of Unified Modelling Language. Also the
Object Management Group (OMA) - the consortium responsible for CORBA
standards, have recently called for standardisation of OO design techniques.
Since inter & intra domain Management Services inherently require distributed
solutions, an open distributed approach must be adopted for multi domain system
description. Currently several standards address the issue of specifying open systems.
Principle among these is the Open Distributed Processing [ODP-94] standard which
suggests the specification of five different viewpoints of the system (Enterprise,
Information, Computation, Engineering and Technology). These viewpoints
highlight, and provide a basis for the separate discussion of, different aspects of the
design and implementation of the system. Several standards have taken these
viewpoint description concepts and enhanced them for describing network and
service management systems e.g. TINA [TINA-95] and ODMA.
In order to capture the idea that (management) services can be used independently of
each other as well as being used in cooperation, the end-to-end management system
must be viewed in two complementary (overlapping) models: (i) Inter Domain
Management Model: This models the management services in co-operation to
support end-to-end management services. (ii) Intra Domain Service Management
Model: These models describe the management services (e.g. configuration,
accounting etc.) of each of the tele-services in an Open Service Market e.g.
management services for VPN, MultiMedia Conferencing, HyperMedia Services.
The reason for this decomposition is that each management service could exist on its
own (i.e. is a usable management service regardless of its cooperation with other
services management providers). This reflects the view of the Open Service Market
where the management of a tele-service has its own objectives whether or not they
are infact integrated across provider organisations Thus inter domain management
captures the end-to-end management chain while the intra domain models capture
the management services of each individual service in isolation. However, these
models are not completely orthogonal as components used for inter domain
management are also used in the intra domain management.

3. A Service management System Development Design Cycle from
which Viewpoint Models can be derived
Rather than developing new modelling or systems specification techniques, the
Prospect methodology harnesses existing modelling tools and concepts within a
design cycle which facilitates the development of the inter and intra domain
management systems. The methodology supports each stage of the design process
lifecycle. The ODP viewpoints provide an well established approach to system
model description. However, they do not provide a prescriptive methodology that
can be followed in developing management systems [ITU-96]. Therefore unlike
previous design methodologies which have attempted to specify design steps which
allow the generation of one ODP viewpoint from a previous viewpoint, the

PROSPECT design cycle sees the development of a full object oriented model as
central to the overall design process. Figure 1 illustrates the Prospect design cycle,
which at its centre is concerned with the design, development, implementation,
testing & trialling of inter/intra domain management system.

Generated
Enterprise Model Specification

Generated
Information

Model
Specification

Open Service Market Influences
& Service Management
Standards/Initiatives

(Re-usable
Information
Objects
& Computional
Components
(e.g. TINA, TMN)

Enterprise Requirements
Technology Constraints

Generated Computational
Model Specification

Identification of
Stakeholders/Responsibilities

Roles/Obligations
Activities/Resources

Domains Identification and
Specification of Objects and

Info Flows (Use Cases)

Identification of
Computational Objects Interfaces

Mapping and deployment of
COs onto infrastructure

Implementation,
 Integration with available

Technology and Tests

Generated
Engineering Model

Set-up of infrastructure,
services and

management systems
for the trial

Generated
Technology

Model

Inter & Intra
Domain
System
Model

Perform Trial
and Evaluate

Figure 1: PROSPECT Design Cycle
The design cycle provides a structured way of developing, implementing and testing
these object designs. It specifies the design steps from developing multi domain
business models (which includes the representation of stakeholders, assignment of
responsibilities, identification of obligations and activities etc), use case definition
analysis, object identification and relation representation, definition of computational
components, the integration and extension of pre-existing computational
components (e.g. from TINA C Service Architecture), distributed placement of
computational components, definition of platform architecture and platform services,
generation of test sets and trial execution.
The Prospect design cycle also identifies key places in the development process from
which specific viewpoint models can be generated and prescribes the contents of
each viewpoint model specification and illustrates how these can be generated. The
information needed to generate the specifications are a subset of the information
needed to design and implement the actual systems. The design cycle ensures the
consistency between each stage of the system model development and therefore
provides a means of tracing the interrelationships between the ODP viewpoints. The
benefit of generating the ODP viewpoint specifications is that a clear separation of
the different aspects of the system can be captured. Also it provides a structured
means of comparing different subsystems and services. The Prospect design cycle is
iterative, allowing progressive deepening of the system models by iterating the cycle
several times.
The modelling techniques integrated in the design cycle are Organisational
Requirements Definition for Information Technology [ORDIT-93] , Object Modelling
Technique (OMT) [Rumb-91], OMG based interface definition language. The
methodology has been influenced by the modeling work of previous ACTS projects

PREPARE [Hall-96] and PRISM [Berq-96] and the TINA-C Service Architecture
[TINAC-94] and modelling approaches.

4. Iterating the Inter-Domain System Development Methodology
This section illustrates the design decisions and experiences encountered when
applying the Prospect design cycle. The example for this illustration is the design of
multi-domain management services for a tele-educational service (which is itself
composed of several teleservices e.g. Hypermedia information service, video
conferencing service and makes use of connectivity services e.g. VPN service and
ATM service). The example is based on the work of the Prospect ACTS project ACT
052 which are currently being trialled within this project.
4.1 Business Model and Use cases
The methodology for deriving the PROSPECT business model is based on that of the
ESPRIT project ORDIT (Organisational Requirements Definition for Information
Technology). ORDIT developed a model with roles, responsibilities and obligations
that can be used for establishing relationships between the various parties involved in
a socio-technical system which captures organisational requirements. It can be used
at a number of different levels of abstraction and is iterative, allowing for revision
and growth. Figure 2 illustrates the contractual relationships between the stakeholder
organisations for the case study.

Provider
Security Service

Provider role
ContentTES

Customer

Contract

Provider
VPN

Key:

Enterprise Object
representing
a stakeholder

Contract

1+

Provider
MMTS

Contract

1+

MMTS mgmt.
integr. role

responsible to

responsible to

responsible to

responsible to

responsible to

Contract

Provider TES

Contract

1+
responsible toresponsible to Provider role

TES

responsible to

Contract

Integ. MMTS
Manager role

responsible to

Contract

Figure 2 Contractual Relationships between Stakeholder Organisations

Once the model of stakeholder and roles had been established, the requirements on
the stakeholder’s systems were focused on through the definition of use case for the
customer, provider and end user roles of the TES stakeholder. These use cases
included; subscription to the TES, inclusion of a customer network site in a TES
subscription, authorisation of a TES end user under a subscription and actual use of
the service. To assess the inter-domain implications of these use-cases, i.e. the
requirements they placed on the different stakeholders in the enterprise model, high
level sequence diagrams were drawn up to help define the information that needs to
flow between the different stakeholders and roles. An example of such a diagram for
the “authorise a TES end user” use case is show in figure 3.

TES
user

CPN
admin

TES
customer

TES
provider

MMC
provider

MMM
provider

HT
provider

VPN
provider

VP
provider

authorise user
contract ID,
user ID(e.g. email address).

ack authorise end user
user service ID
user password

authorise user
user ID(e.g. email address).

authorise user
user ID(e.g. email address).

authorise user
user ID(e.g. email address).

Figure 3 Use Case information flow between stakeholders

4.2 Reuse of Existing Models
At this stage functional requirements for the systems within each stakeholder that
would be involved in the use cases had been outlined so other existing management
system specifications were analysed to see if they could be reused in meeting the
requirements. This is in line with current management system methodologies, e.g.
TMN M.3020 and the NMFs Ensemble approach, which aim to make maximum
reuse of existing functional components specifications and information model when
designing new management system.
However, in the particular service management areas covered by the use cases, little
was available in the way of existing specification, either in the TMN functional and
information specification or in NMF solution sets. The TINA Consortium had
however been examining areas of service management in detail in its service
architecture (SA) [TINA-94]. In particular they has defined a generic service model
for user telecommunications services that was closely integrated with management
components for both subscription management and accounting management. This
combined service and management model was seen as suitable for satisfying many
of the requirements imposed by the use case for the Prospect systems and were
therefore selected for reuse as the basis for the management systems of the TES and
MMTS providers’ systems. However, the TINA service architecture assumed only a
single provider offering services to customers, whereas the use cases placed
requirements on the TES system to integrate the MMTSs offered by other providers
into a single service offering. This required the modification of the TINA
architecture components used in order to suit the use case requirements.
The TINA service architecture is expressed in ODP viewpoints, and provided (i) an
Information Viewpoint model in terms of information object (IO) descriptions and
OMT object diagrams to express the relationships between the objects. (ii) a
Computational Viewpoint model in terms of computational object (CO) descriptions
and object block diagrams showing the client server relationships between objects.
Details of these viewpoints, expressed in TINA using Quasi-GDMO [TINA-95] and
Object description Language [TINA-93] were not publicly available, however draft
interpretations of some parts of the models by other projects were available.
The information and computational models were therefore required as the basis from
which to extend the models to satisfy the requirements present in the use cases and

from which to generate a detailed design specification sufficient to implement the
components required. It was found however that the TINA design specification in the
form of these two viewpoints was inadequate for this task. This was primarily due to
the lack of an explicit linkage between the two viewpoint models, i.e. the mapping
between IOs and COs was not present in any clear manner. This prevented both a
clear understanding of the system from being made and hid the overall object model
needed to actually implement this system. The first step to resolving this problem
was to use the use cases as the basis for sequence flow diagrams showing describing
the flow of information between COs. This illuminated the dynamic aspects of the
model and in the process clarified the relationships intended between the COs and
IOs and their behaviour.
As COs are taken to be units of object distribution, some mechanism was required to
map CO definitions to a form suitable for implementation on a distributed platform.
The engineering viewpoint model for all TINA architectural components and defines
a Distributed Processing Environment, providing distribution transparencies to
engineering computational object based on the COs of the computational viewpoints.
However, no practical implementation of the DPE platform implementation was
available to the project. Instead a commercial CORBA 2.0 [CORBA-95]
implementation (Orbix from Iona) had been chosen as the platform for the
components based on the TINA SA. This required mapping between the multiple
interfaces of a TINA engineering computational object to the single interfaces of
CORBA objects. This mapping exploited the similarity between ODL and CORBA’s
IDL, with ODL CO interfaces being mapped individual IDL interface definitions,
grouped in a module mapped from the CO definition.
The combination of OMT IO definitions, IDL definitions of CO interfaces and
sequence diagrams showing interactions between COs via the IDL interfaces
provided enough detail for developers to understand the TINA SA components
selected for implementation. In these cases a single object model was deemed too
costly to synthesis, so extensions to these SA components were specified using the
same combination of notations. The following section provides more details on how
these notations were used in practice by examining the extension of the TINA SA
subscription management component to satisfy the multi-domain requirements of the
use cases.
4.3 Extending Reused Components
Since the design of the TINA SA subscription management component had been
presented as a presumably consistent set of structures IOs and CO, and since the
relationships between these sets of objects have been clarified through detailed
sequence diagrams, the extension of the component was most readily performed by
using the same notational structure.
Figure 4 shows a portion the OMT object diagram for subscription management
from the TINA SA representing the parts that were actually implemented in
Prospect. The shaded objects shown are those which were added to the model to
extend it to handle the multi-domain requirements on subscription management. In
this case information relating to subcontracted providers and the mapping of
subscription-related IO in one domain to those in subcontractors domains was
required. The intention of these extensions was to support the functionality required,
while preserving the integrity of the existing information model.

P_Service Profile
svc_profile_id
activation_state

Subscriber
account_no
name
address
no_of_groups
tariff
credit

Subscription
charging_policy
svc_presentation
term_support
network_support

Network Access Point

Subscription Assignment Group
group_id
group_size
group_description
terminal_type
nap_type

Subscription Contract
svc_id
actual_start
requested_start
requested_by
billing_contact_pt
tech_contact_pt
basicTarriff
userPlan

Service Provider

Terminal User

Subscription Portfolio
no_of_subscriptions
monthly_charge
payment_record
authority_limit

{subset}

1+

1+

allowServiceAccessFrom

1+

1+

isResponsibleFor
Subcontractor Portfolio

1+

1+

1+

isResponsibleFor

SAG Mapping

1+

1+

Service Profile
Mapping

1+

Service Template
svc_id
svc_type
svc_provider_id
svc_common_data
session_type
svc_factory_ref
svc_specific_part

1+

Service Template
Mapping

1+

1+

Figure 4 Extended Susbcription management information model

A similar approach was taken when applying the extension to the computational
model. It was deemed advantageous to retain as much as possible of the interface
definition of the existing COs when developing the extensions required. In this way
components designed to interact with an original CO interfaces of the component
(SubMgmt in the figure) could also interact with an extended component
(SubMgmt* in the figure) with minimum modification. This was performed simply
by designing SubMgmt* as a wrapper for SubMgmt, with the new COs introduced to
implement this wrapper (shaded in the figure) inheriting IDL interfaces from COs in
SubMgmt. The SubMgmt* COs provide the functionality needed to interact with
SubMgmt components as used in other domains, thus exploiting the same CO
interfaces and minimising the complexity of information processing that needed to
be performed.

SubMgmt*

SubMgr SSSO

SubMgmt

A_Cust
MUAP

Service A
Customer
Domain

SubRgs

SubAgt

SubMgr

A_Prov
MUAP

UA

A_Conf
Mgr SCSO

Service A
Provider
Domain

B_Prov
MUAP

UA

B_Conf
Mgr SCSO

Service B
Provider
Domain

SMPSRP

SubRgs

SubAgt

SubMgr

STH

STH

Figure 5: Extended subscription management computational object model

As had been performed with the SubMgmt object in the original TINA specification,
the SubMgmt* COs were documented as a detailed block diagram identifying the
specific server interfaces offered by the CO using the IDL interface names. In
addition the other COs to which the CO was a client are also identified. An example
of the notation used for this is given in Figure 6.

Subscription Registration Propagator (SRP)

I_srpInit I_sprSubscrnCnt

Prov
MUAP

I_srpMgmt

SubRgs

I_rgsPrpgnMgmt
I_rgsPrpgnInfoQuery

SMPCust
MUAP

Figure 6: Sample of detailed CO block diagram

Such diagrams were accompanied with details of which IOs were handled by the CO
and descriptions of the functionality provided by the different interfaces. As for the
original TINA COs, sequence diagrams showing interface interactions between CO
were used to develop these interface definitions and clarify which IOs are held in
which COs. An example of such a sequence diagram is given in Figure 7.

A_Cust
MUAP

A_Prov
MUAP

UA SPR SMP SubRgs SubAgt SubMgr A_Conf
Mgr

B_Prov
MUAP

UA SubRgs SubAgt SubMgr B_Conf
Mgr

Service A Provider Domain Service B Provider Domain

DONE

1 I_sagMgmt
modifySAG

2 Sub_16

Sub_16

I_srpSubscrnCntrl
assign

DONE

Sub_13

I_prpgnInfoQuery
getSagMapping
sagList

Sub_13

3

5

Figure 7: Example of sequence diagram showing interactions between COs

The functionality covered by these sequence diagrams was taken directly from the
use case information flows used in the analysis, thus ensuring that the requirements
were fully met by the design. Figure 7 shows the interactions that implement the use
case information flows of Figure 3. As sequence diagrams showing interactions
between multiple COs in multiple domains could easily become large and complex, a
box notation was used to refer to sequences of interactions that were represented in
other diagrams, .e.g. the boxes marked Sub_16 and Sub_13 in Figure 7. This form of
nesting sequence diagrams also simplified the drawing of situations were sequences
of interactions were repeated. The boxed numbers referred to accompanying notes
that explained each significant interaction in more detail, in particular referring to
their effect on IOs contained within the COs shown.
As well as proving essential in clarifying the behaviour of CO interfaces and their
internal operations on IOs, the sequence diagrams were also found to be ideal for
producing test documentation. Integration tests performed between components
implemented by different developers were specified by defining pre-and post
condition values for IOs at the beginning and end of sets of interactions represented
on an sequence diagram. Values could also be provided for the parameter of
interface operations performed, so that appropriate test harness software could be
developed and operated. This was especially important where interactions involved a
chain of several COs, and these needed to be tested individually and in small groups
before finally being able to test the complete end-to-end interaction.
7 Conclusions and Further Work
The methodology has been used to develop mult-domain subscription, accounting
and configuration management services. It has proved very useful both in supporting
the full process development lifecycle and allowing the reuse, integration and

extension of pre-defined (standard) computational components. Experience using the
methodology clearly showed that a deeper understanding that just IO and CO models
of pre-existing components is required and the methodology provided techniques
(use trace & interaction diagrams) to assist in the understanding within the context of
the particular problem domain.

Acknowledgment
The work presented in this paper was conducted with partial funding of the
European Commission under the Prospect project (AC052).

References
[Corba-95]Object Request Broker 2.0. Object Management Group, 1995.
[ITU-96] Text of draft recommendation G851-01, Study Group 15, ITU June 1996
[Jacob-92] Object-oriented software engineering: a use case driven approach, Jacobson Ivar

ACM Press Wokingham Addison-Wesley 1992
[ODP-94] Reference Model for Open Distributed Processing, Part 1 Overview and Part 2

Foundations. ISO/IEC 10746-1 (DIS) & 10746-2 (IS) ITU-T X901 & X902. 1994
[ORDIT-93] ORDIT process manual, version 0.5 December 1993
[Hall-96] ‘Modelling and Implementing TMN based multi domain management, PREPARE

Consortium, J Hall (ed) 1996
[Berq-96] Succeeding in Managing Information Highways, PRISM Consortium, Springer

Verlang, Berquist, A. 1996
[Rumb-91] Object Oriented Modelling and Design, J Rumbaugh et al, Prentice Hall 1991.
[TINA-94] TINA-C Service Architecture, TINA Baseline document TB_MDC.018_1.0_94,

Berndt H, Minerva R,
[TINA-93] Computational Modelling Concepts, TINA Baseline document

TB_A2.NAT.002_3.0_93, December 1993
[TINA-95]Information Modelling Concepts, TINA Baseline document TB_EAC.001_1.2_94,

H. Christensen, E. Colban, Version 2.0, April 1995

Stage in Design Cycle from which Viewpoint is derived ODP Viewpoint
ORDIT Method to describe (in text form)
 - Stakeholders, Relationships,Roles, Obligations, Activities
OMT Object Notation diagrams for stakeholders,relationshp
Jacobson USE CASES (text based descriptions of user

interactions) describe what actions are required

Enterprise Model

Use OMT Object Model diagrams e.g. class, aggregation,
etc

Information Model

Use Object Classes which satisfy the USE Cases. Use traces
diagrams to describe and detail the interactions between
object classes. Use IDL to specify CO interfaces

Computational Model

Table 1 Mapping from elements of inter & intra domain models to ODP viewpoint
models

